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Abstract: For the convenient introduction of simple linear/branched alkyl groups into
biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative
cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated
1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated
into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent
cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and
oxidation sequence.
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1. Introduction

The azaspirocyclohexadienone ring represents an important structural motif in natural compounds
and pharmaceuticals, such as Annosqualine, Erythratinone and compound I (acting as muscarinic
antagonist, Figure 1) [1–4]. Thus, the development of efficient methods for the synthesis of these
azaspirocyclohexadienones has attracted substantial attention. While traditional synthetic routes
rely predominantly on the transition-metal-catalyzed intramolecular ipso-carbocyclization [5–9] and
electrophilic ipso-cyclization [10–12], the radical cascade ipso-cyclization was expanding in recent years,
to incorporate various functional groups into the azaspirocyclohexadienone framework [13–15].
Among them, the radical difunctionalization and ipso-cyclization of N-arylcinnamamides or
N-arylpropiolamides has proven to be an straightforward pathway, where various carbon or
heteroatom centered radicals added onto the α,β-unsaturated carbon-carbon multiple bond of
substrates, followed by the intramolecular radical ipso-cyclization and dearomatization. In this context,
simple ethers [16], alkanes [17,18], ketones [19], acetonitrile [20], acyl chloride [21], aldehydes [22],
aryldiazonium salts [23], CF3SO2Na [24–26], arylsulfinic acids [27], sulfonylhydrazides [28],
AgSCF3 [29], thiophenols [30], disulfides [31], N-sulfanylsuccinimide [32], diselenide [33], tert-butyl
nitrite [34], phosphonates [24,35,36] and silanes [37,38] have been demonstrated as the radical precursors
for this spirocyclization (Scheme 1a), as independently reported by Li [16,17], Liang [25,29], and
Zhu [18,20], etc. The addition of carbon radicals to N-arylcinnamamides and subsequent ipso-cyclization
offers a direct synthesis of azaspiro-compounds with the concurrent construction of two C–C single
bonds. However, the alkyl radical source for this spirocyclization of alkenes is still confined. When
ethers, alkanes, ketones and acetonitrile acted as carbon radical precursors via the homolytic cleavage
of sp3 C-H bond, the functional groups (ether, ketone or cyano groups) would inevitably be imported
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into the products, and the generation of regio-isomers was also troublesome due to the possible
existence several different sp3 C-H bonds in these precursors, so readily available alkyl precursors that
could introduce ordinary and simple linear/branched alkyl groups into azaspirocyclohexadienones are
highly desirable, especially those could realize the convenient radical generation and be compatible
with the primary, secondary and tertiary alkyls.
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On the other hand, aldehydes are cheap and readily available chemicals and have been directly used
for decarbonylative couplings catalyzed by ruthenium or rhodium, as shown by the extensive studies
of Li since 2009 [39–44]. In contrast, we are interested in the radical-type decarbonylative reactions
of aldehydes in the absence of noble metals, with peroxides as radical initiator and oxidant [45–53].
The oxidative decarbonylative couplings of aldehydes with (hetero) arenes [45,46], styrenes [47–50],
alkyne and electron-deficient alkenes [51–53] were successively developed by our group. These
decarbonylative reactions were further updated by other groups, with dioxygen as the radical initiator
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and oxidant [54–56]. Similar radical type decarbonylative alkylations of C=C and C≡C bonds with
aldehydes were also separately developed by Li [57,58], Li [59–62] and Yu [63,64].

The above studies have fully demonstrated that radical-type decarbonylation of aliphatic aldehydes
was an economic and convenient way to obtain primary, secondary and tertiary alkyl radicals, thus
we postulated that the merging the oxidative decarbonylation of aliphatic aldehydes into the radical
difunctionalization of N-arylcinnamamides, would produce a benzyl radical and then facilitate the
subsequent radical ipso-cyclization (Scheme 1b). Herein, we report a novel Fe-promoted oxidative
decarbonylative alkylative spirocyclization of N-arylcinnamamides with aliphatic aldehydes to provide
alkylated 1-azaspirocyclohexadienones.

2. Results

Based on the above speculation, N-(4-hydroxyphenyl)-N-methyl cinnamamide (1a) and
isobutyraldehyde (2a) were chosen as the model substrates for this oxidative decarbonylative
spirocyclization; with di-tert-butyl peroxide (DTBP) as the radical initiator and terminal oxidant,
the desired alkylated 1-azaspirocyclohexadienone 3a was isolated and characterized. Detailed
optimization was performed focusing on different iron salt and its loading, the dosage of aldehyde
and DTBP, the reaction temperature and reaction solvent, which revealed the combination of 2.5
mol% Fe(acac)2/5 equiv aldehyde/3 equiv DTBP proved to be the most effective one, to afford the
spirocyclization product 3a in 67% isolated yield (Table 1, entry 1). For the reaction solvent, low
polarity solvents including chlorobenzene (PhCl), trifluoromethylbenzene (PhCF3) and much more
polar acetonitrile, ethyl acetate (EA) all turned out to be compatible, and among these solvents tested,
ethyl acetate provided the best result (entries 12–14). We are glad that this radical cascade reaction
favors ethyl acetate, which should be the greenest solvent among the ordinary organic solvents.

Table 1. Optimization of reaction conditions a.
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Entry Change from “Standard Conditions” 3a (%)

1 none 67
2 2.5 mol% FeCl2 instead of Fe(acac)2 51
3 2.5 mol% Fe(acac)3 instead of Fe(acac)2 20
4 1 mol% Fe(acac)2 61
5 5 mol% Fe(acac)2 56
6 2a reduced to 4 equiv 52
7 2a reduced to 3 equiv 39
8 DTBP reduced to 2 equiv 51
9 115 ◦C instead of 122 ◦C 53

10 120 ◦C instead of 122 ◦C 65
11 124 ◦C instead of 122 ◦C 58
12 PhCl instead of EA as solvent 35
13 PhCF3 instead of EA as solvent 45
14 CH3CN instead of EA as solvent 32

a Standard conditions: N-aryl cinnamamide 1a (0.1 mmol), aldehyde 2a (5 equiv, 0.5 mmol), Fe(acac)2 (2.5 mol%) in
EA (0.5 mL, prepared solution) and DTBP (3 equiv, 0.3 mmol) were reacted at 122 ◦C (oil bath temperature) for 24 h
under air atmosphere. Isolated yield.

With the optimized reaction conditions in hand, we first examined the generality of this alkylative
spirocyclization with different aliphatic aldehydes (2a–2l, Table 2). Various α-mono-substituted
aliphatic aldehydes including isobutyraldehyde (2a), 2-ethylbutanal (2b), 2-methyl-butanal (2c),
2-methylpentanal (2d), 2-ethylhexanal (2e), cyclamen aldehyde (2f), cyclohexane-carbaldehyde (2g)
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and cyclopantanecarbaldehyde (2h) provided the corresponding secondary carbon radicals for the
cascade spirocyclization after the oxidative decarbonylation. While the α-di-substituted pivaldehyde
(2i) provided a tertiary carbon radical, the α-unsubstituted aliphatic aldehyde 3-methylbutanal (2j),
propionaldehyde (2k) and 2-phenylacetaldehyde (2l) would provide primary carbon radicals, similarly.
Gratifyingly, all of these aliphatic aldehydes underwent this decarbonylative alkylative spirocyclization
witH-N-arylcinnamamide (1a) to produce the targeted alkylated 1-azaspirocyclohexadienone (3a–3l)
smoothly. Moreover, the introduced alkyl group and the aryl group exhibit a trans-configuration,
determined by the adjacent coupling constant of the proton on C3 and C4 (J = 12.0 Hz), which agreed
well with the literature reports [18]. Considering the readily availability of these aliphatic aldehydes,
avoidance the possible carbon radical rearrangement (to provide regioisomers as the alkane C-H
bonds homolytic cleavage products) and simple operation for the radical generation (overriding
pre-functionalization and photoreaction devices), this decarbonylative alkylative spirocyclization
demonstrated again that the aliphatic aldehydes were convenient primary, secondary and tertiary
alkyl precursors.

Table 2. Scope of the aliphatic aldehydes a.

Molecules 2020, 25, x FOR PEER REVIEW 4 of 17 

 

a Standard conditions: N-aryl cinnamamide 1a (0.1 mmol), aldehyde 2a (5 equiv, 0.5 mmol), Fe(acac)2 

(2.5 mol%) in EA (0.5 mL, prepared solution) and DTBP (3 equiv, 0.3 mmol) were reacted at 122 °C 

(oil bath temperature) for 24 h under air atmosphere. Isolated yield. 

With the optimized reaction conditions in hand, we first examined the generality of this 

alkylative spirocyclization with different aliphatic aldehydes (2a–2l, Table 2). Various α-mono-

substituted aliphatic aldehydes including isobutyraldehyde (2a), 2-ethylbutanal (2b), 2-methyl-

butanal (2c), 2-methylpentanal (2d), 2-ethylhexanal (2e), cyclamen aldehyde (2f), cyclohexane-

carbaldehyde (2g) and cyclopantanecarbaldehyde (2h) provided the corresponding secondary 

carbon radicals for the cascade spirocyclization after the oxidative decarbonylation. While the α-di-

substituted pivaldehyde (2i) provided a tertiary carbon radical, the α-unsubstituted aliphatic 

aldehyde 3-methylbutanal (2j), propionaldehyde (2k) and 2-phenylacetaldehyde (2l) would provide 

primary carbon radicals, similarly. Gratifyingly, all of these aliphatic aldehydes underwent this 

decarbonylative alkylative spirocyclization witH-N-arylcinnamamide (1a) to produce the targeted 

alkylated 1-azaspirocyclohexadienone (3a–3l) smoothly. Moreover, the introduced alkyl group and 

the aryl group exhibit a trans-configuration, determined by the adjacent coupling constant of the 

proton on C3 and C4 (J = 12.0 Hz), which agreed well with the literature reports [18]. Considering the 

readily availability of these aliphatic aldehydes, avoidance the possible carbon radical rearrangement 

(to provide regioisomers as the alkane C-H bonds homolytic cleavage products) and simple operation 

for the radical generation (overriding pre-functionalization and photoreaction devices), this 

decarbonylative alkylative spirocyclization demonstrated again that the aliphatic aldehydes were 

convenient primary, secondary and tertiary alkyl precursors. 

Table 2. Scope of the aliphatic aldehydes a. 

 

2a isobutyraldehyde 2b 2-ethylbutanal 

2c 2-methylbutanal 2d 2-methylpentanal 

2e 2-ethylhexanal 2f cyclamen aldehyde 

2g cyclohexanecarbaldehyde 2h cyclopantanecarbaldehyde 

2i pivaldehyde 2j 3-methylbutanal 

2k propionaldehyde 2l 2-phenylacetaldehyde 

2a isobutyraldehyde 2b 2-ethylbutanal
2c 2-methylbutanal 2d 2-methylpentanal
2e 2-ethylhexanal 2f cyclamen aldehyde
2g cyclohexanecarbaldehyde 2h cyclopantanecarbaldehyde
2i pivaldehyde 2j 3-methylbutanal
2k propionaldehyde 2l 2-phenylacetaldehyde

Molecules 2020, 25, x FOR PEER REVIEW 5 of 17 

 

 
a Conditions: cinnamamide 1a (0.1 mmol), aldehyde 2a–2l (5 equiv, 0.5 mmol), Fe(acac)2 (2.5 mol%) in 

EA (0.5 mL, prepared solution) and DTBP (3 equiv, 0.3 mmol) were reacted at 122 °C (oil bath 

temperature) for 24 h under air atmosphere. Isolated yield. b Dr. = 1:1 as determined by GC. 

After investigating the scope of aliphatic aldehydes, we next tested the generality of this 

decarbonylative alkylative spirocyclization on different N-aryl cinnamamides 1b–1k under the 

optimized conditions. The effect of substituents on the cinnamamide moiety is listed in Figure 2. 

  

a Conditions: cinnamamide 1a (0.1 mmol), aldehyde 2a–2l (5 equiv, 0.5 mmol), Fe(acac)2 (2.5 mol%) in EA (0.5 mL,
prepared solution) and DTBP (3 equiv, 0.3 mmol) were reacted at 122 ◦C (oil bath temperature) for 24 h under air
atmosphere. Isolated yield. b Dr. = 1:1 as determined by GC.



Molecules 2020, 25, 432 5 of 17

After investigating the scope of aliphatic aldehydes, we next tested the generality of this
decarbonylative alkylative spirocyclization on different N-aryl cinnamamides 1b–1k under the
optimized conditions. The effect of substituents on the cinnamamide moiety is listed in Figure 2.
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Figure 2. (A) Scope of the N-aryl cinnamamides. Conditions: cinnamamide 1b–1k (0.1 mmol), aldehyde
2a (5 equiv, 0.5 mmol), Fe(acac)2 (2.5 mol%) in EA (0.5 mL, prepared solution) and DTBP (3 equiv, 0.3
mmol) were reacted at 122 ◦C (oil bath temperature) for 24 h under air atmosphere. Isolated yield. (B)
4b–4k.

Various electron withdrawing or donating substituents were successfully incorporated into the
cinnamamide unit of substrates 1b–1g, such as methyl, halo and trifluoromethyl groups. Among
them, the optimized reaction conditions were compatible with the cinnamamides with chloro groups
substituted at the para, meta and ortho positions (compounds 1c–1e), and similar yields were obtained,
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which revealed the substituents didn’t cause obvious steric hindrance for this cascade reaction. For the
substituent on the N-linkage, the ethyl and benzyl group-substituted cinnamamides 1h and 1i provided
slightly better yields than the model substrate 1a. To our delight, the 2-naphthalenyl and 2-furanyl
units (1j and 1k) could also be introduced onto the α,β-unsaturated C=C bond of amide substrates,
and the cascade reaction provided the 1-azaspirocyclohexadienone 4j and 4k in moderate yields.

Several control experiments were carried out to understand this decarbonylative alkylative
spirocyclization. First, the cascade reaction of cinnamamide 1a and aliphatic aldehyde 2a
was inhibited in the presence of di-tert-butylhydroxytoluene (BHT); instead, the decarbonylated
alkyl radical was captured as 2,6-di-tert-butyl-4-isopropyl-4-methylcyclohexa-2,5-dien-1-one (5),
which confirmed the radical-type decarbonylation mechanism (Scheme 2a). Second, the
control experiment using the N-(4-methoxyphenyl)-N-methyl cinnamamide (1l) to replace the
N-(4-hydroxyphenyl)-N-methyl cinnamamide (1a) was conducted under the optimized conditions,
however no desired 5-exo-trig spirocyclization product (3a) could be detected; in contrast, the
C3-alkylated 3,4-dihydroquinolin-2(1H)-one 6 was formed in 74% yield, via 6-endo-trig cyclization
pathway (Scheme 2b). The sharp difference on reactivity demonstrated the importance of the
para-hydroxyl substituent for this spirocyclization, maybe due to its ability to stabilize the radical
intermediate (B, Scheme 3) obtained from the 5-exo-trig spirocyclization and accelerating the subsequent
cyclohexadienone formation.
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Scheme 2. Control experiments.

Based on the mechanistic experiments and the previous studies [46–53], a possible reaction
pathway is depicted in Scheme 3, with the reaction of N-(4-hydroxyphenyl)-N-methyl cinnamamide
(1a) and isobutyraldehyde (2a) as an example.

First, promoted by the iron-catalyst, the homolytic cleavage of DTBP at elevated temperature
forms tert-butoxy radical. Subsequent intermolecular hydrogen atom abstraction of the aldehyde (2a),
spontaneous decarbonylation and insertion into the C=C bond of the cinnamamide (1a) affords a
metastable benzyl radical A, which then adds onto the ispo-carbon to give the spiro-cyclohexadienyl
radical B. The radical B is preferably oxidized by Fe3+ and deprotonated by a tert-butoxide anion to
afford the 1-azaspirocyclohexadienone (3a).
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3. Experimental

3.1. General Information

Unless otherwise noted, all commercially available compounds were used as provided without
further purification. The substrates (various N-aryl cinnamamides) were synthesized from cinnamic
acid and para-anisidine according to literature reports [18]. Dry solvents (toluene, ethyl acetate,
dichloroethane, acetonitrile, chlorobenzene, fluorobenzene) were used as commercially available.
Thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm)
or Sorbent Silica Gel 60 F254 plates (E. Merck). The developed chromatography was analyzed by
UV lamp (254 nm). Unless other noted, high-resolution mass spectra (HRMS) were obtained from a
JMS-700 instrument (ESI; JEOL). Melting points are uncorrected. Nuclear magnetic resonance (NMR)
spectra were recorded on an Avance 400 spectrometer (Bruker) at ambient temperature. Chemical shifts
for 1H-NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent
resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for 13C-NMR spectra are
reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard
(CDCl3: δ 77.16 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d =

doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), coupling
constant (Hz), and integration.

3.2. General Experimental Procedures

An oven-dried microwave reaction vessel was charged with FeCl2 (2.5 mol%) in EA (0.5
mL, pre-prepared solution), N-(4-hydroxyphenyl)-N-methylcinnamamide (1a, 0.1 mmol, 1.0 equiv),
isobutyraldehyde (2a, 0.5 mmol, 5.0 equiv) and DTBP (0.3 mmol, 3.0 equiv). The vessel was sealed and
heated at 122 ◦C (oil bath temperature) for 24 h. Afterwards the resulting mixture was cooled to room
temperature, the solvent was removed in vacuo. The residue was purified by column chromatography
on silica gel with a mixture of ethyl acetate/petroleum ether (1:3) as eluent to give the product 3a.

3.3. Spectra Data of Products 3a–3l, 4b–4k, 5, 6 (see “Supplementary Materials” for details)

3-Isopropyl-1-methyl-4-phenyl-1-azaspiro [4.5]deca-6,9-diene-2,8-dione (3a). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with isobutyraldehyde (2a), and purified by flash
column chromatography as yellow oil (19.8 mg, 67%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24 (m, 3H),
7.10 (dd, J = 7.6, 2.4 Hz, 2H), 6.78 (dd, J = 10.0, 3.2 Hz, 1H), 6.55 (dd, J = 10.2, 3.0 Hz, 1H), 6.39 (dd, J =

10.2, 2.0 Hz, 1H), 6.00 (dd, J = 10.2, 2.0 Hz, 1H), 3.43 (d, J = 12.0 Hz, 1H), 3.14 (dd, J = 11.8, 3.6 Hz, 1H),
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2.73 (s, 3H), 2.38–2.34 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 7.2 Hz, 3H). 13C-NMR (100 MHz,
CDCl3) δ 184.46, 175.22, 149.40, 147.05, 135.04, 132.33, 131.51, 128.63, 128.21, 64.95, 50.84, 49.05, 28.07,
27.14, 20.14, 18.78. IR (cm−1): 3032, 2965, 2932, 2875, 1672, 1630, 1606, 1498, 1446, 1454, 1418, 1393, 1374,
1260, 1141, 1119, 1065, 991, 865, 794, 724, 700. HRMS: calcd. for C19H21NO2 Na+ [M + Na]+: 318.1465;
Found: 318.1442.

1-Methyl-3-(pentan-3-yl)-4-phenyl-1-azaspiro[4 .5]deca-6,9-diene-2,8-dione (3b). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 2-ethylbutanal (2b), and purified by flash
column chromatography as yellow oil (23.0 mg, 71%). 1H-NMR (400 MHz, CDCl3) δ 7.26–7.24 (m, 3H),
7.09 (dd, J = 7.6, 2.8 Hz, 2H), 6.77 (dd, J = 10.0, 3.2 Hz, 1H), 6.60 (dd, J = 10.4, 3.2 Hz, 1H), 6.37 (dd, J =

10.0, 2.0 Hz, 1H), 6.00 (dd, J = 10.0, 2.0 Hz, 1H), 3.45 (d, J = 11.8 Hz, 1H), 3.31 (dd, J = 11.8, 2.6 Hz, 1H),
2.74 (s, 3H), 1.78–1.74 (m, 2H), 1.53–1.46 (m, 1H), 1.39–1.32 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.80 (t, J =

7.3 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.46, 175.15, 149.45, 146.94, 134.72, 132.36, 131.58, 128.68,
128.59, 128.28, 65.02, 51.48, 48.30, 34.68, 27.12, 26.47, 16.47, 12.44. IR (cm−1): 3032, 2961, 2931, 2875,
1692, 1672, 1630, 1454, 1419, 1392, 1376, 1260, 1173, 1141, 1119, 1066, 992, 865, 723,700, 662, 563. HRMS:
calcd. for C21H25NO2 Na+ [M + Na]+: 346.1778; Found: 346.1753.

3-(sec-Butyl)-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3c). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 2-methylbutanal (2c), and purified by flash
column chromatography as yellow oil (21.0 mg, 68%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24 (m, 3H),
7.09 (d, J = 9.6, 2.4 Hz, 2H), 6.78 (dd, J = 10.0, 2.8 Hz, 1H), 6.54 (dd, J = 10.0, 3.2 Hz, 1H), 6.39 (dd, J =

10.4, 2.0 Hz, 1H), 6.00 (dd, J = 10.0, 2.0 Hz, 1H), 3.45 (d, J = 12.0 Hz, 1H), 3.20 (dd, J = 12.0, 2.8 Hz, 1H),
2.73 (s, 3H), 1.93–1.85 (m, 1H), 1.60–1.56 (m, 1H), 1.45–1.37 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H), 0.85 (d, J =

7.0 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.46, 175.15, 149.45, 146.94, 134.72, 132.36, 131.58, 128.68,
128.59, 128.28, 65.02, 51.48, 48.30, 34.68, 27.12, 26.47, 16.47, 12.44. IR (cm−1): 3059, 3032, 2962, 2932,
2875, 1672, 1630, 1498, 1454, 1419, 1392, 1375, 1260, 1172, 1143, 1065, 990, 865, 767, 700, 621. HRMS:
calcd. for C20H23NO2 Na+ [M + Na]+: 332.1621; Found: 332.1605.

1-Methyl-3-(pentan-2-yl)-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3d). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 2-methylpentanal (2d), and purified by flash
column chromatography as yellow oil (22.3 mg, 69%). 1H-NMR (400 MHz, CDCl3) δ 7.26–7.23 (m, 3H),
7.09 (dd, J = 7.6, 2.4 Hz, 2H), 6.76 (dd, J = 10.0, 2.8 Hz, 1H), 6.57 (dd, J = 10.0, 2.8 Hz, 1H), 6.38 (dd, J =

10.0, 2.0 Hz, 1H), 6.00 (dd, J = 10.0, 2.0 Hz, 1H), 3.44 (d, J = 10.8 Hz, 1H), 3.21 (dd, J = 11.6, 3.2 Hz, 1H),
2.74 (s, 3H), 2.30–2.23 (m, 1H), 1.37–1.23 (m, 2H), 1.16–1.01 (m, 2H), 0.96 (d, J = 6.9 Hz, 3H), 0.70 (t, J =

7.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.48, 175.64, 149.44, 147.26, 146.96, 135.09, 132.34, 132.24,
131.58, 131.47, 128.66, 128.58, 128.33, 128.29, 128.23, 65.05, 50.43, 48.48, 48.25, 36.50, 35.77, 32.70, 27.24,
20.94, 20.67, 15.97, 14.31, 13.98. IR (cm−1): 3059, 3032, 2958, 2928, 2872, 1672, 1630, 1498, 1454, 1421,
1377, 1261, 1172, 1119, 1067, 990, 865, 794, 724, 700, 621. HRMS: calcd. for C21H25NO2 Na+ [M + Na]+:
346.1778; Found: 346.1752.

3-(Heptan-3-yl)-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3e) [18]. The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 2-ethylhexanal (2e), and purified by flash
column chromatography as yellow oil (21.4 mg, 61%). 1H-NMR (400 MHz, CDCl3) δ 7.25–7.22 (m, 3H),
7.09 (dd, J = 7.6, 2.4 Hz, 2H), 6.77 (dt, J = 10.0, 2.8 Hz, 1H), 6.60 (dt, J = 10.2, 3.2 Hz, 1H), 6.37 (dd, J =

10.0, 2.0 Hz, 1H), 6.00 (dt, J = 10.2, 2.2 Hz, 1H), 3.44 (dd, J = 11.8, 3.2 Hz, 1H), 3.30 (dd, J = 12.0, 3.0 Hz,
1H), 2.74 (s, 3H), 1.84–1.79 (m, 1H), 1.53–1.37 (m, 1H), 1.37–1.26 (m, 4H), 1.23–1.11 (m, 3H), 0.95 (t, J =

8.6 Hz, 3H), 0.81–0.72 (m, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.48, 175.79, 149.53, 147.23, 134.93,
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132.23, 131.54, 128.61, 128.44, 128.29, 65.08, 51.27, 46.04, 45.96, 40.21, 40.10, 31.12, 30.60, 30.31, 30.01,
27.22, 24.47, 24.24, 23.10, 22.80, 14.24, 14.02, 12.69, 12.24. IR (cm−1): 3060, 3032, 2958, 2929, 2872, 1691,
1672, 1630, 1499, 1455, 1393, 1376, 1259, 1173, 1119, 1066, 991, 865, 766,722, 700, 662.

(3f) 3-(1-(4-isopropylphenyl)propan-2-yl)-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione. The title
compound was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 3-(4-isopropylphenyl)-2-methylpropanal (2f),
and purified by flash column chromatography as yellow oil (30.6 mg, 74%). 1H-NMR (400 MHz,
CDCl3) δ 7.24–7.23 (m, 1H), 7.17–7.13 (m, 2.5H), 7.20–7.07 (m, 2.5H), 7.00 (dd, J = 6.0, 2.0 Hz, 1H), 6.89
(dd, J = 6.0, 1.6 Hz, 1H), 6.80–6.73 (m, 1.5H), 6.65 (dd, J = 10.0, 3.2 Hz, 0.5H), 6.53 (dd, J = 11.4, 3.2 Hz,
0.5H), 6.43–6.32 (m, 1.5H), 5.96 (td, J = 10.1, 2.0 Hz, 1H), 3.44–3.38 (m, 1H), 3.22–3.14 (m, 1H), 3.08–3.02
(m, 1H), 2.91–2.84 (m, 1H), 2.72 (d, J = 8 Hz, 3H), 2.67 (t, J = 6.8 Hz, 0.5H), 2.49 (q, J = 6.8 Hz, 0.5H),
2.28 (d, 5.6 Hz, 0.5H), 2.06–2.00(m, 1H), 1.28–1.21 (m, 6H), 0.99 (dd, J = 6.8, 4.4 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ 174.77, 149.42, 149.36, 147.09, 146.84, 146.76, 146.58, 137.97, 137.48, 134.68, 133.85,
132.44, 132.18, 131.53, 131.45, 129.49, 129.06, 128.61, 128.58, 128.54, 128.30, 128.20, 128.00, 126.41, 126.33,
64.95, 64.89, 51.61, 50.78, 47.81, 45.16, 40.13, 40.02, 34.93, 34.56, 33.86, 33.79, 27.19, 26.98, 24.33, 24.19,
16.74, 15.80. IR (cm−1): 3049, 3030, 2960, 2928, 2873, 1689, 1631, 1499, 1454, 1392, 1378, 1265, 1172, 1114,
1058, 990, 864, 735, 700, 570. HRMS: calcd. for C28H31NO2 Na+ [M + Na]+: 436.2247; Found: 436.2217.

3-Cyclohexyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3g) [18]. The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with cyclohexanecarbaldehyde (2g), and purified by
flash column chromatography as yellow oil (24.1 mg, 72%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24(m,
3H), 7.09 (dd, J = 7.6, 2.4 Hz, 2H), 6.76 (dd, J = 10.0, 3.2 Hz, 1H), 6.54 (dd, J = 10.2, 3.0 Hz, 1H), 6.39 (dd,
J = 10.4, 2.0 Hz, 1H), 5.98 (dd, J = 10.2, 2.0 Hz, 1H), 3.48 (d, J = 12.0 Hz, 1H), 3.11 (dd, J = 11.8, 3.6 Hz,
1H), 2.73 (s, 3H), 2.01–1.94 (m, 1H), 1.73 (d, J = 13.2, 1H), 1.63–1.56 (m, 3H), 1.38–1.13 (m, 4H), 1.08–0.99
(m, 1H), 0.87–0.81 (m, 1H). 13C-NMR (100 MHz, CDCl3) δ 184.50, 175.30, 149.45, 147.09, 135.06, 132.33,
131.45, 128.63, 128.22, 128.19, 65.00, 51.02, 48.81, 38.27, 30.98, 29.14, 27.19, 26.71, 26.56, 26.23. IR (cm−1):
3057, 3032, 2925, 2852, 1690, 1672, 1499, 1450, 1419, 1393, 1377, 1260, 1172, 1134, 1096, 1069, 991, 864,
796, 732, 657, 569.

3-Cyclopentyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3h) [18]. The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with cyclopentanecarbaldehyde (2h), and purified
by flash column chromatography as yellow oil (19.6 mg, 61%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24
(m, 3H), 7.09 (dd, J = 7.6, 2.4 Hz, 2H), 6.77 (dd, J = 10.2, 3.0 Hz, 1H), 6.54 (dd, J = 10.2, 3.1 Hz, 1H),
6.39 (dd, J = 10.2, 2.0 Hz, 1H), 5.99 (dd, J = 10.2, 2.0 Hz, 1H), 3.38 (d, J = 11.6 Hz, 1H), 3.21 (dd, J =

11.8, 6.2 Hz, 1H), 2.73 (s, 3H), 2.24–2.18 (m, 1H), 2.05–1.96 (m, 1H), 1.87–1.76 (m, 3H), 1.50–1.38 (m,
3H), 1.25–1.21 (m, 1H). 13C-NMR (100 MHz, CDCl3) δ 184.50, 175.30, 149.45, 147.09, 135.06, 132.33,
131.45, 128.63, 128.22, 128.19, 65.06, 53.45, 46.83, 41.20, 29.85, 29.56, 27.16, 25.18, 24.99. IR (cm−1): 3059,
3031, 2923, 2869, 1730, 1692, 1671, 1630, 1453, 1442, 1393, 1375, 1260, 1172, 1075, 991, 865, 794, 732,700,
645, 569.

3-(tert-Butyl)-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3i). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with pivalaldehyde (2i), and purified by flash
column chromatography as yellow oil (16.7 mg, 52%). 1H-NMR (400 MHz, CDCl3) δ 7.27 (s, 3H), 7.21
(s, 2H), 6.77 (dd, J = 10.0, 3.2 Hz, 1H), 6.46 (dd, J = 10.2, 3.2 Hz, 1H), 6.38 (dd, J = 10.0, 2.0 Hz, 1H), 5.92
(dd, J = 10.2, 2.0 Hz, 1H), 3.40 (d, J = 11.2 Hz, 1H), 3.01 (d, J = 11.6 Hz, 1H), 2.70 (s, 3H), 1.00 (s, 9H).
13C-NMR (100 MHz, CDCl3) δ 184.48, 175.09, 149.54, 147.98, 136.60, 132.11, 131.04, 128.02, 64.35, 52.50,
51.33, 33.87, 28.08, 27.22. IR (cm−1): 3031, 2958, 2870, 1688, 1672, 1630, 1605, 1468, 1420, 1392, 1370,



Molecules 2020, 25, 432 10 of 17

1260, 1244, 1171, 1119, 1093, 864, 794, 720, 735,700, 610, 563. HRMS: calcd. for C20H23NO2 Na+ [M +

Na]+: 332.1621; Found: 332.1597.

3-Isobutyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3j). The title compound was
prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 3-methylbutanal (2j), and purified by flash
column chromatography as yellow oil (19.8 mg, 64%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24 (m, 3H),
7.09 (dd, J = 7.6, 2.4 Hz, 2H), 6.76 (dd, J = 10.0, 3.2 Hz, 1H), 6.59 (dd, J = 10.4, 3.0 Hz, 1H), 6.39 (dd, J =

10.0, 2.0 Hz, 1H), 6.01 (dd, J = 10.2, 2.0 Hz, 1H), 3.25 (d, J = 11.6 Hz, 1H), 3.15 – 3.09 (m, 1H), 2.74 (s,
3H), 1.89–1.83 (m, 1H), 1.74–1.67 (m, 1H), 1.38–1.31 (m, 1H), 0.86 (d, J = 7.2 Hz, 3H), 0.80 (d, J = 6.4 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 184.45, 176.38, 149.36, 146.81, 134.34, 132.40, 131.59, 128.66, 128.36,
128.25, 65.23, 56.35, 41.66, 41.10, 27.23, 25.20, 22.93, 22.37. IR (cm−1): 3056, 3033, 2956, 2927, 2869, 1692,
1672, 1630, 1467, 1454, 1393, 1376, 1262, 1172, 1137, 1080, 1060, 866, 790, 721, 700. HRMS: calcd. for
C20H23NO2 Na+ [M + Na]+: 332.1621; Found: 332.1597.

3-Ethyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3k). The title compound was
prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with propionaldehyde (2k), and purified by flash
column chromatography as yellow oil (16.1 mg, 56%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.24 (m, 3H),
7.10 (dd, J = 8.0, 2.4 Hz 2H), 6.79 (dd, J = 10.0, 3.2 Hz, 1H), 6.57 (dd, J = 10.2, 3.2 Hz, 1H), 6.41 (dd, J =

10.0, 2.0 Hz, 1H), 6.02 (dd, J = 10.2, 2.0 Hz, 1H), 3.34 (d, J = 12.0 Hz, 1H), 3.13–3.06 (m, 1H), 2.75 (s,
3H), 1.96–1.86 (m, 1H), 1.77–1.68 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.46,
175.72, 149.32, 146.57, 134.25, 132.53, 131.70, 128.70, 128.34, 128.17, 65.14, 54.39, 44.64, 27.17, 23.01, 11.18.
IR (cm−1): 3056, 3032, 2965, 2931, 2877, 1692, 1672, 1629, 1454, 1420, 1394, 1376, 1262, 1174, 1125, 1060,
988, 865, 719, 699, 659. HRMS: calcd. for C18H19NO2 Na+ [M + Na]+: 304.1308; Found: 304.1286.

3-Benzyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (3l). The title compound was
prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methylcinnamamide (1a) with 2-phenylacetaldehyde (2l), and purified by
flash column chromatography as yellow oil (14.4 mg, 42%). 1H-NMR (400 MHz, CDCl3) δ 7.24–7.16 (m,
6H), 7.07–7.04 (m, 2H), 6.99–6.97 (m, 2H), 6.56 (dd, J = 10.2, 3.0 Hz, 1H), 6.47 (dd, J = 10.0, 3.0 Hz, 1H),
6.30 (dd, J = 10.2, 2.0 Hz, 1H), 6.00 (dd, J = 10.2, 2.0 Hz, 1H), 3.42 (dt, J = 12.2, 5.4 Hz, 1H), 3.30–3.20 (m,
2H), 2.93 (dd, J = 13.6, 5.8 Hz, 1H), 2.71 (s, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.41, 174.77, 149.24,
146.36, 137.36, 133.43, 132.39, 131.76, 129.98, 128.69, 128.47, 128.28, 128.27, 126.71, 65.01, 52.74, 45.16,
34.06, 27.23. IR (cm−1): 3060, 3029, 2922, 2853, 1693, 1672, 1630, 1496, 1453, 1393, 1377, 1261, 1172, 1130,
1092, 1075, 865, 788, 721, 699. HRMS: calcd. for C23H21NO2 Na+ [M + Na]+: 366.1465; Found: 366.1443.

3-Isopropyl-1-methyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4b). The title compound was
prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methyl-3-(p-tolyl)acrylamide (1b) with isobutyraldehyde (2a), and purified
by flash column chromatography as yellow oil (22.2 mg, 72%). 1H-NMR (400 MHz, CDCl3) δ 7.05 (d, J
= 7.6 Hz, 2H), 6.53 (d, J = 7.6 Hz, 2H), 6.77 (dd, J = 10.0, 3.2 Hz, 1H), 6.56 (dd, J = 10.2, 3.0 Hz, 1H),
6.38 (dd, J = 10.0, 2.0 Hz, 1H), 6.01 (dd, J = 10.2, 1.8 Hz, 1H), 3.40 (d, J = 11.6 Hz, 1H), 3.11 (dd, J =

12.0, 3.6 Hz, 1H), 2.73 (s, 3H), 2.36–2.31 (m, 1H), 2.28 (s, 3H), 1.01 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 7.2
Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.60, 175.34, 149.56, 147.20, 137.93, 132.28, 131.95, 131.50,
129.33, 128.09, 65.05, 50.58, 49.13, 28.07, 27.14, 21.16, 20.13, 18.83. IR (cm−1): 3046, 3030, 2960, 2929,
2876, 1690, 1672, 1629, 1516, 1465, 1419, 1393, 1375, 1263, 1065, 992, 864, 736, 639, 575. HRMS: calcd. for
C20H23NO2 Na+ [M + Na]+: 332.1621; Found: 332.1602.

4-(4-Chlorophenyl)-3-isopropyl-1-methyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4c). The title compound
was prepared according to the general procedure described above by the reaction between
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3-(4-chlorophenyl)-N-(4-hydroxyphenyl)-N-methylacrylamide (1c) with isobutyraldehyde (2a), and
purified by flash column chromatography as yellow oil (22.7 mg, 69%). 1H-NMR (400 MHz, CDCl3) δ
7.24 (dd, J = 6.4, 2.0 Hz, 2H), 7.05 (dd J = 6.4, 2.0 Hz, 2H), 6.76 (dd, J = 10.2, 3.0 Hz, 1H), 6.54 (dd, J =

10.2, 3.2 Hz, 1H), 6.40 (dd, J = 10.0, 2.0 Hz, 1H), 6.05 (dd, J = 10.2, 2.0 Hz, 1H), 3.40 (d, J = 12.0 Hz, 1H),
3.08 (dd, J = 12.0, 3.6 Hz, 1H), 2.73 (s, 3H), 2.38–2.30 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.82 (d, J = 6.8 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 184.23, 174.90, 149.09, 146.66, 134.10, 133.70, 132.53, 131.86, 129.53,
128.91, 64.83, 50.23, 49.23, 28.06, 27.19, 20.29, 18.68. IR (cm−1): 3050, 2961, 2931, 2874, 1692, 1672, 1630,
1494, 1466, 1417, 1392, 1373, 1259, 1173, 1121, 1092, 1014, 866, 830, 736. HRMS: calcd. for C19H20ClNO2

Na+ [M + Na]+: 352.1075; Found: 352.1059.

4-(3-Chlorophenyl)-3-isopropyl-1-methyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4d). The title compound
was prepared according to the general procedure described above by the reaction between
3-(3-chlorophenyl)-N-(4-hydroxyphenyl)-N-methylacrylamide (1d) with isobutyraldehyde (2a), and
purified by flash column chromatography as yellow oil (21.1 mg, 64%). 1H-NMR (400 MHz, CDCl3) δ
7.25–7.20 (m, 2H), 7.10 (s 1H), 7.00 (dt, J = 7.0, 1.8 Hz, 1H), 6.76 (dd, J = 10.2, 3.2 Hz, 1H), 6.56 (dd, J =

10.2, 3.0 Hz, 1H), 6.42 (dd, J = 10.0, 2.0 Hz, 1H), 6.06 (dd, J = 10.2, 2.0 Hz, 1H), 3.40 (d, J = 12.0 Hz, 1H),
3.08 (dd, J = 12.0, 3.6 Hz, 1H), 2.73 (s, 3H), 2.38–2.30 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.8 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 184.22, 174.78, 148.99, 146.52, 137.35, 134.58, 132.62, 131.87, 129.96,
128.55, 128.35, 126.53, 64.76, 50.52, 49.20, 28.09, 27.17, 20.23, 18.75. IR (cm−1): 3056, 2961, 2931, 2874,
1691, 1672, 1630, 1468, 1422, 1392, 1375, 1261, 1173, 1119, 1082, 880, 852, 736, 690, 623. HRMS: calcd. for
C19H20ClNO2 Na+ [M + Na]+: 352.1075; Found: 352.1053.

4-(2-Chlorophenyl)-3-isopopyl-1-methyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4e). The title compound
was prepared according to the general procedure described above by the reaction between
3-(2-chlorophenyl)-N-(4-hydroxyphenyl)-N-methylacrylamide (1e) with isobutyraldehyde (2a), and
purified by flash column chromatography as yellow oil (21.0 mg, 63%). 1H-NMR (400 MHz, CDCl3) δ
7.34–7.24 (m, 3H), 7.22–7.16 (m, 2H), 6.88 (dd, J = 10.2, 3.0 Hz, 1H), 6.68 (dd, J = 10.2, 3.2 Hz, 1H), 6.33
(dd, J = 10.2, 2.0 Hz, 1H), 6.12 (dd, J = 10.2, 2.0 Hz, 1H), 4.25 (d, J = 11.8 Hz, 1H), 3.04 (dd, J = 11.8,
3.6 Hz, 1H), 2.74 (s, 3H), 2.39–2.31 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.76 (d, J = 7.0 Hz, 3H). 13C-NMR
(100 MHz, CDCl3) δ 184.41, 174.88, 149.76, 146.58, 133.44, 131.83, 131.81, 130.45, 135.01, 129.37, 129.22,
126.68, 64.64, 51.18, 46.06, 28.23, 26.94, 20.50, 18.43. IR (cm−1): 3059, 2960, 2931, 2873, 1692, 1672, 1631,
1468, 1422, 1392, 1374, 1260, 1174, 1116, 1065, 1037, 864, 750, 736, 698. HRMS: calcd. for C19H20ClNO2

Na+ [M + Na]+: 352.1075; Found: 352.1054.

4-(4-Bromophenyl)-3-isopropyl-1-methyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4f). The title compound
was prepared according to the general procedure described above by the reaction between
3-(4-bromophenyl)-N-(4-hydroxyphenyl)-N-methylacrylamide (1f) with isobutyraldehyde (2a), and
purified by flash column chromatography as yellow oil (23.5 mg, 63%). 1H-NMR (400 MHz, CDCl3) δ
7.41–7.38 (m, 2H), 6.99 (dd, J = 6.4, 2.0 Hz, 2H), 6.75 (dd, J = 10.0, 3.2 Hz, 1H), 6.53 (dd, J = 10.2, 3.0
Hz, 1H), 6.40 (dd, J = 10.2, 2.0 Hz, 1H), 6.05 (dd, J = 10.2, 2.0 Hz, 1H), 3.39 (d, J = 12.0 Hz, 1H), 3.07
(dd, J = 12.0, 3.6 Hz, 1H), 2.73 (s, 3H), 2.38–2.30 (m, 1H), 0.99 (d, J = 7.0 Hz, 3H), 0.82 (d, J = 7.0 Hz,
3H). 13C-NMR (100 MHz, CDCl3) δ 184.22, 174.83, 149.09, 146.60, 134.26, 132.56, 131.90, 131.88, 129.86,
122.24, 64.73, 50.31, 49.19, 28.09, 27.19, 20.31, 18.70. IR (cm−1): 3048, 2960, 2929, 2873, 1693, 1671, 1630,
1491, 1466, 1392, 1374, 1260, 1173, 1120, 1010, 866, 827, 755, 629, 571. HRMS: calcd. for C19H20BrNO2

Na+[M + Na]+: 396.0570; Found: 396.0550.

3-Isopropyl-1-methyl-4-(4-(trifluoromethyl)phenyl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4g). The title
compound was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methyl-3-(4-(trifluoromethyl)phenyl)acrylamide (1g) with isobutyraldehyde
(2a), and purified by flash column chromatography as yellow oil (23.6 mg, 65%). 1H-NMR (400 MHz,
CDCl3) δ 7.54 (d, J = 7.8 Hz, 2H), 7.25 (t, J = 7.4 Hz, 2H), 6.79 (dd, J = 10.2, 3.2 Hz, 1H), 6.55 (dd, J =



Molecules 2020, 25, 432 12 of 17

10.2, 3.2 Hz, 1H), 6.42 (dd, J = 10.0, 2.0 Hz, 1H), 6.04 (dd, J = 10.2, 2.0 Hz, 1H), 3.49 (d, J = 11.8 Hz, 1H),
3.15 (dd, J = 12.0, 3.8 Hz, 1H), 2.74 (s, 3H), 2.39–2.31 (m, 1H), 1.01 (d, J = 7.0 Hz, 3H), 0.82 (d, J = 7.0
Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.05, 174.67, 148.90, 146.28, 139.43, 132.68, 131.97, 128.69,
125.73, 125.69, 64.68, 50.57, 49.24, 28.13, 27.17, 20.30, 18.72. 19F-NMR (376 MHz, CDCl3) δ 62.65 (s, 1F).
IR (cm−1): 3050, 2962, 2933, 2876, 1692, 1672, 1631, 1468, 1422, 1392, 1375, 1327, 1166, 1124, 1069, 1017,
869, 853, 737, 602. HRMS: calcd. for C20H20F3NO2 Na+ [M + Na]+: 386.1338; Found: 386.1319.

(1-Ethyl-3-isopropyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4h). The title compound was
prepared according to the general procedure described above by the reaction between
N-ethyl-N-(4-hydroxyphenyl)cinnamamide (1h) with isobutyraldehyde (2a), and purified by flash
column chromatography as yellow oil (22.0 mg, 71%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.23 (m, 3H),
7.09 (dd, J = 8.0, 2.0 Hz, 2H), 6.82 (dd, J = 10.1, 3.1 Hz, 1H), 6.62 (dd, J = 10.2, 3.0 Hz, 1H), 6.37 (dd, J
= 10.1, 2.0 Hz, 1H), 5.95 (dd, J = 10.2, 2.0 Hz, 1H), 3.42 (d, J = 12.0 Hz, 1H), 3.36–3.27 (m, 1H), 3.14
(dd, J = 12.0, 3.6 Hz, 1H), 3.10–3.01 (m, 1H), 2.38–2.30 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H), 1.01 (d, J = 7.0
Hz, 3H), 0.82 (d, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.71, 175.02, 149.52, 148.09, 135.02,
131.86, 130.60, 128.61, 128.28, 128.23, 65.24, 51.25, 49.04, 36.86, 28.11, 20.17, 18.71, 15.29. IR (cm−1): 3057,
3033, 2962, 2934, 2874, 1678, 1629, 1498, 1454, 1402, 1376, 1310, 1262, 1140, 1125, 1064, 940, 866, 724, 700.
HRMS: calcd. for C20H23NO2 Na+ [M + Na]+: 332.1621; Found: 332.1597.

1-Benzyl-3-isopropyl-4-phenyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4i). The title compound was
prepared according to the general procedure described above by the reaction between
N-benzyl-N-(4-hydroxyphenyl)cinnamamide (1i) with isobutyraldehyde (2a), and purified by flash
column chromatography as yellow oil (27.8 mg, 75%). 1H-NMR (400 MHz, CDCl3) δ 7.27–7.23 (m, 3H),
7.22–7.18 (m, 5H), 7.04 (dd, J = 6.8, 3.0 Hz, 2H), 6.54 (dd, J = 10.4, 3.2 Hz, 1H), 6.47 (dd, J = 10.2, 3.0 Hz,
1H), 6.18 (dd, J = 10.0, 2.0 Hz, 1H), 5.81 (dd, J = 10.2, 2.0 Hz, 1H), 4.66 (d, J = 15.0 Hz, 1H), 4.07 (d, J =

14.8 Hz, 1H), 3.42 (d, J = 12.0 Hz, 1H), 3.22 (dd, J = 12.0, 3.8 Hz, 1H), 2.43–2.35 (m, 1H), 1.07 (d, J = 6.8
Hz, 3H), 0.85 (d, J = 6.8 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.70, 175.31, 149.35, 147.30, 137.95,
134.66, 131.35, 130.71, 128.64, 128.60, 128.53, 128.30, 128.24, 127.78, 65.26, 51.27, 48.88, 45.36, 28.14, 20.11,
18.86. IR (cm−1): 3061, 3031, 2961, 2930, 2873, 1670, 1629,1496, 1454, 1399, 1264, 1179, 1065, 1011, 958,
930, 863, 792, 734, 700. HRMS: calcd. for C25H25NO2 Na+ [M + Na]+: 394.1778; Found: 394.1761.

3-Isopropyl-1-methyl-4-(naphthalen-2-yl)-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4j). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-hydroxyphenyl)-N-methyl-3-(naphthalen-2-yl)acrylamide (1j) with isobutyraldehyde (2a), and
purified by flash column chromatography as white solid (21.7 mg, 62%). m.p. 84.4–86.8 ◦C. 1H-NMR
(400 MHz, CDCl3) δ 7.80–7.73 (m, 3H), 7.58–7.54 (m, 1H), 7.50–7.45 (m, 2H), 7.22 (dd, J = 8.4, 2.0 Hz,
1H), 6.84 (dd, J = 10.2, 3.2 Hz, 1H), 6.63 (dd, J = 10.2, 3.0 Hz, 1H), 6.41 (dd, J = 10.2, 2.0 Hz, 1H), 5.94 (dd,
J = 10.2, 2.0 Hz, 1H), 3.61 (d, J = 11.8 Hz, 1H), 3.27 (dd, J = 11.8, 3.8 Hz, 1H), 2.76 (s, 3H), 2.42–2.34(m,
1H), 1.04 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 7.0 Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 184.38, 175.20,
149.49, 146.96, 133.11, 132.76, 132.40, 131.58, 133.02, 128.46, 127.88, 127.80, 127.46, 126.63, 126.46, 125.83,
65.04, 50.97, 49.34, 28.21, 27.15, 20.25, 18.80. IR (cm−1): 3052, 2960, 2931, 2874, 1691, 1672, 1629, 1466,
1418, 1392, 1374, 1261, 1173, 1141, 1064, 992, 854, 822, 735, 607. HRMS: calcd. for C23H23NO2 Na+ [M +

Na]+: 368.1621; Found: 368.1605.

4-(Furan-2-yl)-3-isopropyl-1-methyl-1-azaspiro[4.5]deca-6,9-diene-2,8-dione (4k). The title compound
was prepared according to the general procedure described above by the reaction between
3-(furan-2-yl)-N-(4-hydroxyphenyl)-N-methylacrylamide (1k) with isobutyraldehyde (2a), and purified
by flash column chromatography as yellow oil (20.5 mg, 72%). 1H-NMR (400 MHz, CDCl3) δ 7.29–7.28
(m, 1H), 6.70 (dd, J = 10.0, 3.1 Hz, 1H), 6.63 (dd, J = 10.2, 3.0 Hz, 1H), 6.43 (dd, J = 10.0, 2.0 Hz, 1H), 6.24
(dd, J = 3.2, 2.0 Hz, 1H), 6.10–6.07 (m, 2H), 3.48 (d, J = 11.8 Hz, 1H), 3.17 (dd, J = 12.0, 4.0 Hz, 1H), 2.72
(s, 3H), 2.42–2.34 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 7.2 Hz, 3H). 13C-NMR (100 MHz, CDCl3)
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δ 184.51, 174.69, 149.14, 149.04, 146.70, 142.45, 132.12, 131.24, 110.67, 108.59, 64.25, 48.72, 44.06, 27.76,
27.04, 19.70, 18.14. IR (cm−1): 3049, 2962, 2933, 2876, 1697, 1674, 1631, 1505, 1420, 1390, 1373, 1261, 1173,
1149, 1118, 1065, 1021, 859, 736, 599. HRMS: calcd. for C17H19NO3 Na+ [M + Na]+: 308.1257; Found:
308.1248.

2,6-di-tert-Butyl-4-isopropyl-4-methylcyclohexa-2,5-dienone (5) [52]. The title compound was prepared
from mechanistic experiment. 1H-NMR (400 MHz, CDCl3) δ 6.44 (s, 2H), 1.80–174 (m, 1H), 1.24 (s,
18H), 1.17 (s, 3H), 0.84 (d, J = 6.8 Hz, 6H). 13 C-NMR (100 MHz, CDCl3) δ 186.90, 146.95, 145.80, 42.43,
37.55, 34.89, 29.70, 24.72, 18.09. IR (cm−1): 3001, 2961, 2876, 1658, 1643, 1460, 1374, 1267, 1061, 867, 751.

3-Isopropyl-6-methoxy-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one (6). The title compound
was prepared according to the general procedure described above by the reaction between
N-(4-methoxyphenyl)-N-methylcinnamamide with isobutyraldehyde (2a), and purified by flash
column chromatography as colorless oil (22.9 mg, 74%). 1H-NMR (400 MHz, CDCl3) δ 7.24–7.13 (m,
3H), 7.00–6.97 (m, 3H), 6.85 (dd, J = 8.8, 3.2 Hz, 1H), 6.75 (d, J = 2.8 Hz, 1H), 4.13 (s, 1H), 3.78 (s, 3H),
3.33 (s, 3H), 2.57 (dd, J = 9.2, 2.0 Hz, 1H), 1.70–1.63 (m, 1H), 1.04 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.8
Hz, 3H). 13C-NMR (100 MHz, CDCl3) δ 170.31, 155.69, 141.99, 133.86, 128.82, 128.23, 127.19, 126.84,
115.88, 115.52, 112.61, 56.64, 55.56, 45.37, 29.73, 28.55, 21.19, 21.05. IR (cm−1): 3060, 3025, 2960, 2933,
2872, 2835, 1731, 1666, 1590, 1503, 1469, 1432, 1387, 1341, 1249, 1034, 910, 810, 699, 621. HRMS: calcd.
for C20H23NO2 Na+ [M + Na]+: 332.1621; Found: 332.1610.

4. Conclusions

We have developed a convenient Fe-catalyzed decarbonylative alkylative spirocyclization of
N-aryl cinnamamide with aliphatic aldehydes to provide 1-azaspirocyclohexadienones. Readily
available aliphatic aldehydes were decarbonylated into primary, secondary and tertiary alkyl radicals
readily for the cascade construction of dual C(sp3)-C(sp3) and C=O bonds. The application of cheap and
readily available aliphatic aldehydes as alkyl source, convenient experimental operation for the alkyl
radical generation, green ferrous catalyst and reaction solvent, C=C bond difunctionalization strategy
and versatile synthetic utilities of the 1-azaspirocyclohexadienone, would render this decarbonylative
alkylative spirocyclization attractive for organic synthesis and medicinal chemistry.
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and copies of NMR spectrums.
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