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Abstract.  We used immunoelectron microscopy to lo- 
calize glucosidase II in pig hepatocytes. The enzyme 
trims the two inner al,3-1inked glucoses from N- 
linked oligosaccharide precursor chains ofglycopro- 
teins. Immunoreactive enzyme was concentrated in 
rough (RER) and smooth (SER) endoplasmic reticu- 
lum but not detectable in Golgi apparatus cisternae. 
Transitional elements o f  RER and smooth mem- 
braned structures close to Golgi apparatus cisteruae 

contained labeling for glucosidase II. Specific labeling 
was also found in autophagosomes. These results indi- 
cate strongly that glucosidase II acts on glycoproteins 
before their transport to, and processing in Golgi ap- 
paratus cisternae, and suggest that an important tran- 
sitional region for glucosidase II exists between RER 
and Golgi apparatus cisternae. Degradation in auto- 
phagolysosomes could form a normal catabolic path- 
way for glucosidase II. 

N 
-GLYCOSIDICALLY linked oligosaccharides of glyco- 
proteins are transferred from a lipid-linked precursor, 
dolichol pyrophosphate-(N-acetylglucosamine)2- 

(mannose)9-(glucose)3, to specific asparagine residues on nas- 
cent polypeptides (22). This occurs in the lumen of the rough 
endoplasmic reticulum (RER)/ Posttranslational modifica- 
tions of the oligosaccharide precursor chain start with the 
enzymatic removal of all three glucose residues by two a- 
glucosidases (11, 21, 26, 54, 55). Glucosidase I cleaves off the 
terminal c~l,2-1inked glucose and glucosidase II the two inner 
a 1,3-1inked glucoses. Processing of the oligosaccharide to high 
mannose, hybrid, or complex forms continues by trimming 
1,2-mannosidases. c~ 1,2-Mannosidase (mannosidase I) activi- 
ties have been identified in ER (2) and Golgi apparatus (16, 
46, 47, 52). Therefore, at least one mannose residue is re- 
moved before glycoproteins enter the Golgi apparatus. Fur- 
ther conversion to complex type oligosaccharides occurs via 
the action of N-acetylglucosamine transferase I (46) and a- 
mannosidase II, both of which have been localized to Golgi 
apparatus by immunoelectron microscopy (10, 32). 

Though current data indicate that the early steps of oligo- 
saccharide processing are compartmentalized, the precise in- 
tracellular location of glucosidase II is not known. Cellular 
fractionation studies have shown enrichment of glucosidase 
11 activity (14) and immunoreactivity (4) in rough and smooth 
microsomal fractions. All three glucoses can be trimmed from 
G protein of vesicular stomatitis virus still associated with 

h Abbreviations used in thispaper: RER, rough endoplasmic reticulum; SER, 
smooth endoplasmic retieulum. 

ribosomes (1). Pulse chase studies show rapid removal of two 
glucoses from glycoprotein precursors (t,/2 <2 min, by gluco- 
sidase I, and 4/2 -5  min by glucosidase II), although the last 
is removed significantly slower than the others (after ~20-30 
min, by glucosidase II) (21). 

It has been suggested that proteins of the ER enter parts of 
the Golgi apparatus (41). The ER proteins investigated so far 
do not contain posttranslational modifications attributable to 
passage through the Golgi apparatus (27, 29, 35). Significant 
amounts of ER proteins (3, 17, 20, 24), including glucosidase 
II (4), have been found in subcellular fractions that contain 
Golgi apparatus membranes. However, direct evidence by in 
situ localization using immunocytochemistry is lacking. 

Given that glucosidase I1 plays an important role in oligo- 
saccharide processing and also possibly the intracellular tar- 
geting of glycoproteins (9, 12, 30), we decided to examine 
more closely the intracellular distribution of glucosidase II 
using high resolution immunoelectron microscopy. We ap- 
plied specific antibodies against native glucosidase II to ultra- 
thin sections of pig liver. In hepatocytes glucosidase II was 
found concentrated in the lumen of RER and smooth endo- 
plasmic reticulum (SER). Golgi apparatus cisternae were not 
specifically labeled though transitional elements and smooth 
membraned profiles close to the Golgi apparatus contained 
glucosidase II. Autophagosomes, probably derived from cy- 
toplasmic fragments that contain ER, were labeled. 

The immunolocalization of glucosidase II indicates that 
this enzyme is concentrated in RER and SER and that it does 
not enter the Golgi apparatus cisternae in detectable amounts. 
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Materials and Methods 

Reagents 
Staphylococcal protein A was obtained from Pharmacia Fine Chemicals (Upps- 
ala, Sweden). Tetrachloroauric acid (HAuCI4.4H20), polyethylene glycol 
(20,000 mol wt), ascorbic acid, Tween 20, and Triton X-100 were from Merck 
(Darmstadt, FRG). Newborn calf serum came from Gibeo (Basel, Switzerland). 
Polyvinyl pyrrolidone (40,000 tool wt) was from Fluka (Buchs, Switzerland) 
and bovine serum albumin (BSA) as well as ovalbumin were from Sigma 
Chemical Co. (St. Louis, MO). Protein A was iodinated by the chloramine-T 
procedure (23). Methylumbelliferyl-a-D-glucoside was from Koch light labora- 
tories (Slough, England). 

Preparation of Samples and Antibodies 
Glucosidase II from pig kidney was purified, its activity measured, and the 
antibodies against it produced as described earlier (4). Pig liver extract for 
electrophoretic procedures was prepared as follows: Pig liver was briefly perfused 
with 025 M sucrose, 1 mM EDTA, l mM PhMeSo2F in order to remove 
blood, cut into small pieces, and frozen in liquid nitrogen. The tissue was 
powdered in liquid nitrogen and mixed with 50% trichloroacetic acid. Precipi- 
tated proteins were immediately neutralized with 1 M NaOH and an acetone 
powder was prepared as previously reported (4). Proteins were then extracted 
with 1% Triton X-100 in 10 mM NaPi, pH 6.5 (60 mg of powder/l ml of 
buffer). 

Quantitative lmmunoprecipitation 
Pig livers were homogenized in 0.25 M sucrose, 1 mM EDTA, 1 mM Ph 
MeSo2F (1:4 wt/vol), the homogenate mixed with the same volume of 1% 
Triton X-100 in 10 mM NaP~, pH 6.5, and extracted for 30 min at 4"C. High 
speed supernatant (100,000 g for 1 h) was used for the immunoprecipitation. 
l0 ul of this extract (diluted 200x to 1,000x with 0.15 M NaCI-0.01 M 
phosphate-buffered saline [PBS]) were incubated with 10 ul of the immune or 
control serum (diluted 10x with PBS) or 0.5% BSA in PBS at 37"C for 2 h. 
Immune complexes were bound to protein A-Sepharose CL-4B beads (for l h 
at 37"C), the beads were sedimented by centrifugation at 1,000 g for 5 min, 
and washed three times with 1% Triton X-100 in PBS (0.5 M NaCI). 

Electrophoretic Procedures 
SDS polyacrylamide gel electrophoresis was done according to Laemmli (28) 
and immunoblotting according to Towbin and co-workers (51) as reported 
before (4). 

Staining of an immune replica by an enzyme-immunoassay was reported 
previously (4). Peptide mapping by limited proteolysis was according to Cleve- 
land and co-workers (8) as modified by Tijssen and Karstak (48). Briefly, 
proteins from pig liver extract were resolved in a first dimension in a 7.5% SDS 
polyacrylamide gel and a gel strip that contained the polypeptides of interest 
was incubated in stacking buffer for 30 rain. Then the strip was embedded 
perpendicularly in the spacer gel of a second SDS polyacrylamide gel and a- 
chymotrypsin solution layered onto it (48). When the bromophenol blue band 
approached the separating gel to a distance of 4-5 mm, the current was stopped 
for 30 min to allow digestion of the stacked polypeptides. The polypeptides 
were then separated in the second dimension in the second (10%) SDS poly- 
acrylamide gel. 

Tissue Preparation for Electron Microscopy 
The liver of a single female pig (26 kilos, fasted 36 h) was perfusion fixed in 
situ via the portal vein. A prewash (1 rain) with 0.1 M cacodylate buffer, pH 
7.4, that contained 4% polyvinyl pyrrolidone and 70 mM NaNO2 was followed 
by fixation with 3% (para)formaldehyde-0.1% glutaraldehyde in the same 
solution (without NaNO2) for 10 min. Blanched hard liver portions (right lobe) 
were washed (3 × 5 min) in 0.1 M cacodylate buffer, pH 7.4, and placed in 0.1 
M NH4CI in cacodylate buffer for 45 rain. The tissue was then washed again 
in buffer (3 x 5 min). Some tissue pieces (-0.5-mm side) were embedded in 
Lowicryl K4M at -35"C after dehydration in graded ethanols at progressively 
lowered temperatures as previously described (6, 39). Other tissue pieces for 
preparing ultrathin frozen sections were stored at 4"C in 2% formaldehyde in 
cacodylate buffer or in buffer alone. 

Immunocytochemistry 
Lowicryl K4M Thin Sections. Thin sections (60-nm thick) of pig liver were 
incubated at room temperature on a drop of 0.5 % ovalbumin in PBS, pH 7.4, 

for 5 rain followed by antiserum against native glucosidase II diluted 1/5- 
1/20 in PBS that contained 0.5% Tween 20, 0.1% Triton X-100, and 1% BSA 
for 2 h. Inclusion of detergents reduced background staining over mitochondria 
and nucleus. After a brief wash in PBS (5 min), grids were applied to protein 
A-gold (particle size 6-8 nm). This was prepared as previously described (37, 
44, 45) and diluted in PBS to an absorbance of 0.06-0.07 at 525 rim. After a 
wash in PBS (5 min) followed by distilled water, the sections were dried. Finally 
the sections were stained with 2% uranyl acetate (4-5 rain) and lead acetate 
(45 s). 

Ultrathin Frozen Sections. Sections, -100-nm thick, prepared according to 
Tokuyasu (49), were preincubated on 10% newborn calf serum in PBS for l0 
min and placed on antiserum against native glucosidase II diluted in 10% 
newborn calf serum (1/10-1/160) in PBS for 20 min at room temperature. 
Protein A-gold (6-8 nm) was used diluted in PBS, to an absorbance of 0.045 
at 525 rim, for 25 min. Sections were contrasted with uranyl acetate and 
embedded in methyl cellulose (13, 50). 

Cytochemical Controls. (a) Protein A-gold alone; (b) Nonimmune rabbit 
serum instead of antiserum (undiluted and diluted 1/10) followed by protein 
A-gold; (c) Preincubation of anti-glucosidase II anti-serum with purified native 
glucosidase II followed by protein A-gold. 

Labeling that was reduced or absent in all three control conditions was 
considered to be specific for glucosidase II. 

Quantification of  Gold Panicle Labeling. Areal density of gold labeling was 
measured by projecting negatives (-80,000x or 160,000x final magnification) 
taken on a Zeiss EM 10 electron microscope. Organelle areas (in um 2) were 
measured by point counting methods (7) and gold particle density expressed as 
number of particles per um 2 -+ SEM. This involves placing a grid over projected 
negatives and counting the proportion of regularly spaced points that fall on 
structures of interest. An attempt was made to include roughly equal organelle 
areas in each micrograph, which was from a randomly selected cell, and to 
reduce SEM values to within 10% of the mean value. To assess gold particle 
distribution over RER, gold particles over the cisternal lumen, membrane, and 
cytoplasm between RER cisternae were counted and expressed as a percentage 
of total. 

CMP-ase Enzyme Cytochemistry. CMP-ase (acid phosphatase) activity was 
localized using cytidine-5' monophosphate as substrate and cerium chloride as 
capture reagent (34). The reaction was done on vibratome sections of fixed pig 
liver (20-urn thick), which were then embedded in Lowicryl K4M as above. 

Results 

Characterization of  the Antiserum 

The antiserum against the native pig kidney glucosidase II 
precipitated the enzyme activity specifically and quantita- 
tively from a pig liver extract (Table I). When the proteins 
from the pig liver extract were separated electrophoretically, 
an immune replica of the gel revealed four bands of which 
the slowest moving corresponds to the enzyme subunit of pig 
kidney (Fig. 1A). We noticed that the liver glucosidase II is 
degraded even faster than the kidney enzyme when cell integ- 
rity is destroyed by biochemical procedures. The smaller 
polypeptides were very likely degradation products of the 

100-kD putative subunit. Staining of the immune replica by 

Table I. Antiserum against the Pig Kidney Glucosidase H 
Immunoprecipitates Specifically and Quantitatively the Pig 
Liver Enzyme 

Glucosidase II activity 

Pellet Supernatant 

% % 

I m m u n e  se rum 100 0 
Cont ro l  s e rum or  0.5% BSA in PBS 0 100 

Pig liver extract was incubated with immune or control serum or 0.5% BSA in 
PBS. Immune complexes were bound to protein A-Sepharose CL-4B beads 
which were sedimented by centrifugation. Glucosidase II activity was measured 
in the pellets and supernatants. 
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Figure 1. Pig liver glucosidase II subunit and all 
three smaller polypeptides present in an extract 
share immunogenic determinants with the active 
enzyme from pig kidney. (A) Proteins in pig liver 
extract were resolved in 7.5% SDS polyacrylamide 
gel, transferred to nitrocellulose, and an immuno- 
blot prepared using the antiserum against native 
glucosidase II from pig kidney and ~25I-protein A. 
The arrow indicates the glucosidase II subunit. Lane 
1, Purified glucosidase II subunit from pig kidney. 
Lane 2, Extract of pig liver. (B) Same as A except 
that an excess of antiserum was used and the JzsI- 
protein A step omitted. The nitrocellulose was then 
incubated with the active glucosidase II from pig 
kidney. The enzyme which bound to the free bind- 
ing sites on immune complexes, immobilized on 
the nitrocellulose, was measured with the fluoro- 
genic substrate methylumbelliferyl-a-D-glucoside. 
The amount of enzyme activity is expressed as na- 
nomolar solution of glucose released per milligram 
weight of nitrocellulose pieces. When another en- 
zyme-immunoassay (exactly the same except that 
the whole piece of nitrocellulose was incubated with 
the substrate soaked into a filter paper) was viewed 
under ultraviolet light, the same banding as in A 
appeared. 

Figure 2. Limited proteolysis yields immunoreactive polypeptides shared by the glucosidase II subunit and also by the three faster migrating 
bands present in pig liver extract. Proteins in pig liver extract were separated in a first dimension by electrophoresis in 7.5% SDS polyacrylamide 
gel. In the second dimension a strip of this gel in which polypeptides were resolved was subjected to limited proteolysis and subsequent 
electrophoresis at right angles to the first separation in a 10% SDS polyacrylamide gel (see Materials and Methods). Resolved polypeptides were 
transferred to nitrocellulose. The gel replica was incubated with the antiserum against native glucosidase II from pig kidney and subsequently 
with ~25I-protein A. The immune complexes were visualized by autoradiography. A, B, C, D, and E differ only in the extent of digestion by the 
protease: it increases from A to E. In each photograph each individual column of spots represents the polypeptide fragments derived from one 
of the bands seen in Fig. I A (slowest moving band [subunit] to the left and fastest to the right), lane 2. The arrow indicates the putative pig 
liver glucosidase II subunit. The arrowheads point to shared polypeptides that resulted from the limited proteolysis of separated polypeptides 
of Fig. 1 A, lane 2 by a-chymotrypsin. 

an enzyme- immunoassay  revealed indeed that not  only the 
100-kD form of  pig liver glucosidase II, but  also the three 
faster migrat ing bands, share the immunogen ic  determinants  
with the pig kidney glucosidase II subunit  (Fig. 1B). More-  

over, immunoreac t ive  degradation products of  the same mo-  
lecular weight have been noticed previously in pig kidney 
preparations (4) and rat liver extracts (Brada, D., unpublished 
observation). 
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Figure 3. Glucosidase II localization in RER and nuclear envelope of pig hepatocytes. The luminal aspect of the nuclear cisterna is labeled and 
background over the nucleoplasm is low (A). The cisternal space of the RER is also labeled (B and C). (A and C) Ultrathin frozen sections; (B) 
a Lowicryl K4M thin section. Bars, 0.1 urn. 

To further support the evidence that the smaller polypep- 
tides are proteolytic degradation products of the 100-kD 
putative subunit of  pig liver glucosidase II, limited proteolysis 
of  the protein bands was done (Fig. 2). Limited proteolysis by 
a-chymotrypsin yields polypeptides of the same molecular 
weight from the 100-kD form and from the faster migrating 
bands in the pig liver extract. 

In conclusion, the antiserum against the native pig kidney 

glucosidase II proved to recognize the pig liver enzyme spe- 
cifically and quantitatively. 

Immunocytochemistry 

On ultrathin frozen sections and Lowicryl K4M thin sections, 
specific labeing for immunoreactive glucosidase II was ob- 
served principally over the nuclear envelope, RER, and SER 
(Figs. 3 and 4). In Lowicryl K4M sections, the distribution of  
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Figure 4. SER of pig hepatocytes. Gold particle labeling for glucosidase II is mainly situated over the lumen (arrows). (A) Ultrathin frozen 
section; (B) Lowicryl K4M thin section. Bars, 0.1 urn. 
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Table H. Labeling Density of Gold Particles on Lowicryl 
K4M Thin Sections of Pig Hepatocytes* 

Glucosidase II antiserum 

Exp. 1 Exp. 2 Control serum 

RER 43.8 (2 2.4) 50.2 (2 1.4) 4.5 (2 1.8) 
SER 45.5 (+_ 1.8) 42.1 (+- 2.4) ND 
Nuclear envelope 26.4 (_+ 2.2) 27.1 (2 1.8) ND 
Golgi apparatus 4.8 (2 1.1) 6.0 (_ 1.2) 4.8 (2 1.4) 
Secondary lysosomes 3.7 (+_ 1.0) 1.7 (2 0.5) ND 
Autophagosomes 24.5 (2 3.6) 28.5 (2 2.6) ND 
Peroxisomes 11.7 (2 1.1) 15.2 (+ 1.4) 16.5 (+ 0.9) 
Mitochondria 1.9 (_+ 0.3) 1.7 (2 0.3) 2.2 (2 0.5) 
Nucleoplasm 1.4 (20.1) 1.4 (20.1) ND 

ND, not determined. 
* Particles per um 2 _+ SEM (see Materials and Methods). 

gold particles over the RER was the following: 68% over RER 
cisternal lumen; 11% over the RER membrane; and 21% 
between RER cisternae. This indicates that the antigenic sites 
of glucosidase II are situated mainly over the cisternal space 
of  the RER on the luminal aspect of  the RER membrane. 
The relationship of  gold particles to RER membranes cannot 
be assessed with certainty in hepatocytes since cisternal mem- 
branes are closely apposed. However, in some sinusoidal cells, 
lto's fat storing cells (Fig. 7), where the RER cisternae are 
wide, labeling was not intimately associated with the mem- 
branes. In hepatocytes the labeling density appeared similar 
in RER and SER but was about half these levels over the 
nuclear envelope (Table II). 

The Golgi apparatus cisternae generally appeared unlabeled 
(Fig. 5). Occasional particles over lipoprotein-containing 
structures were also observed on incubation with nonimmune 
rabbit serum. Transitional elements of  the RER and smooth 
surfaced profiles close to the cis and trans aspect of the Golgl 
apparatus, situated between RER and Golgi cisternae, ap- 
peared labeled (Fig. 5). 

Autophagosomes labeled specifically for glucosidase II. Ve- 
sicular and tubular elements inside these structures were often 
labeled on their "luminal" aspect (Fig. 6, A and B). When 
glucosidase II and CMP-ase (acid phosphatase) were localized 
on the same section, both CMP-ase positive and negative 
autophagosomes were labeled for glucosidase II. However, 
some autophagosomes that contained CMP-ase reaction prod- 
uct were also negative for glucosidase II. Large lucent lyso- 
somes that contained ferritin-like electron dense particles were 
labeled at background levels (Table II, Fig. 6A). 

Sinusoidal and lateral plasma membrane domains showed 
no immunoreactive glucosidase II. Bile cannalicular mem- 
branes were consistently unlabeled on Lowicryl K4M thin 
sections. Weak labeling with concentrated antiserum on ul- 
trathin frozen sections was considered to be nonspecific. 

Nuclei and mitochondria showed low background labeling 
(Table II). Peroxisomes were not labeled on ultrathin frozen 
sections but showed nonspecific staining on Lowicryl K4M 

sections that could be reproduced with nonimmune rabbit 
serum (Table II). 

Discussion 

This work represents a first attempt to localize an endogenous 
ER protein in normal mammalian cells by post-embedding 
immunocytochemistry. Our in situ, high resolution study 
demonstrates that immunoreactive glucosidase II is concen- 
trated in RER and SER of intact pig hepatocytes. Previous 
subcellular fractionation studies on rat liver have demonstra- 
ted that the enzyme activity and immunoreactive glucosidase 
II are enriched in rough and smooth microsomal fractions (4, 
14). However due to the inherent limitations of  the approach 
the precise intracellular distribution of  the enzyme was diffi- 
cult to reveal. 

Studies on pulse labeled glycoproteins have demonstrated 
that the first glucose residue is rapidly removed (hi2 <2 min), 
the second one more slowly (hi2 - 5  min), and the third only 
after 20 or 30 min (21). G protein of vesicular stomatitis virus 
still has monoglucosylated oligosaccharides after 20-25 rain 
of chase (26). In the present study the immunolocalization of 
glucosidase II to the ER is in accordance with the time course 
of glucose trimming. The late removal of  the last glucose 
residue could be explained on the basis of compartmentali- 
zation of glucosidase II. However by in situ immunocyto- 
chemistry, we found the enzyme rather homogeneously dis- 
tributed through the RER and SER. No intermediate com- 
partment poor in glucosidase II labeling which would account 
for the lag in glucose removal could be identified. Therefore, 
more likely a difference in the rate of release of  the second 
and third glucose residues could explain these biochemical 
results. In fact it has been reported that in vitro glucosidase II 
releases the second glucose two times faster than the third one 
(5). 

The function of the glucose residues on the oligosaccharide 
precursor is not known. They are supposed to function as 
signal for the transfer to the nascent polypeptide chain (53) 
and also appear to protect the oligosaccharide precursor from 
degradation to a phosphooligosaccharide which starts the 
catabolic pathway (19). Moreover recent data suggest that the 
glucose residues and their trimming may be a prerequisite for 
the formation of  complex-type oligosaccharide and proper 
phosphorylation of  lysosomal enzymes (9, 12). The present 
finding that glucosidase II is concentrated in ER supports the 
notion that glucose removal from glycoproteins occurs before 
transport into the Golgl apparatus and therefore in separate 
cellular compartments to those in which conversion to com- 
plex-type oligosaccharides occurs, i.e., the Golgi apparatus 
(13, 22, 38). 

Our quantitative and qualitative data suggest a mainly 
luminal location of  glucosidase II in RER and SER. This is 
in accordance with in vitro experiments which showed that 
the enzyme activity and subunit were luminal in microsomal 

Figure 5. Golgi apparatus of pig hepatocytes. The cis-Golgi region always lies to the left. Labeling for glucosidase II is absent from the cisternal 
stacks (A-D) but present in smooth-surfaced profiles (A and C) close to both sides of the Golgi apparatus. Transitional elements of RER 
(arrowhead in D) are also labeled. Lowicryl K4M thin sections. Bars, 0. l/~m. 
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Figure 6. Glucosidase II labeling in autophagosomes and lyso- 
somes of pig hepatocytes. (A) The content of autophagosome (P) 
is labeled. Lysosomes with ferritin-like content (L) are unlabeled. 
(B) The content of this autophagosome is positive for glucosidase 
II. Lowicryl K4M thin sections. Bars, 0.1 #m. 
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Figure 7. Fat storing cell of pig liver. The RER has characteristically 
wide cisternae. The labeling for glucosidase II is not intimately 
associated with membranes of the RER. Lowicryl K4M thin section. 
Bar, 0.1 urn. 

membranes (4, 14). The gold particle labeling at the cyto- 
plasmic aspect of RER membranes cannot be taken as evi- 
dence for antigenic sites in this location since the resolution 
of our technique is not better than the thickness of the RER 
membrane. In addition, the relationship of antigenic sites to 
RER membranes could not be precisely assessed in hepato- 
cytes due to the narrow cisternal space. However in sinusoidal 
fat storing cells with wide RER cisternae (56), labeling for 
glucosidase II was not intimately associated with the mem- 
branes. In vitro the rat and pig liver enzymes could be released 
from detergent-treated microsomes in the presence of salt but 
not in its absence, conditions under which integral membrane 
proteins remained membrane bound (4). Altogether, these 
observations suggest that glucosidase II is probably only 
loosely associated with RER membranes. 

Interestingly, nuclear envelope labeling was about half that 
in ER. This may reflect differences in turnover, or capacity 
of the membranes for glucosidase II. The specific activities of 
other ER enzymes is less in nuclear envelopes than in ER (15, 
25, 42, 57). One might postulate that glucosidase II is specif- 
ically retaine0 by (or in) RER (-like) membranes in amounts 
related to the quantity of these membranes. The lower labeling 
for glucosidase II could then reflect the fact that only one-half 
of the nuclear envelope, the outer membrane, is RER-like 
(31). 

We did not find evidence for the presence of glucosidase II 
in Golgi apparatus cisternae. The lack of labeling probably 
reflects low concentrations within, or even absence from, this 
compartment. In either case a concentration difference for 
glucosidase II between ER and Golgi apparatus must some- 
how be generated and maintained. For example, glucosidase 
II might be excluded from Golgi apparatus cisternae either by 
active removal from them or simply by retention in ER 
membranes. 

Immunoreactive glucosidase II was found in transitional 
elements of the RER and some smooth membraned structures 
close to, but not forming part of, the Golgi apparatus. These 
structures were often found situated between RER and Golgi 
apparatus cisternae. Saraste and Kuismanen (43) have found 
that at 15"C viral glycoproteins can be arrested in smooth 
membraned structures close to the Golgi apparatus before 
they enter the cisternae of this organelle. We do not know if 
the smooth membraned structures containing glucosidase II 

also contain proteins in transit from ER to Golgi apparatus, 
i.e., they form intermediates in the transport pathway. If they 
do then this compartment and/or transitional elements could 
be the sites where the apparent concentration difference of 
glucosidase II between RER and Golgi apparatus cisternae is 
generated. Finally, it is worth mentioning that some glycopro- 
teins may be transiently monoglucosylated after all three 
glucose and up to two mannose residues have been removed 
(33). The authors suggested that transient glycosylation could 
serve as recognition signal in the targeting of the glycoprotein 
or to temporarily protect the oligosaccharide chain from 
improper processing. Trimming of such glucose residues late 
in the glycosylation pathway could be the main function of 
glucosidase II present in smooth membraned structures near 
the Golgi apparatus. 

Is there any evidence that glucosidase II is processed in the 
Golgi complex? Other ER glycoproteins studied so far, HMG 
Co A reductase (29) and ribophorin I (35), do not contain 
complex oligosaccharide chains. Rat liver glucosidase II has 
been reported to contain at least one high-mannose oligosac- 
charide (18), but also to show a shift in its isoelectric point 
after neuraminidase treatment (5). However, on thin sections 
of Lowicryl K4M embedded pig liver we found that applica- 
tion of L i m a x  f lavus lectin (followed by fetuin-gold com- 
plexes) to visualize sialic acid residues (40), and Ricinus 
communis  lectin I-gold complexes to demonstrate galactose 
residues (36), produced no specific labeling over ER. Also, a 
biochemical approach to examine pig liver glucosidase II 
oligosaccharides failed to support the presence of complex 
sugars in the molecule (unpublished observations). 

Glucosidase II immunoreactivity could not be demonstra- 
ted in lucent secondary lysosomes (CMP-ase positive) that 
contained ferritin-like particles. However, specific labeling for 
the enzyme was found within bodies that contained segregated 
portions of cytoplasm surrounded by a single or double mem- 
brane. Some autophagosomes were positive and others nega- 
tive for CMP-ase. However, both types could be shown to 
contain immunoreactive glucosidase II. At present the signif- 
icance of these observations is not clear however we could 
speculate that segregation into autophagosomes and subse- 
quent degradation of cytoplasm that contained glucosidase II 
may be a normal catabolic pathway for the enzyme in pig 
hepatocytes. 

In summary our high resolution immunolabeling technique 
enabled us to determine precisely the intracellular distribution 
ofglucosidase II. We found glucosidase II to be concentrated 
in the ER and to be undetectable in Golgi apparatus cisternae. 
These findings have important implications for the role of 
glucose trimming from oligosaccharide precursors in the proc- 
essing and transport of glycoproteins between ER and Golgi 
apparatus. 
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