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Segregation of an MSHT RNAI transgene produces
heritable non-genetic memory in association with
methylome reprogramming
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MSHT1 is a plant-specific protein. RNAi suppression of MSHT results in phenotype variability
for developmental and stress response pathways. Segregation of the RNAI transgene pro-
duces non-genetic mshl ‘memory’ with multi-generational inheritance. First-generation
memory versus non-memory comparison, and six-generation inheritance studies, identifies
gene-associated, heritable methylation repatterning. Genome-wide methylome analysis
integrated with RNAseq and network-based enrichment studies identifies altered circadian
clock networks, and phytohormone and stress response pathways that intersect with circa-
dian control. A total of 373 differentially methylated loci comprising these networks are
sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5-
azacytidine diminishes the differences between memory and wild type for growth, gene
expression and methylation patterning. The msh1 reprogramming is dependent on functional
HISTONE DEACETYLASE 6 and methyltransferase MET]1, and transition to memory requires
the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve
as a potent model for defining accelerated plant adaptation during environmental change.
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lants possess an extensive circuitry for environmental

response. Short-term stress conditions during plant growth

are managed through transcriptional changes triggered as
short-term survival responses. The plant response primes the
system to mount a more rapid and robust action upon subsequent
stress exposure!. This acclimation, conditioned as short-term
memory, involves chromatin changes surrounding key response
loci?. However, mechanisms of phenotypic plasticity and the
extent to which plants undergo transgenerational memory fol-
lowing chronic stress is less clear. Evolution of plant seed dis-
persal mechanisms were likely accompanied by mechanisms to
deal with dramatic changes in environment as species invaded
new niches. While examples of transgenerational, epigenetic
stress memory are implied in ecological contexts?, reproducible
induction of this type of plant behavior has not been documented.

Most plant chromatin changes are reprogrammed each gen-
eration, with the apparent exception of cytosine methylation,
where some proportion of parental patterns are inherited through
meiosis?. Genome-wide methylome analysis, therefore, provides
one avenue for investigating transgenerational epigenetic beha-
vior. In plants, cytosine methylation is generally in three contexts,
CG, CHG and CHH (H=C, A or T), with CG more prominent
within gene-body regions®. Cytosine methylation in plants is
important in transposable element silencing, seed development,
flower development®, fruit ripening’, stress response and forma-
tion of heritable memory®°. However, association of CG gene-
body methylation with changes in gene expression remains in
question!?. There exist ample data associating chromatin beha-
vior with plant response to environmental changes!!, but
affiliation of DNA methylation with these effects, or their
inheritance, remains inconclusive®!12,

The system we investigate involves disruption of MUTS
HOMOLOG 1 (MSHI), a plant-specific gene that participates in
organelle genome stability!>14. Plastid depletion of MSHI1 con-
ditions broadly pleiotropic, variable phenotypes!®, and altered
expression of developmental and stress response pathways!¢. The
mshl phenotype can be induced by MSH1 RNAi knockdown!”.
Subsequent null segregation of the RNAI transgene results in
“memory” plants restored for MSHI expression but delayed in
flowering, growth, and maturity transition!>17. Selected null
segregants, termed mshl memory lines, display full penetrance
and inheritance of the altered phenotype, as we report here. Most
striking is the finding that derived memory lines, when crossed or
grafted to wild-type isolines, produce progeny lineages enhanced
in growth vigor and resilience!”.

In this report, we show that MSHI mutation results in changes
that are HDA6-dependent. The derived mshl heritable memory
state, when contrasted with nonmemory full-sib progeny, reveals
methylome repatterning that can be discriminated within 373
loci. These loci reside in pathways controlling circadian rhythm,
auxin response, phytohormone signaling and RNA spliceosome
processes and the heritable repatterning is influenced by RNA-
directed DNA methylation. These results are compelling evidence
for the epigenomic influence of MSH1 disruption on plant growth
and environmental response.

Results

The memory line phenotype. In Arabidopsis lines silenced for
MSHI, segregation of the MSHI-RNAI transgene produces
heritable phenotype change in ca. 20% of the resulting transgene-
null progeny (Fig. 1). The mshl memory phenotype is more
uniform than that of mshl mutants derived from point mutation,
T-DNA mutation or RNAi suppression!>!7 (Fig. la; Supple-
mentary Fig. la). Memory lines show normal MSHI transcript
levels (Fig. 1b), but 100% penetrance and heritability of the

altered phenotype in self-crossed generations. Over 3000 RNAi-
null memory line progeny under greenhouse conditions were
uniformly altered in growth, producing neither visible reversion
to wild type nor intensified mshl phenotypes (Supplementary
Fig. 1a). We postulate that memory lines maintain the heritable
phenotype by virtue of epigenomic modifications.

As initial test of cytosine methylation influence on the mshl
memory phenotype, the methylation inhibitor 5-azacytidine was
applied to these plants. Germination of memory line and isogenic
Col-0 wild-type seeds on media with 100 uM 5-azacytidine
alleviated early phenotype differences between the two lines,
resulting in similar growth rates (Fig. 1¢c; Supplementary Fig. 1b).
Transfer of treated seedlings to potting media to assess later
growth revealed similar phenotypes in wild-type and memory
lines following treatment (Fig. 1d). These observations suggest the
possibility of cytosine methylation influence on the memory
phenotype.

Association of mshl memory with cytosine methylation. To
discriminate potential mshl-associated differential methylation
from background variation, we implemented two revisions to
standard analysis methods, the first biological and the second
methodological. Self-crossing of the MSHI-RNAi suppression
line produces transgene-positive and transgene-null progeny,
with ca. 20% of transgene-null progeny displaying the memory
phenotype and the remainder appearing unchanged and desig-
nated “non-memory”!”. We included these nonmemory progeny
in our analysis. Self-crossing an MSHI1-RNAI transgenic (hemi-
zygous) individual for a progeny population of 233 plants pro-
duced 35 transgene-nulls. Of these, seven (20%) displayed the
memory phenotype and 28 appeared wild type (nonmemory) in
phenotype.

Memory and nonmemory full-sib progeny from one parent can
be expected to share a majority of methylation patterning,
revealing putative phenotype-associated methylome effects. A
transgenerational memory dataset was established where the first-
generation memory line was comprised of six full-sib individuals,
with one used to derive the next generation by self-crossing, a
process carried forward for six generations (Fig. 2). In this design,
memory-nonmemory methylation differences were cross-
referenced against memory-associated changes heritable over six
generations to provide robust discrimination of phenotype-linked
methylation variation.

Changes in genome-wide cytosine methylation were evident in
mshl memory and nonmemory lines relative to wild type by
comparing genome-wide methylation levels, confirming epige-
nomic activity (Supplementary Fig. 2). These data allowed
assessment of transgenerational methylation fluctuation. Overall
methylation level was higher among wild-type individuals than
memory in all six generations. Relying on high data quality
(Supplementary Data 1), rigorous experimental design and large
population sizes (30 samples each for wild type and mshl
memory, Fig. 2), we estimated probability distributions of
methylation signal (divergence of methylation levels) in wild
type and mshl memory populations with a recently published
signal detection-machine-learning procedure (implemented in
the R package Methyl-IT)!8. By this means, we discriminated
methylation signal induced by mshl from natural spontaneous
variation in control samples at each methylation site. We defined
a differentially methylated position (DMP) as a cytosine position
with high probability to be altered in methylation by msh1 effect,
distinct from spontaneous variation in the control population.
Methyl-IT analysis was previously shown to achieve excellent
discrimination power!'8, so we tested this procedure for
discrimination power in the mshl memory dataset. DMPs for
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Fig. 1 MSH1 disruption produces transgenerational memory. a Phenotypic range in MSH1-derived developmental reprogramming, with msh1 memory
plants uniformly reduced in growth rate, delayed flowering and pale leaves. Seedling stage photo at 4 weeks and floral stage at 6 weeks. b Relative MSH1
expression levels in mshl memory and MSH1— RNA: line. Each column represents one individual plant, error bars represent mean £ SD; each circle
represents independent result from RTPCR experiment. ¢ Phenotype of msh1 memory line after methylation inhibitor 5-azacytidine treatment. The msh1
memory plants were grown on MS medium with O or 100 uM 5-azacytidine for 10 days, then transplanted to soil; photo at 2 weeks after transplanting.
d Leaf area measurements of wild type (WT) and mshT memory plants after 5-azacytidine treatment. Each circle represents data from a single plant, bars
represent means + SD, with nine plants in each population (n =9). Data represent one experiment of three replicates. DAT days after transplanting. Source

data underlying Fig. 1b, d are provided as a Source Data file.

CG context derived in the Genl nonmemory (NM) versus
memory (MM) comparison were used to test four DMP
identification methods, Fisher’s exact test (used by methylKit),
Wald Test (used by DSS), root-mean-square test (used by
methylpy) and signal detection-machine-learning method (used
by Methyl-IT), for classification performance with similar
methylation level difference (>0.25) and p value (<0.05) cutoff
(Supplementary Fig. 3).

The discrimination power or accuracy of DMP calling for each
method is evaluated based on performance of classifier models
built on DMPs identified by each method. Supplementary Fig. 3b,
¢ shows the signal detection-machine-learning approach to
provide the best overall DMP calling performance among the
four methods, with second largest number of DMPs identified,
highest accuracy, sensitivity, and specificity and lowest FDR.

Applying a similar procedure to all six-generation datasets
showed DMPs from all memory vs. nonmemory and WT vs.
memory comparisons at false discovery rate (FDR) <0.05 and
accuracy > 90% (Supplementary Table 1). Downstream analysis
with identified DMPs used the signal detection procedure
(Supplementary Fig. 3a). Examining the probability density
distribution of gene-body methylation divergence, the genome-
wide patterning change in memory Gen6 more closely resembled
nonmemory, unlike memory Genl to Gen5 datasets (Supple-
mentary Fig. 4). This observation implies that Gen6 is partially
transitioning to a nonmemory-like state.

Identified memory DMPs showed a slightly greater trend
toward hypomethylation for CG and CHG context, and increased

hypermethylation for CHH, with low generational variability
(Fig. 3a). The greatest proportion of DMP variation was observed
within transposable element (TE) regions in all methylation
contexts, with CG-associated DMPs predominant within genic
regions (Fig. 3b). This repatterning includes a shifting of
methylation from CG to non-CG sites in the first generation of
memory individuals relative to nonmemory individuals (Supple-
mentary Fig. 2). To understand the divergence of methylation
within these three populations, we identified DMPs in all three
populations and conducted hierarchical cluster analysis. With six
clades detected, wild-type individuals formed one distant clade, as
expected. The memory lines formed a second clade, while
nonmemory individuals formed four clades, suggesting that
nonmemory comprises a transition state (Fig. 4a).

Comparison of memory and nonmemory individuals revealed
significant difference between the two states (Fig. 4b). Each lane
within the heatmap shows a full-sib individual selected on
phenotype alone, evidence of a relationship between differential
methylation behavior and memory expression. DMP distribution
in the nonmemory vs. memory direct comparison showed similar
features to the WT vs. memory comparison, with more hypo-
than hypermethylation changes in CG context (Fig. 4¢), and CG-
associated DMPs within genic regions at higher density (Fig. 4d).

We applied generalized linear regression analysis (GLM) to test
significance of the difference between group DMP counts (WT vs.
memory, nonmemory vs. memory) at genic regions (gene body
plus 1kb up- and downstream). Genes with statistically
significant difference in DMP counts in memory vs. nonmemory
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Fig. 2 Transgenerational mshT memory line pedigree and sample collection strategy. The mshT memory lineage was developed by selecting transgene-
null progeny from segregation of the MSHI-RNAI transgene, maintained through six generations in parallel to a wild-type control (through same
transformation procedure) for each generation. Five plants from each generation (represented as solid circles) were processed for bisulfite sequencing, and
five plants from wild type (WT), mshl memory (MM) and nonmemory (NM) generation 1 and WT and MM generation 5 were processed for RNAseq at
the same time (red outline). Rosette leaf tissues were collected at bolting stage.

or WT were defined as differentially methylated genes (DMGs).
Relying on the robust dataset available (6 generations, 65 samples
and 4-Gb reads per sample) and two additional biological filters,
network enrichment analysis and heritability, to assess the nature
of memory-related genes, we implemented an intermediate
stringency cutoff to enhance the gene network resolution power
of potential DMGs. This approach identified 6925, 5148, 5603,
7231, 7704, and 6050 DMGs for genl-gen6, respectively, and
7130 DMGs for the nonmemory vs. memory comparison.
Designation as a DMG indicates presence of a substantial
number of DMPs with significant methylation level difference
(Supplementary Fig. 5), reflecting high probability of methylation
change in the memory plants assayed. All DMGs are not assumed
to associate with memory phenotype.

To screen the DMG datasets for phenotype-associated
DMGs, we used the additional biological filters of network
enrichment analysis and heritability. Network-based enrichment
analysis identified pathways shared by at least four of the seven
DMG datasets tested, most predominant being circadian
clock, stress response and phytohormone signaling networks
(Fig. 5a, Supplementary Data 2). We also conducted network
enrichment analysis with 2637 DMGs that were obtained for the
memory-nonmemory comparison under more stringent filtering
conditions. Results from this parallel analysis showed a similar
enriched network profile to that obtained with the 7130 DMGs,
including circadian rhythm and hormone signaling pathways, but
with fewer individual genes identified in each network (Supple-
mentary Fig. 6). These results imply that the enriched network
profile identified with intermediate filter stringency is robust and
biologically meaningful.

4

A comparative analysis within wild type alone permitted
assessment of background methylome variation identifiable as
DMGs. Analysis of five wild-type samples from Gen3 (samples 1,
2, 3 as reference and control, with 4, 5 as treatment) revealed 1854
DMGs for variation in cold response, photomorphogenesis,
meristem and plant development, response to sucrose, and
photoperiodism as identifiable pathways (Supplementary Data 3).
These DMGs are characteristic of variation for transition to
flowering, consistent with expectations for plants harvested at
bolting stage!®. The wild-type DMGs from Gen3 data produced
considerable overlap (1374, 74%) with Gen3 memory DMGs, also
harvested at bolting stage. Therefore, the wild-type DMGs were
subtracted from the Gen3 memory dataset to enrich for memory-
specific effects and reduce influence of developmental signal. This
subtracted dataset of 4231 Gen3 memory DMGs showed greater
enrichment in circadian rhythm, auxin response, cytokinin
signaling, and stress response pathways (Supplementary Data 4).

Memory methylation changes intersect with gene expression.
To assay gene expression changes in mshl memory, two gen-
erations were selected, with Genl (WT, MM and NM plants)
representing the mshl memory-initiation stage and Gen5 (WT,
MM) representing an advanced stage. We identified 5045 dif-
ferentially expressed genes (DEGs) in the Genl nonmemory vs.
memory comparison, 4509 in Genl WT vs. memory comparison
and 5777 DEGs for Gen5 WT vs. memory (Supplementary
Data 5-7). Gene expression datasets in nonmemory and wild-
type comparisons were highly similar (Supplementary Fig. 7a),
indicating that methylation changes shared between nonmemory

| (2020)11:2214 | https://doi.org/10.1038/s41467-020-16036-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16036-8

ARTICLE

a b
Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen1 Gen2 Gen3 Gen4 Gen5 Gen6
1.8E+05 cG B Hyper 0.5 ca
1.5E+405 - B Hypo 04 C -
1.2E405 - 03 | -
9E+04
.2
B6E+04 - 0 ! I
3E+04 - I I I I 0.1 = f—— B B 1 Genomic features
5 o Hm_HEm | [ In_EEm l._ | | ._ ] im_EEm e o =l =l =N !. !. =8 =Prcler$%ters
»»»»»»»»»»»»»»» R — ) ! ) ) 5 S
o =
g 1.8E+05 - % 0.5 CHG | | E)::)onnss
1.5E+05
& g 04 B 3 UTRs
g 1.2E+05 g 03 B TEs
S 9E+04 g [ TE genes
° < 02 -— @£mm == =, I TE fragments
6E+04 - z == M Pseudogenes
= II II II . II I g o B
r S
oe-f”Ff-H‘-‘F-H‘—F-”‘—-l -—.l 0--!-!-!-!-!— [ snRNAs
1.8E+05 05 ' | Il miRNAs
- CHH B ncRNAs
1.5E+05 04 M Other GRs
1.2E+05 -
9E+04 - 0.3
6E+04 - 0.2
3E+04 04 B= 2= == B o=
. II_ | I I I «A_E |
O e i, I o o 0-!;!-!---!=%
"') 2 Q@ 2.2 & & 2 2 & 2 Q@ 2,2 & 2,2 @ 2.2 @ 2,2 & . )
FEEEELE SLESEE FEEEEE ECEEEE SEESEE SLEEEE «
T TE FF TS FF TS FF TS T &S & S8 S 8 88 ¢
WT MM WT MM WT MM WT MM WT MM WT MM

Fig. 3 DMP counts and genomic distribution in msh1 memory line. a Total hyper- and hypomethylation DMP counts in CG, CHG, CHH context embedded
in genic regions (gene coding plus 1kb upstream to start codon, 1kb downstream to stop codon), TE-related regions (including TEs, TE genes, TE fragments
and pseudogenes) and others (including tRNAs, rRNAs, snRNAs, miRNAs, ncRNAs). DMPs were defined as hyper if the site methylation difference in

comparisons of each individual to the average of reference plants (the centroid of the wild type group) is greater than O and defined as hypo if less than O.
b The relative frequency of DMPs in genic regions (blue shades), TE-related regions (in red shades) and others (in green shades). The average of five wild-
type plants (the centroid of the wild-type group) was used as a reference for each generation. The relative frequency of DMPs in each genomic feature was
estimated as the number of DMPs divided by the number of total genomic cytosine positions in each genomic feature. Each individual's DMP number and
frequency is computed separately and the group mean for WT (wild type) and MM (mshT memory) are presented. Notice that DMPs are detected within
wild-type samples due to spontaneous variation, distinct from treatment-induced, is detectable within our system. Source data underlying Fig. 3a, b are

provided as a Source Data file.

and memory lines, when compared against wild type, do not
detectably impact phenotype. Therefore, we used memory vs.
nonmemory comparisons to discriminate phenotype-associated
methylation effects.

Two important limitations exist for comparing gene expression
with methylation variation. Because genes function in networks,
only a portion of associated regulators may undergo methylation
changes. Also, spatiotemporally regulated gene expression may go
undetected in pooled tissue sampling. To partially offset these
limitations, we conducted gene enrichment analysis with expres-
sion datasets to identify overlaps with methylation network data
(Fig. 5b). We also included gene expression data derived from
targeted purification of polysomal mRNA (TRAP-Seq) analysis of
changes within MSHI-expressing cells in wild type vs. msh1 20.

Several important observations emerged from this analysis.
Four gene pathways were detected exclusively within data from
MSH 1-expressing cells and not generally: nucleosome assembly,
chromatin silencing, calcium-mediated signaling and mRNA
splicing via spliceosome (Fig. 5b). Arising distinctly in MSHI-
expressing cells, we assume that these changes represent early and
local response to MSHI suppression and precede memory
induction. Comparison of memory vs. nonmemory identified
gene networks for circadian clock, light response, and phyto-
hormone response to stress. Importantly, pathways identified in
both methylation and gene expression datasets are known to be
highly interconnected (Fig. 5) and function as plant environ-
mental sensing and response mechanisms?!-22,

As an alternative means of assessing the relationship of gene
expression to methylation repatterning in the memory state, we

carried out a correlation analysis of DNA methylation divergence
(MD) and gene expression divergence on 20,022 genes (total of
genes with methylation divergence >0) in genl mshl memory
plants. A linear statistical association between and MD was
confirmed with application of a linear-by-linear association test (p
value < 0.0001). The Spearman’s p = —0.166 for upregulated
genes and p = —0.17 for downregulated genes suggests that gene
expression and methylation processes are not independent in
Genl memory line (Supplementary Fig. 8a, b).

We further investigated the impact of methylation change
location and direction on gene expression. Using 821 genes that
were both DMGs and DEGs in Genl mshl memory, we identified
significant difference between CG gene-body hypo- and hyper-
methylated DMG expression levels, with higher CG gene-body
methylation associated with lower gene expression (Supplemen-
tary Fig. 8¢c). A significant difference was also observed between
CHH promoter region hypo- and hypermethylated DMG
expression level, with higher CHH methylation in promoters
associated with lower gene expression (Supplementary Fig. 8d).

Altered circadian clock network within the memory line. To
investigate the relationship between differential methylation and
gene expression in mshl memory, we looked at individual genes
within three prominent networks identified by our analysis: cir-
cadian rhythm, response to auxin and spliceosome function. In
the circadian rhythm gene network, at least 23 genes were iden-
tified as differentially methylated in memory vs. nonmemory and/
or heritably altered in at least four of the six generations (Fig. 6a).
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Fig. 4 High-resolution discrimination of memory and nonmemory methylome features. a Hierarchical clustering of first-generation wild-type, memory, and
nonmemory lines. Individuals were represented as vectors of the mean of Hellinger divergences (HD) at DMP positions within 2-kb nonoverlapping genomic
regions. The hierarchical clustering was built using Ward agglomeration method. The Hellinger divergence (HD) was computed by using the centroid of five
wild-type samples (HD formula is listed in Sanchez et al.'8). b Heatmap showing the sum of absolute methylation difference for the direct memory vs.
nonmemory comparison. The absolute value of the difference between methylation levels from control centroid (average of four control plants) and each
individual (five memory plants, four nonmemory plants) at each differentially methylated cytosine site was used to build the heatmap. Each bin represents
sum of methylation level difference in 2 kb. Scale bars represent the sum of absolute methylation level difference for a 2-kb interval. ¢ Total hyper- and hypo-
DMP counts in the NM (nonmemory) and MM (msh1 memory) comparison. Each context, CG, CHG, CHH, was assigned to genic regions (coding region plus
1kb upstream to start codon, 1kb downstream to stop codon), TE-related regions (including TEs, TE genes, TE fragments and pseudogenes) and others
(including tRNAs, rRNAs, snRNAs, miRNAs, ncRNAs). DMPs were defined as hyper if site methylation difference in the comparison of each individual to the
control centroid was greater than O and defined as hypo if less than O. d The relative frequency of DMPs in the nonmemory (NM) and memory (MM)
comparison. DMPs are assigned to genic region (blue shades), TE-related region (red shades) and others (green shades). The centroid of the nonmemory
group was used as a reference. The relative frequency of DMPs in each genomic feature was estimated as the number of DMPs divided by the number of
total genomic cytosine positions in each genomic feature. Source data underlying Fig. 4c, d are provided as a Source Data file.

We interpreted occasional discrepancies in representation (e.g. overlap between the two (Fig. 6a, b). Integration of DMG and
presence in generations 2 and 4, but not 3) as stochastic fluc- DEG datasets showed a trend of differential methylation within
tuation around the significance threshold. genes functioning upstream in the pathway (Fig. 6¢), and a

Circadian clock-related DEGs were examined in Genl and significant proportion (37.3-40.8%) of the 1982 genes that
Gen5, a much greater number than DMGs, with only modest interact with CCA1/TOC1 differentially expressed in mshl
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Fig. 5 Statistically significant overenrichment of gene networks. a Networks identified by NEAT (Network Enrichment Analysis Test) for the DMGs
identified in mshT memory line by MethylIT. The full list of DMGs for each generation of the memory line is listed in Supplementary Data 2. b Functional
enrichment analysis of DEGs in mshT memory line, msh1 mutant translatome and msh7 T-DNA mutant. GO biological process enrichment categories above
the cutoff, FDR < 0.01, are shown. DAVID GO was used to conduct the analysis’®. The msh1 T-DNA mutant expression data were generated and reported
in Shao et al.’®. The mshT mutant translatome refers to the MSH1 cell type-specific TRAPseq dataset that was reported in Beltrén et al.20. The hda6
transcriptome data were taken from Yu et al.2” and reanalyzed using our pipeline. For Gen1 sRNA, genes within =1kb of differentially expressed SRNA
clusters were used for the GO analysis. Source data for generational DMGs are provided as a Source Data file.

memory (Supplementary Fig. 7b), reflecting sizeable enrichment.
Networks regulated by circadian clock functions and differentially
expressed in the memory line included starch metabolism and
responses to ethylene, ABA, and cold stress (Supplementary
Fig. 7c-e).

Evaluation of circadian clock behavior in mshl memory by
tracking gene expression levels of four selected circadian core
genes, TOCI, LHY, CCAI and GI, under 24-h light and
alternating light-dark conditions showed significant and similar
changes in each. Memory lines were altered in oscillation
amplitude, with little phase change (Supplementary Fig. 9). These
patterns resemble those created by the rve 4, 6, 8 triple mutant,
where REVEILLE8 (RVES8) and its homologs RVE4 and RVE6
function to regulate growth by controlling cell size?3. Memory
plants display significantly altered days to bolting, leaf area, and
chlorophyll content in short vs. long days, relative to isogenic wild
type (Supplementary Fig. 10), typical of many circadian clock
mutants?4-26,

Altered auxin response and RNA splicing networks in memory.
Within the auxin response network, over 49 genes displayed
differential methylation in memory vs. nonmemory and/or at
least four generations (Supplementary Fig. 11a). Among them

were crucial auxin response genes GH3.1 and GH3.9, which
function in auxin conjugation, ABCB 19(PGP19) and ABCBI
(PGP1) encoding key auxin transport proteins and ARFI, ARF6,
ARF8, which encode central auxin transcription factors (Sup-
plementary Fig. 11c). Numerous auxin-associated DEGs, includ-
ing genes critical for auxin synthesis (IAA4, JAAI8 and IAA29)
and SAUR family genes (auxin early response factors), were
identified. Auxin network genes including AXR4 and ATHB-8
were present in both DMG and DEG datasets (Supplementary
Fig. 11a, b).

A third pronounced pathway identified within the mshl
memory DMG dataset involved components of spliceosome-
mediated RNA splicing. At least 42 loci in this pathway were
identified as differentially methylated in comparisons of
memory with nonmemory and/or at least four generations
(Supplementary Fig. 12a). From the analysis of mshl differ-
ential expression, this network emerged in TRAP-Seq data for
MSHI1 cell-specific expression (Supplementary Fig. 12b). These
observations suggest that changes in alternative splicing path-
ways occur early in MSHI suppression outcomes?). A
surprisingly large number of components in this network are
influenced in mshl (Supplementary Fig. 12c¢), which may
contribute, in part, to the dramatic and programmed changes in
gene expression!®17,
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Fig. 6 Circadian rhythm network genes are both differentially expressed and methylated. a DMGs for the circadian rhythm (GO:0007623) network in
msh1 memory line. Only genes identified as DMGs in at least four out of seven comparisons (Genl to Gen6 WT vs. MM and Gen1 NM vs. MM) are
presented. Scale represents the log2 Fold change of DMP number at specific genes in each comparison. b DEGs from the circadian rhythm (GO:0007623)
network in mshT memory line and mshT mutant. Only genes identified as DEGs in at least four out of five comparisons (Gen1 WT vs. MM, Gen1 NM vs. MM,
Gen5 WT vs. MM, WT vs. mshT translatome (TRAPseq) and WT vs. mshT TDNA mutant) are presented. ¢ DMGs and DEGs presented in panels (a) and (b)
are positioned in the circadian clock network. The network is adopted from the KEGG database (Circadian rhythm—plant—Arabidopsis thaliana). The hda6
transcriptome data were taken from Yu et al.2” and reanalyzed using our pipeline. Genes associated with differentially expressed sRNA clusters were
highlighted with a green star. Source data for generational DMGs are provided as a Source Data file.

The experiment was designed to define memory-associated for 21 networks involved in phytohormone and stress response,
genes as those displaying methylation differences in the memory-  circadian rhythm, and regulation of transcription (Supplementary
nonmemory comparison that are retained through six consecu- Data 9). Memory changes in transcriptional regulation identified
tive generations. These criteria narrowed the original 5000-7500 32 loci known to participate in auxin response, abiotic and biotic
DMGs to a total of 954 (Supplementary Data 8). Consistent with  stress response, DNA and chromatin modifications, and circadian
our other analyses, this refined dataset showed overenrichment clock (Supplementary Data 9).
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Confirming gene methylation repatterning in memory. To
understand gene-associated repatterning within the memory line,
we plotted DMPs by cytosine context in the selected 954 loci with
heritable, memory-associated changes. Supplementary Fig. 13
shows repatterning predominantly by hypermethylation within
CHH context and milder CG hypomethylation to distinguish
memory from nonmemory and wild type. Despite the genome-
wide methylome shift toward nonmemory in Gen6é (Supple-
mentary Fig. 4), the DMP distribution pattern among 954 heri-
table Gen6 DMGs was very similar to other generations
(Supplementary Fig. 13).

We elucidated methylation repatterning effects by examining
individual loci. Expression of 18 circadian-, hormone-, and
spliceosome-related genes was confirmed by quantitative real-
time PCR and association with mshl memory phenotype
(Supplementary Fig. 14). To confirm DMP calling accuracy by
Methyl-IT, we selected a promoter region within XTHI6
(AT3G23730) with substantial DMP density and hypermethyla-
tion in all three contexts in each generation of mshl memory
(Supplementary Fig. 15a). Targeted BS-PCR confirmed DMP
calling for both nonmemory vs. memory comparison (Genl) and
wild type vs. memory (Gen6).

Gene-associated methylation changes were partitioned into
gene-body vs. TE-associated and displayed by cytosine context.
Figure 7 shows an example of high-density gene methylation
changes (mainly CHH hypomethylation in this case) in the
memory line with no TE influence. The gene shown, STRESS-
ASSOCIATED PROTEIN 13 (SAP13), is responsive to abiotic stress
and is differentially expressed in the memory line. In TE-associated
loci, genes adjacent to, or containing, transposable element
sequences generally displayed high-density DMPs within the TE
sequence as well as promoter or gene-body of the adjacent locus.

ATMEKK]I encodes a member of the MAPK/ERK kinase
kinase family that mediates stress signaling. The gene is altered in
expression and methylation in the memory line, detectable as
mainly CG hypomethylation in the gene-body (Supplementary
Fig. 16). ARF8, encoding an auxin responsive protein, shows
evidence of TE-associated gene-body methylation changes. These
differences in methylation (CG hypomethylation in gene-body,
CHH hypermethylation in promoter region) persist six genera-
tions (Supplementary Fig. 17). Similarly, GIGANTEA (GI) is an
important component of the circadian clock core network and is
heritably altered in expression in the memory line. The altered
methylation domain within this gene, outlined in black, was
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detected in all six generations (Supplementary Fig. 18a). The
subtle differential methylation signal near the 3’ end of GI, mainly
CG context, was confirmed by targeted BS-PCR sequencing
(Supplementary Fig. 18b).

Significant CHH repatterning in memory prompted us to
develop sRNA sequence data for memory and wild-type lines.
Samples were derived from Genl memory and corresponding
wild-type plants. Screening differential 24nt sRNAs from these
datasets identified 2999 differentially expressed sRNA clusters
and 2847 genes within +1 kb of these clusters (Supplementary
Data 10), representing similar pathways as in memory line
methylome analysis (Fig. 6b). In all, 913 DMGs from memory
Genl and 205 DMGs from the 954 heritable DMGs were located
within +1kb of the sRNA clusters (Supplementary Data 8, 10).
Among 373 DMGs in four prominent networks (Supplementary
Data 11), 57 were colocalized with differentially expressed sSRNA
clusters, and individual gene examples are highlighted with a
green star in Fig. 6 (circadian rhythm network) and Supplemen-
tary Fig. 11 (auxin response network). The location of
differentially expressed sSRNA clusters within heritable DMGs is
pinpointed in MEKKI1 (Supplementary Fig. 16) and ARFS8
(Supplementary Fig. 17). These observations further support a
conclusion of nonstochastic repatterning and likely participation
of the RADM pathway in the maintenance of memory.

Principal component and linear discriminant analyses were
used to assess the 954-DMG mshl memory dataset in Genl
memory, Gen2-6 memory, nonmemory and wild-type lines
(Supplementary Fig. 19a). The nonmemory dataset was separable
from memory in Genl, consistent with distinct repatterning of
memory relative to nonmemory sibs, and subsequent generation
datasets comprised a distinct and cohesive transition. These
relationships were retained when analysis was focused on a subset
of only 373 DMGs in four prominent networks, circadian
rhythm, response to auxin, RNA spliceosome and phytohormone
signal transduction, indicating that changes within these four
pathways are sufficient to discriminate the memory state from
nonmemory (Supplementary Fig. 19b).

A similar approach was used to investigate the relationships of
gene expression (Supplementary Fig. 19¢, d) and DMG
(Supplementary Fig. 19e, f) datasets derived from memory lines
before and after 5-azacytidine treatment. In both gene expression
and methylation repatterning, memory and isogenic wild-type
datasets were distinct. However, following 5-azacytidine treat-
ment, the memory and wild-type samples clustered, consistent
with the hypothesis that mshl memory methylation effects are
largely obviated by 5-azacytidine treatment. Further elaboration
of these data in Supplementary Fig. 20 shows quantitative gene
expression assays for 16 selected memory DEG loci before and
after 5-azacytidine treatment.

Genetic control of the mshl effect. To begin to dissect compo-
nents of the mshl epigenomic process, we examined the effect of
methylation/demethylation and silencing pathway components on
establishment of the mshl state, previously shown to involve sig-
nificant changes in CG methylation!”, and the transition to mshlI
memory, shown here to involve significant CHH repatterning.
Several major RNA-directed DNA methylation (RADM) pathway
protein coding genes were differentially methylated in multiple
generations of mshl memory, including RDR2, DCL3, DRM2, and
CLSY1(Fig. 8a). Methylation components METI and CMT3 were
downregulated, and chromatin modifiers SUVR2 and SUVH4 were
both altered in methylation and expression (Fig. 8a, b). These
observations imply that the RdADM pathway and particular
methylation and chromatin modifiers participate in the MSH1
effect. We, therefore, constructed a series of mshl double mutants

in these pathways. Figure 8c shows that double mutants between
mshl and components of the RADM pathway displayed a phe-
notype similar or identical to mshl alone. These data indicate that
a fully intact RADM pathway is not essential for initial msh1 effects.

In contrast, the double-mutant msh1/hda6 was not recoverable
in segregating populations germinated on soil or nutrient media
(Table 1; Supplementary Table 2). This observation indicates that
histone deacetylase HDA6 activity is required for initial mshl
reprogramming. The hda6 mutant is altered in expression of 5738
genes?’, of which 49% (2855) are shared with the mshl DEG
dataset, a 75% overlap of gene ontology networks identified for
the hda6 dataset (Fig. 5b; Supplementary Data 12). In
comparisons with memory, the hda6 DEG dataset shared 34%
(1948) overlap with the Genl memory line dataset and 44%
(2583) with Gen5 memory. HDA6 is known to recruit the
methyltransferase MET1 to TEs and other sites that undergo
differential methylation and silencing?®-3% and participates in
regulation of pathways identified in this study?*31-33 (Fig. 6;
Supplementary Figs. 7, 11). Expression changes in the auxin
response and circadian rhythm pathways in mshl memory show
an inverse relationship with expression changes in hda6,
consistent with HDA6 participation in this response.

Double mutants of msh1/metl, while recovered, were markedly
reduced in frequency relative to expected (Supplementary Tables 3
and 4). These data implicate the MET1-HDAG®6 interaction in
initial mshl epigenomic reprogramming. Interestingly, the MET1
promoter is overlapped by a transposon (AT5TE71740; Supple-
mentary Fig. 21), and both the element and METI promoter
undergo methylation change. This change, located more than 1
kb upstream to METI, was not identified as a DMG in our
datasets. The data show that initial stress-derived mshl
reprogramming depends on HDA6 and MET]I.

To investigate mshl memory transition, with increased CHH
variation, we introduced the MSH1-RNAi construct to a drml1/2
double mutant to attempt memory induction. DRM1 and DRM2
methyltransferases maintain CHH methylation in the RdDM
pathway3%. Subsequent segregation of the RNAi transgene
permitted testing for evidence of memory in progeny. Of 547
progeny from a drml/2 MSHI-RNAi hemizygous plant, we
identified 170 transgene-nulls and no evidence of mshl memory
phenotype based on growth rate, chlorophyll content and
flowering time (Fig. 8d, e). We would predict ca. 20% (34 plants)
to display mshl memory behavior. These data, together with
sRNA datasets, support RADM participation in memory
methylation repatterning.

Discussion
MSH] suppression in plants leads to developmental reprogram-
ming and expression of phenotypic plasticity!®. The mshl
memory comprises a distinct state that occurs in about 20% of
plants that have undergone reprogramming. Characterized by
reduced growth rate, altered chlorophyll content, delayed
maturity transition and flowering, and enhanced stress response,
mshl memory is unexpectedly stable, penetrant and heritable.
Comparison of memory and nonmemory progeny from a
single parent revealed memory-specific methylation changes,
supporting phenotype-associated methylome behavior. These
data showed a marked change in memory progeny methylation
repatterning (Fig. 4; Supplementary Figs. 4, 13a) with local but
not globally significant change in methylation level (Supple-
mentary Fig. 2). The observed repatterning appeared to target
specific gene networks, permitting discrimination of the memory
state based on 373 DMGs associated with circadian rhythm,
auxin response, spliceosome functions and plant hormone signal
transduction.
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Fig. 8 Genetic control of the msh1 effect. Methylation/demethylation and silencing pathway component methylation (a) and expression changes (b) in
mshT memory. Genes associated with differentially expressed sRNA clusters were highlighted with a green star. ¢ Double mutants of msh7 with components
of the RADM pathway. d Embryo lethality in the mshi/hda6 double mutant. Methylation/demethylation and silencing pathway component gene list was
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Table 1 Segregation analysis of msh1—/~/hda6-7+/~ F; plants.

Progeny genotype On soil On 0.5 M MS medium
Expected # of progeny Observed # of progeny Expected # of progeny Observed # of progeny
msh1~/=/hda6-7+/+ 103 343 235 77
msh1~~/hda6-7+/~ 206 69 47 17
msh1~/~/hda6-7~/~ 103 0 235 0
Total 412 412 94 94

Memory and nonmemory were similar in methylome repattern-
ing when compared to wild type, but clearly distinguishable with
PCA + LDA and cluster analyses (Fig. 4a; Supplementary Fig. 19).
Changes shared by memory and nonmemory types, and the varia-
tion observed in nonmemory individuals, suggest a continuum in
reprogramming and a threshold that delimits the memory state. We
assume that some of the nonmemory lines could diminish or
intensify in memory methylome effects in subsequent generations
(Supplementary Fig. 4). The extent to which nonmemory plants can
display phenotypic plasticity under stress is not known.

It might be argued that the methylation level differences
detected between memory and nonmemory were sufficiently
subtle to reside within the range of natural fluctuation or epige-
nomic drift. But our data show that memory full-sib individuals
display evidence of methylome repatterning at markedly greater
magnitude than occurs by natural fluctuation, represented in
wild-type and nonmemory individuals (Fig. 4). These observa-
tions reflect influences on memory methylome behavior that are
more subtle than are commonly described in most plant epige-
nomic studies, yet readily distinguished from random epigenomic
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variation. This outcome provides perspective for plant methy-
lome studies when applied to phenotypic plasticity. Whereas
methylation behavior during gene and TE silencing often involves
high-density, large magnitude changes, methylome repatterning
in response to environmental flux may require higher resolution
quantitative analysis.

Integration of DMG and DEG networks identified memory-
associated plant processes. Memory phenotype involved changes
in circadian rhythm, auxin response, cytokinin-related, spliceo-
some, and stress response pathways. These results are consistent
with previous datasets investigating mshl mutant!®3> and cell-
specific20 expression changes and imply that msh1 memory alters
central control networks within the plant.

Genome-wide methylome studies require signal-to-noise dis-
crimination3. Methyl-IT DMP-based analysis identified 954
genes with differential methylation in memory vs. nonmemory
comparisons, and through six generations of testing. The
experiment was designed for stringent, unbiased selection of
DMGs, incorporating filters for signal detection, discriminating
background variation from mshl effect, plant phenotype asso-
ciation, and six-generation heritability followed by gene network
association. What is striking about the resulting 954-gene dataset
is its similarity, in networks identified, to each generational
dataset (Supplementary Data 2 and 9). Whereas memory-
associated DMG numbers varied somewhat each generation, the
fundamental biological interpretation remained consistent in
identifying circadian rhythm, phytohormone, spliceosome and
abiotic/biotic stress response pathways in the memory state.
Taken together, these observations reflect nonstochastic, pro-
grammed methylation repatterning of select gene networks.

Methyl-IT analysis produced larger DMG numbers within each
dataset than would generally be identified by conventional DMR
analysis. A dataset of 6925 DMGs was derived in the Genl
memory vs. wild-type analysis. Of these, 1115 (16.1%) were
retained in all subsequent generations. However, 79.4% of the
DMG total was detected in at least two generations, 63.1% in at
least three generations, 47.7% in at least four generations, and
325% in at least five generations. In contrast, simulation
(selecting six gene lists with equal generational DMG numbers
from a total of 27,655 Arabidopsis genes randomly) produces,
among 6925 randomly selected genes, 8.0% in at least four lists,
and 1.2% in at least five lists, with only four genes (0.05%)
retained in all generations. Hence, the observed recurrence rate of
identified DMGs throughout the generational study is significant
and non random (p value < 10719, Pearson’s chi-squared test).

We assume that intergenerational variability observed in the
memory datasets reflects inherent stochasticity in the system.
While we measured variability within methylome and gene
expression datasets, metabolic variability likely occurs as well,
invoking organellar influence. We observe a strong degree of
organellar and metabolic signal in both methylome and gene
expression datasets, and others have shown evidence of organellar
influence on stochasticity behavior3”. However, it is not feasible
to fully distinguish contribution of organellar vs. methylome
effects to the memory state.

Comparison of identified mshl memory DMG datasets with
previously reported gene-body methylated (GbM) genes in
Arabidopsis38 showed only ca. 34% overlap of memory DMGs
with previously identified GbM loci, so that a large proportion of
mshl memory DMGs were not previously categorized as gene-
body methylated. DMGs associated with circadian rhythm,
cytokinin response, abiotic and biotic stress response and
alternative splicing networks were largely missing from the
overlap of mshl DMGs with the public GbM dataset. Similar
expansion of gene-associated methylation has been reported in
other studies®3°. These observations may reflect gene-body

methylation as a function of developmental staging and/or
growth conditions, with mshl memory representing a previously
undescribed plant state.

Intersection of methylation repatterning with gene expression
was not pronounced on a gene-by-gene basis (70 and 104/954
DMGs were identified as DEGs in Genl WT vs. MM and Gen5
WT vs. MM, respectively), but produced informative outcomes
with network-based enrichment. Data for circadian rhythm,
auxin response and RNA splicing pathways suggested that
methylation repatterning was more prominent in upstream
components of these pathways. The extent that DNA methylation
affects gene expression and vice versa is not known in this system,
and a number of DMGs may function to re-establish local
homeostasis without influencing phenotype*?. However, we
provide evidence that a relationship between methylation repat-
terning and gene expression is detectable within these datasets.

Memory-associated methylation repatterning is assumed to
accompany, and may be consequence of, significant chromatin
changes during MSH1 suppression. Altered expression in mshl,
based on TRAPseq studies of specific cells harboring MSHI,
implicate changes in histone composition and numerous chro-
matin modifiers as prominent early effects in the mshl mutant20,

General heritability of identified DMGs within this system
suggests that a subset is targeted and fixed once memory is
established. For example, the methylation maintainer CMT2,
RADM pathway components DCL3, DRM2, CLSY1 (Fig. 8), cir-
cadian rhythm components GI, PHYB, PHYC, PHYD, CRY
(Fig. 6, Supplementary Fig. 18), central auxin response genes
ARF8, GH3.1, ABCBI, ABCBI19 (Supplementary Figs. 11, 17) and
genes involved in the spliceosome complex (Supplementary
Fig. 12) are candidates for this effect. These loci comprise a
conservative list of mshl memory “core” components and
represent examples of factors that could trigger a cascade in
environmentally induced gene expression changes.

We detected evidence of transposable element association with
heritable memory methylation behavior. Of 954 heritable mem-
ory DMGs identified, 538 (56.4%) contained at least one TE
within a 1-kb distance (Supplementary Data 13). This frequency
represents a significant enrichment (Fisher’s exact test, p value <
107°) when compared to the 6936 (25.3% of 27,420 annotated)
genes with at least one TE at 1-kb distance in Arabidopsis*!.
These data are consistent with numerous studies suggesting that
plant TEs have evolved positionally within plant genomes to
participate in gene regulation and phenotypic plasticity0-43,

Proximal TE-associated methylation may facilitate transge-
nerational heritability of methylation repatterning. One example
is MEKKI (Supplementary Fig. 16), which is downregulated in
expression in memory and shows significant differential methy-
lation over multiple mshl memory generations. A TE residing
upstream to this gene may account for the transgenerational
gene-body methylation of the locus. The methyltransferase MET1
is also downregulated in expression and shows heritable methy-
lation differences in mshl memory, a factor that may contribute
to the observed relaxation of gene expression constraints in mshl.
The METI promoter is overlapped by a TE (AT5TE71735; Sup-
plementary Fig. 21) that appears to participate in its heritable
methylation repatterning following environmental stress*4.

The hyper-stress condition that arises with MSH1 depletion
appears to be unsustainable in the absence of functional HDAS6.
This histone deacetylase has been associated with genes control-
ling plant circadian clock, ABA stress response, auxin signaling,
brassinosteroid signaling and flowering time*>. Histone deacety-
lases (HDAC:s) catalyze removal of acetyl groups from acetylated
lysine residues in the N-termini of histone proteins that serve as
epigenetic marks*°, thus impacting chromatin compaction and
gene suppression.
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HDAG6 interacts directly with the methyltransferase MET]I,
both in vitro and in vivo??, and disruption of MET1 also affected
viability of the mshl mutant state. HDA6 participates in DNA
methylation; the hda6 mutant loses CG methylation at target loci
that are not surrounded by flanking DNA methylation28, In these
loci, MET1-derived CG methylation is dependent on HDAG6. The
954 heritable DMGs identified in this study are divided
approximately evenly between loci that are associated with TE
sequences, supplying flanking DNA methylation, and loci that
appear independent of TE influence; it is possible that TE asso-
ciation and HDA6 both contribute to transgenerational DMG
retention.

HDAG interacts directly with proteins FLD#®, FVE, MSI¥/,
HOS148 and AHL22%° that influence flowering time. JAZ 1, JAZ3,
JAZ9, EIN3, EIL11°0 and COI1°}, involved in ethylene and jas-
monate response, also comprise HDAG6 interaction partners in
environmental response. HDA6 associates with TOPLESS (TPL)
and pseudo-response regulators to regulate core circadian clock
loci®? and, together with LDL1/2, functionally associates with
CCA1/LHY>3 and TOCI3 clock components. These protein
interactions are thought to comprise a means of site-directed
targeting by HDAS®, acting on pathways that are prominent in
mshl memory. Observed lethality in the hda6/mshl double
mutant appears consistent with the centrality-lethality rule in
network hub behavior°4°%, and implies that HDAG6 serves as a
vital hub within the identified networks during mshl changes.
Previous results suggest that MSH1 depletion triggers a signal
from within the sensory plastid that elicits mshl system-wide
stress response in the plant20 (Fig. 9). Lethality of the hda6/msh1I
double mutant implies that programmed TE and gene-associated
methylation changes dependent on HDAG6 are essential to the
cell’s ability to mount this stress response.

Apparent influence of drml1/2 to suppress induction of the
memory state following MSHI1-RNAi transgene segregation,
together with memory-associated repatterning of genic CHH
methylation, suggest that RADM-mediated methylation distin-
guishes memory from nonmemory in our study. HDA6 functions
in association with RADM processes?> and, with identification of
specific memory-associated loci, it should be feasible to more fully
delineate the influence of these various chromatin remodeling
components in a stepwise manner.

The MSHI1 phenomenon is a system distributed throughout
angiosperms!>~%, Modeling this system as a plant environmental
response mechanism presumes that MSHI is environmentally
responsive. In fact, MSHI steady-state transcript levels are sup-
pressed under conditions of drought, heat>’, excess light!4 and
cold3®. Previous studies show that plastid depletion of MSHI
leads to local changes in epigenetic, calcium signaling, and spli-
ceosome responses?%>8, and the mshl mutant displays pheno-
typic variation, from nearly wild type to severely dwarfed!>.
Individuals within a mutant population are enhanced in tolerance
to high light!4, drought®8, cold® and heat>”. Mutant plants show
evidence of short-day partial perennialization, partial male steri-
lity and altered leaf morphology!>.

Self-crossing of an MSHI RNAi suppression line produces
heritable memory that is similarly primed for stress but more
uniform in phenotype intensity. Crossing wild type and the
memory line, or presumably a plant environmentally suppressed
for MSHI expression, produces progeny populations with
markedly enhanced fitness!7->9:60,

These behaviors resemble expectations for the evolutionary
concept of diversified bet hedging, wherein an organism under
chronic stress undergoes epigenetic changes to unleash pheno-
typic variation for survival of at least a portion of its progeny®l. In
an MSH] scenario, chronic stress leading to MSHI suppression
elicits nongenetic variation within a population. Surviving

MSH1 cell

Sensory plastid

Mitochondrion

DNA recombination

Stress - |-

~N

HDAG6/MET1
4

7’
“ Methylation repatterning
N s

Target pathways:
Circadian rhythm
Phytohormone

Stress Iresponse

Transgenerational memory
Grafting/crossing (RdDM)

Nucleus

Enhanced vigor

Fig. 9 A simplified model of MSH1-associated phenotypic plasticity.
Stress-associated suppression of MSHT expression alters conditions within
the sensory plastid of epidermal and vascular parenchyma cells29:58. These
changes involve at least two retrograde signaling pathways to the nucleus,
one including redox and calcium signaling2® and the other tocopherol-
mediated modulation of the PAP phosphonucleotide as a mediator of
miRNA regulation®877. Nuclear response to sensory plastid perturbation is
dependent on HDA6 and METT and includes genome-wide cytosine
methylation repatterning and altered expression of integrated stress
response networks. Specificity factors (gray oval) have been identified that
associate with, and recruit, HDA6 to target loci that participate in the MSHT
effect?>. The heritability of this repatterning may be influenced by proximity
of TEs to the target loci and the nature of HDA6 activity. Transgenerational
memory induced by MSHT suppression gives rise, through crossing or
grafting, to progeny with markedly enhanced growth vigor and resilience
phenotypes!>17:59.60_ Gene promoters are shown as blue bars; target genes
are shown by generic gray bar. Solid lines reflect data shown by our group;
dashed lines reflect data published by other groups that are consistent with
MSHT1 data (past and present). This figure was created by the authors.

progeny would be heritably sustained through programmed
memory characterized by plasticity. Successful intercrossing
within the emergent population would give rise to progeny
enhanced in fitness. Phenotypes derived by artificial MSHI sup-
pression may exaggerate what would be common to natural
ecosystems, but the reproducibility of this MSHI effect is con-
spicuous across plant species tested!>>9:60,

If MSH1 participates in natural phenotypic plasticity, the epi-
genetic mechanism could have coevolved with plant seed and
spore dispersal mechanisms. Transit of seed increases the prob-
ability of environmental change within a single generation,
requiring rapid adaptation and cross-tolerance mechanisms.
MSHI plasticity and heritable memory provide a bet hedging
mechanism with acquired fitness, and offers approaches to agri-
cultural improvement for variable climates. Conservation of
MSHI?® across plant species and uncommon pliability of the
system should permit direct modeling of this process.

Methods
Plant materials and growth conditions. For Arabidopsis plants used in this study,
clean seeds were sown on peat mix in square pots, with stratification at 4 °C for
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2 days before moving to growth chamber (22 °C, 120—150 pmol m—2s~! light).
Arabidopsis mutants dcl2-1/3-1/4-2 (CS16391), hda6-7 (CS66154), drm1-2/2-2
(CS16383) and drm2-2 (CS16386) were obtained from ABRC Stock Center. The
met1-3 line was described in Saze et al.%2. Primers used for screening mutant plants
are listed in Supplementary Table 5. The Col-0 used in the study has been
sequence-confirmed relative to the public reference genotype. For the drmi/2
background mshl memory screening experiment, a similar approach as described
in Fig. 2 was used to generate the drm1/2 MSH1-RNAi transgenic line used for
mshl memory screening.

5-azacytidine treatment. Col-0 wild-type and mshl memory line seeds were
surface-sterilized in 10% (v/v) sodium hypochlorite, rinsed thoroughly with sterile
water, and sown in 8-oz clear cups (Fabri-Kal, USA) containing 30 mL 0.5 M
Murashige and Skoog medium (Sigma, USA) supplemented with 1% (w/v) agar
and 0 (control) or 100 pM 5-azacytidine (Sigma, USA). The 100 uM concentration
was derived from a concentration gradient experiment of four concentrations (0,
30, 50, 100 uM) where 100 uM showed visible impact on plant growth for both
wild-type Col-0 and mshl memory line plants. Seeds were germinated and grown
at 24 °C, 18-h day length, and 120—150 ymol m~2 s~ light intensity for 14 days.
For longer observation, the 14-d-treated plants were transferred to square pots with
soil and grown under standard conditions in the growth chamber. The experiment
was repeated three times, with at least 18 replicates per treatment each experiment.
This protocol was adapted from Griffin et al.3.

For the purpose of RNA-seq and methylome sequencing, Murashige and Skoog
medium (Sigma, USA) supplemented with 1% (w/v) agar was prepared. 5-
azacytidine (Sigma, USA) dissolved in dimethyl-sulfoxide (DMSO) was added to
cooling agar at final concentration of 100 uM 5-azacytidine. The mshl memory line
(third generation) and Col-0 wild-type seeds were surface-sterilized with ethanol
and 30 seeds per treatment were plated (MS medium containing DMSO with no
chemical agent served as 5AZA mock-treated control). Following a 2-d
stratification period at 4 °C, seeds were transferred to room temperature, allowed to
grow for 8 days under constant light, then harvested, pooled, frozen in liquid
nitrogen, and used for RNAseq (total 26 samples) and whole-genome bisulfite
sequencing (total 12 samples).

Circadian clock gene expression assays. To assess the expression pattern of core
circadian clock genes under clock-driven free running conditions, plants were
entrained at LD condition (12-h light/ 12-h dark) for 4 weeks, then moved to LL
(24-h constant light) for 48 h before sample collection was initiated.

For expression of core circadian clock genes under cycling light conditions,
plants were entrained at LD (12-h light/12-h dark) for 4 weeks before samples were
collected. The entire above-ground plant was collected and placed into liquid
nitrogen. Samples were taken every 4 h (2T6, ZT10, ZT14, ZT18, ZT22, ZT26,
77130, ZT34, 2138, ZT42, ZT46, ZT50) in both LD and LL conditions. For each
genotype at each time point, at least three plants were collected and used in qPCR
experiments as biological replicates. This procedure was adapted from Kay et al.%.

Gene expression analysis by qPCR. For the qPCR experiments, total RNA from
each sample was extracted by NucleoSpin RNA Plant kit (Macherey-Nagel, Ger-
many) following the manufacturer’s protocol and genomic DNA removal. First-
strand cDNA was synthesized from 400 ng total RNA with oligo primers using
iScript Reverse Transcription Supermix for RT-PCR (Bio-Rad, USA). The qPCR
was performed on the CFX real-time system (Bio-Rad, USA) with 95 °C for 3 min,
40 cycles of 95 °C for 30 s and 60 °C for 1 min with three biological replicates. RNA
abundance of target genes was calculated from the average of four technical
replicates using AACq method, where Cq is the cycle number at which amplifi-
cation signal reaches saturation in each PCR run. The Cq values of AT4G05320
and AT5G15710 were used as normalization controls in the calculation. This
procedure was adapted from MIQE®® as standard protocol.

Real-time PCR primers used in this study are listed in Supplementary Table 5.
The PCR amplification efficiency was calculated based on a calibration standard
curve specific for each primer set, and only primers having amplification efficiency
greater than 0.97 were used in the study.

Bisulfite DNA methylome sequencing experiments. For mshl memory trans-
generational bisulfite sequencing experiments, MSHI RNAi T2 population of 233
progeny plants was developed from a single T1 plant, and 35 were confirmed
transgene-null. Among transgene-null individuals, 7 (20%) displayed the mshl
memory phenotype visually (mshl memory Genl), and 28 showed unaltered
(nonmemory) phenotype. Five individual plants of wild-type Arabidopsis thaliana
ecotype Col-0, five isogenic mshl memory plants (Genl), and five full-sib non-
memory plants were used for sequencing. In subsequent generations, five indivi-
dual plants of wild-type Arabidopsis thaliana ecotype Col-0 and five isogenic mshl
memory line plants for four generations were sampled. In total, 65 plants were used
for sequence analysis.

All wild-type control plants were selected from negative RNAi transformation
events and were grown in parallel with mshl memory counterparts. Whole plants
at early bolting were flash frozen in liquid nitrogen. Samples were ground in liquid
nitrogen. A portion of the tissue sample was processed by DNeasy Plant Kit

(Qiagen, Germany) for genomic DNA (RNA removed) and subsequent bisulfite
sequencing, with the remainder used for RNA extraction by NucleoSpin RNA Plant
Kit (Macherey-Nagel, Germany) following the manufacturer’s protocol, including
genomic DNA removal, for RNA-seq analysis. Tissues from two Genl mshl
memory and four corresponding wild-type plants were also used for sSRNA
extraction with the NucleoSpin miRNA Plant Kit (Macherey-Nagel, Germany).

All BSseq experiments were conducted on the Hiseq 4000 or HiSeq X-ten
analyzer (Illumina, USA) at BGI-Tech (Shenzhen, China), according to the
manufacturer’s instructions. Genomic DNA was sonicated to 100-300 bp
fragments and purified with MiniElute PCR Purification Kit (Qiagen, Germany),
and incubated at 20 °C after adding End Repair Mix. DNA was purified, a single
“A” nucleotide added to the 3’ ends of blunt fragments, repurified and Methylated
Adapter added to 5" and 3’ ends of each fragment. Fragments of 300-400bp were
purified with QIAquick Gel Extraction Kit (Qiagen, Germany) and subjected to
bisulfite treatment with Methylation-Gold Kit (ZYMO), followed by PCR and gel
purification (350-400bp fragments were selected). Qualified libraries were paired-
end sequenced on the Hiseq 4000 or HiSeq X-ten system (150 bp read length and at
least 4 Gb data per sample). For the six-generation experiment, the 65-sample
libraries were loaded into four different HiSeq X-ten flow cells, with a majority (38/
65) sharing the same cell. All processing was carried out under a controlled and
stringent protocol. Based on the output reads number from each sample
(Supplementary Data 1), variation among samples was very low, indicating that
batch effect was negligible.

RNA sequencing and analysis. RNA libraries were constructed as described in the
TruSeq RNA Sample Preparation v2 Guide. These libraries were sequenced with
the 150-bp reads option, in Hi-Seq 4000 analyzer (Illumina, USA) at BGI-Tech
(Shenzhen, China). To enhance resolution of RNA transcription changes in mshl
memory lines, we generated high depth datasets (at least 80 M read for each
sequenced sample). Alignments were performed using STAR (version 2.7.0a) with
—twopassMode = Basic and -outFilterMultimapNmax = 1 parameters, retaining
only uniquely mapped reads. The read count data were generated from the BAM
files by using QoRTs software package (version v1.3.0) with -minMAPQ = 25
option. DESeq2 (version 1.20.0) was used for gene count normalization and to
identify DEGs (FDR < 0.05, |log2FC| > 0.5).

sRNA-Seq and analysis. sSRNA-seq libraries were constructed from total RNA
samples with the Illumina TruSeq Small RNA Sample Preparation Kit and
sequenced on a BGISEQ-500 with a single-end 50-bp run length. Small RNA-seq
data were aligned to the Arabidopsis thaliana genome assembly (version TAIR10)
using ShortStack (version 3.8.3) with default parameters except that the “align-
only” switch was activated. Each library was individually aligned, followed by
merging the resultant bam files using SAMtools merge®®.

Methylation analysis. Raw sequencing reads were quality-controlled with FastQC
(version 0.11.5), trimmed with TrimGalore! (version 0.4.1) and Cutadapt (version
1.15), then aligned to the TAIR10 reference genome using Bismark (version 0.19.0)
with bowtie2 (version 2.3.3.1). 1. The deduplicate_bismark function in Bismark
with default parameters was used to remove duplicated reads, and reads with
coverage greater than 500 were removed to control PCR bias. Whole-genome
bisulfite conversion rate was computed based on chloroplast genome read counts
for every sample, with conversion rate >99% for all samples (details in Supple-
mentary Data 1). Four samples from the mshl memory transgenerational experi-
ment were excluded from downstream analysis due to poor uniformity issues

(61 samples remaining).

Naturally occurring DMPs can be identified in samples from the control and
treatment populations. Machine-learning algorithms implemented in Methyl-IT
were applied to discriminate treatment-induced DMPs from those naturally
generated. After Methylated Cs (COV files) were acquired from Bismark
methylation extractor with default parameters, four published DMP identification
procedures were tested for classification performance of DMPs obtained by the
different methodologies, including Fisher’s exact test (used by methylKit®7), Wald
Test (used by DSS%%), Root-mean-square test (used by methylpy®®) and signal
detection-machine-learning approach (used by Methyl-IT), with similar
methylation level difference (>0.25) and p value (<0.05) cutoff. The discrimination
power or accuracy of DMP calling for each method was assayed by performance of
classifier models built on DMPs identified by each method. For each DMP set from
the four methods, we divided DMPs into training set (accounting for 60% of total
DMPs) and testing set (accounting for 40% of total DMPs). The machine-learning
algorithm was applied to the training set, followed by evaluation of classification
performance on the testing set. Methyl-IT was used for further analysis based on its
better overall performance.

The basic theoretical approach to DMP identification applied was based on
previous published results’? and carried out by the R package Methyl-IT (version
0.3.1)!1871, Briefly, methylation count (COV) files were read into R and Hellinger
Divergence (HD, a variable used to measure methylation level divergence, was
calculated by using the pool of wild-type methylation counts as reference).

Potential DMPs (pDMPs) were selected from cytosines with methylation level
difference higher than 20% (in the reference vs. treatment comparison) and further
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estimated based on critical values of HD,, = 0.05 estimated for each individual from
the best fitted probability distribution model, in this case, a two-parameter gamma
distribution model. Final DMPs were estimated from the set of pDMPs by
estimating the optimal cutoff threshold for HD based on Youden index’?73. A full
elaboration of the optimal cutoff estimation process is available at https://
genomaths.github.io/ Cutpoint_estimation_with_Methyl-IT.html. To further
confirm the discrimination power or accuracy of DMP calling for each generation,
we divided DMPs into two groups: a training set, accounting for 60% of total
DMPs, and a testing set, accounting for 40% of total DMPs. A machine-learning
algorithm was applied on the training set, followed by performance of classification
on the testing set, with performance of classification verified by cross check with
sample ID. In this study, DMPs from all memory vs. nonmemory and WT vs.
memory comparisons achieved false discovery rates (FDR) < 0.05 and accuracy >
90% with 999 bootstrap (Monte Carlo) sampling, with the exception of gen6 WT
vs. memory at slightly lower accuracy (Supplementary Table 1). Generalized linear
regression analysis (generalized linear model, GLM) was applied to test the
difference between group DMP counts (WT vs. memory) for selected genomic
features. The fitting algorithm approaches provided by glm and glm.nb functions
from the R packages stat and MASS were used for Poisson (PR), Quasi-Poisson
(QPR) and Negative Binomial (NBR) models with logarithmic link. The
“countTest” function in Methyl-IT was used to implement the selected model. The
following parameters are needed for testing: the minimum DMP count per bp, p
value adjustment, cutoff for the DMP number difference, cutoff for p value and
Minimum Mean/Variance rate. For potential DMG identification for
transgenerational mshl memory, we defined a potential DMG as a gene (ATG to
stop codon) with at least 2.5 DMP per 1kb in each sample, and displaying
significant difference between group comparisons in Wald test, given log,fold
change for group DMP number mean difference > 1, p value < 0.05 with Benjamini
& Hochberg procedure for p value adjustment. Parameter setting was adopted from
Yang et al. and carefully estimated based on our own dataset. In contrast to GbM
defined by Takuno and Gaut’* and Bewick et al.3%, where GbM genes are those
methylated in CG context but not in non-CG contexts, we included all genes to the
analysis without pre-selection. A detailed description of how to define and compute
DMPs and potential DMGs is included in the Methyl-IT vignettes and package
manual, available at https://github.com/genomaths/MethylIT and at https:/
genomaths.github.io/methylit/. Arabidopsis genome annotation file
Arabidopsis_thaliana. TAIR10.38. gff3 from ensemble genomes database was used
to annotate genome features.

Network enrichment analysis test. R package neat was used to implement the
network enrichment analysis test (NEAT). Network enrichment analysis is an
extension of traditional gene enrichment analysis (GEA) tests. A major limitation
of GEA tests is that they ignore associations and dependence between genes. The
purpose of network enrichment analysis is to integrate GEA tests with information
on known relations between genes, represented by means of a gene network. The
analysis incorporates genetic networks, with their information on gene depen-
dence, into gene enrichment tests’>. Throughout the study, the following para-
meter set was used for the NEAT function: blist = Biological process network from
GO database, nettype = directed, only networks having nab > 1 were included in
the final output.

Principal component plus linear discriminant analyses. Principal component
plus linear discriminant analyses (PCA-LDA) and hierarchical cluster analysis for
5-azacytidine RNAseq and methylome data were applied by using prcomp
(implemented in Methyl-IT function pcaLDA) and hclust functions, respectively,
from the R package stats!”. A full description of these analyses (with Methyl-IT) is
documented at https://genomaths.github.io/.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. All next-generation
sequencing data generated by this study were deposited to Gene Expression Omnibus
database: Arabidopsis methylome for mshl memory and nonmemory sibling plants with
isogenic Col-0 wild-type control (GSE118874), Arabidopsis mshl memory 4-week-old
plant RNAseq (GSE106536), Arabidopsis 10-day-old seedling 5-azacytidine treatment
RNAseq (GSE109164), Arabidopsis 10-day-old seedling 5-azacytidine treatment
methylome (GSE114665), Arabidopsis methylome for the generation 2—6 of mshl
memory line and isogenic Col-0 wild-type control (GSE129303), Arabidopsis RNAseq
for the generation 1 and 5 of mshl memory line and isogenic Col-0 wild-type control
(GSE129343), and small RNA sequencing of mshl memory line and isogenic Col-0 wild-
type control in Arabidopsis (GSE134028). The source data underlying Figs. 1b, d, 3a, b,
4c, d, 5, 6, 8e, f as well as Supplementary Figs. 1c, 2, 9—12, 14, and 20 are provided as a
Source Data file.

Code availability

Custom codes used for methylation analysis with Methyl-IT, DMP classification based
on signal detection, principal components and linear discriminant analyses with Methyl-
IT are available at https://genomaths.github.io/.
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