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Animal models are frequently used in bio-
medical research. However, recently a con-
troversial debate about the transferability of 
data obtained in mouse models to human 
conditions emerged. Although cell-based in 
vitro approaches can be an alternative, con-
ventional cell culture methods hardly reflect 
cellular cross-communication and neglect 
essential physiological parameters. Biochip-
embedded tissue culture allows an optimal 
supply with nutrients and oxygen, an effi-
cient removal of catabolic metabolites, and 
enables a physiological cell polarization and 
communication within tissues creating a 
complex physiological microenvironment in 
vitro. The combination of animal as well as 
human organ-on-chip with reliable in vivo 
models will create new possibilities for an 
integrative research strategy covering analysis 
from the cellular mechanistic level in vitro to 
the phenotype level in vivo.

Standard 2D cell culture still represents 
the most widely used technique to study cel-
lular behavior, for example, in response to 
altered signaling pathways or treatment with 
pharmacological substances. However, its rel-

ative ease of use frequently is accompanied by 
severe limitations. Enrichment of waste prod-
ucts, limited supply with nutrients restricted 
by slow diffusion or lack of cell type-specific 
mechanostimulatory forces often result in 
rapid dedifferentiation of cells under these 
nonphysiological conditions. Novel microflu-
idically perfused organ-on-chip technologies 
represent innovative alternatives to circum-
vent these problems, allowing the establish-
ment of organ models mimicking the 3D 
arrangements of cell types and cell layers 
close to physiological conditions [1].

Recently developed organ-on-chip systems 
are composed of multiple organ-specific cell 
types that are arranged in a bioinspired fash-
ion resembling key features of organ-specific 
morphology. Although the research field of 
organ-on-chip models is still in its infancy, 
some of these models are already capable 
of closely reflecting in vivo cell–cell com-
munication thereby creating an endogenous 
microenvironment that resembles key issues 
of organ physiology with defined organ-spe-
cific functions in vitro. Bhatia and Ingber [2] 
recently defined organs-on-chip as “…micro-
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fluidic devices for culturing living cells in continu-
ously perfused, micrometer-sized chambers in order to 
model physiological functions of tissues and organs.” 
Organ-on-chip models in microfluidically supported 
biochips offer the possibility to more precisely regu-
late environmental conditions critical for growth of 
individual cell types. Miniaturized biochips allow the 
control of nutrition supply and removal of cellular 
waste products or secondary metabolites accumulating 
within the culture medium. Furthermore, oxygenation 
levels, hydrostatic pressure or shear stress can be can be 
adjusted to control for example maintenance of barrier 
integrity of cell layers and the control of cell migration 
in vitro.

Most organ-on-chip models include porous mem-
branes as cell substrate around which defined cell 
layers can be arranged. These membranes create an 
interface that allows cellular crosstalk of, in other 
words, endothelial and epithelial cell layers  [3]. Sev-
eral groups have established organ models of the 
kidney  [4,5], intestine  [6,7], lung  [8,9], heart  [10] or the 
blood–brain barrier [11,12] based on this concept. In a 
3D model of the human liver it has been shown that 
the co-culture of different organ-specific cell types 
(hepatocytes with endothelial cells, macrophages and 
stellate cells) creates a microenvironment that stabi-
lizes individual differentiation and functionality of 
individual cell types [3]. A unilateral perfusion proto-
col triggers alignment and polarization of hepatocytes, 
thereby prohibiting dedifferentiation as a prerequisite 
for preserved long-term function in vitro  [3,13]. Bio-
chips also allow the integration of circulating immune 
cells and monitoring of their interaction under flow 
conditions with the biochip-embedded tissue. In this 
context it was recently demonstrated that the adhesion 
and migration of circulating monocytes is able to trig-
ger tissue repair and repolarization of tissue-resident 
macrophages within a liver-on-chip model. The cel-
lular signaling events occurring under these condi-
tions were found to be associated with the recovery 
of hepatocellular functionality even in the presence 
of a persisting inflammation  [14]. Similarly, in other 
organ-on-chip models it has been reported that com-
pared with conventional maintenance in 2D culture 
systems, 3D cell culture offers improved conditions 
for establishment of stable cell–cell contacts mediat-

ing, for example, polarized growth and in consequence 
signal exchange that enhance long-term preservation 
of cell integrity [15,16].

To ensure a high transferability of results obtained 
with organ-on a chip models to the human in vivo situ-
ation, the assembly of organ models with cells of human 
origin is desirable. Here, the use of either primary cells 
or established cell lines has to be considered. Either 
one has its advantages and disadvantages. Primary cells 
usually show no signs of substantial cellular dedifferen-
tiation or genetic alterations upon isolation and at first 
sight appear best suited for the intended use. However, 
at least in conventional cell culture they often tend to 
dedifferentiate during the further propagation or sub-
culture. Although this phenomenon can be reduced 
under microfluidically supported growth conditions, 
propagation of primary cells in most cases is only possi-
ble for a limited number of passages. Therefore, constant 
monitoring of the cell differentiation state is necessary. 
In addition, it has to be considered that primary cells in 
most cases are isolated from patients that have under-
gone organ tissue resections alongside therapy and thus 
often have received extensive medication, for example, 
with cytostatic drugs ahead of surgical intervention. 
This medication-related bias may further contribute to 
an increased variability in the obtained results.

By contrast, immortalized cell lines show a rela-
tively low variability compared with the primary cells. 
However, depending on the individual cell line they 
show various signs of cellular dedifferentiation and 
significant differences in function compared with the 
freshly isolated primary cells. Moreover, for generation 
of genetically modified cells using RNAi or CRISPR 
technologies, cell lines appear as an alternative. Their 
integration into biochips represents an efficient way to 
address the specific function of individual genes or pro-
teins within an environment more closely resembling 
the in vivo situation. Human induced pluripotent stem 
cells (iPSCs) represent another alternative even when 
generated from patients with a particular disease. They 
have the ability of indefinitely self-renew and can be 
differentiated into virtually any cell type. However, 
the differentiation into the correct cell type within the 
organ-on-chip model needs to be tightly controlled to 
ensure reliable results. In this context it is noteworthy 
that it was recently shown that an improved generation 
of iPSCs by cell transfection with modified mRNA 
can be performed in a favorable microenvironment 
already created within a microfluidically supported 
biochip [17].

In addition to humanized models, the use of animal 
organ-on-chip models is also an interesting option. 
In particular, the combination of animal and human 
organ-on-chip models assembled in a similar man-
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ner and used under identical experimental conditions 
allows the identification of interspecies-related differ-
ences as well as common regulatory signaling path-
ways. An integrative research strategy of in vitro and 
in vivo models allows mechanistic studies at the cel-
lular level within biochips as wells as systemic analysis 
within genetically and species-matched animal mod-
els. With regards to the recently emerged controver-
sial debate about the transferability of data obtained 
in animal models to human conditions [18,19], such an 
integrative research strategy can be an alternative to 
conventional cell culture methods and animal experi-
mentation. Organ-on-chip models are hereby not nec-
essarily cheaper than animal models, but add various 
new interesting options to biomedical research. Con-
sidering the rapidly evolving technological possibilities 
of microsystem/microfluidic technology on one hand 
and the increasing knowledge in tissue engineering and 
regenerative medicine on the other hand, future organ-

on-chip developments will certainly provide exciting 
new research and screening tools for basic research and 
drug screening.
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