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ABSTRACT
Retinoblastoma is the most common intraocular malignancy during childhood. Currently, there is 
no effective treatment for metastatic retinoblastoma. We investigated potential biomarkers of 
retinoblastoma by utilizing three datasets from a public database. Functional enrichment analysis, 
including gene ontology, Kyoto encyclopedia of genes and genomes, gene set enrichment 
analysis and variation analysis, suggested that differentially expressed genes in retinoblastoma 
were enriched in accelerated cell cycle events. Protein-protein interaction analysis constructed 
a network consisting of six hub genes, including benzimidazoles 1 (BUB1), cyclin dependent kinase 1 
(CDK1), centromere protein E (CENPE), kinesin family member 20A (KIF20A), PDZ binding kinase (PBK), 
and targeting protein for xklp2 (TPX2). Drug sensitivity analysis showed that nelarabine was 
positively correlated with five hub genes. All six genes were expressed differently in six immune 
subtypes and were positively correlated with stemness indices in most human cancer types. Since 
CENPE is the least known hub gene in retinoblastoma, we further analyzed the potential non- 
coding RNAs and transcription factors that regulate CENPE and built interaction networks of 
competing endogenous RNA and transcription factors. Immune cell infiltration, especially by 
plasma and B cells, was enhanced in samples with high CENPE expression. Pan-cancer analysis 
illustrated that CENPE was highly expressed in a wide range of human tumors. In vitro validation 
revealed that CENPE was significantly upregulated at both the mRNA and protein levels in 
retinoblastoma cells. In conclusion, CENPE, along with other hub genes, could serve as 
a potential biomarker and intervention target for retinoblastoma.
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1. Introduction

Retinoblastoma is the most common primary 
intraocular malignancy during childhood. 
Although it has been reported that the disease- 
free survival rate of retinoblastoma is nearly 
100% in developed countries[1], its prognosis in 
developing countries is not optimistic due to poor 
accessibility to health care and delayed diagnosis 
[2]. A predictive study demonstrated that the inci-
dence of retinoblastoma in Asia, accounting for 
53% of all patients, is the highest in the world[3]. 
The foremost aim of retinoblastoma treatment is 
to preserve life without eyeball enucleation and to 
preserve vision and quality of life as subordinate 
goals[3]. Precise and timely diagnosis at an early 
stage is critical to improve patient survival and 

ocular salvage[4]. Therefore, investigating novel 
diagnostic biomarkers and therapeutic targets of 
retinoblastoma would be beneficial for overcoming 
this disease.

Human tumors vary in their tissue origin, in 
addition to individual biological and genetic back-
grounds, and are highlighted by variations in gene 
expression. Profiling tumor-specific gene expression 
might offer a new theoretical basis for the categor-
ization of tumors instead of morphological appear-
ance[5]. With the rapid development and extensive 
application of high-throughput sequencing technol-
ogies, it has become feasible to explore and under-
stand gene expression profiles at a comprehensive 
level, rather than at the traditional gene-by-gene 
level[6]. As a multidisciplinary field, integrative 
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bioinformatic analysis, combining computational 
biology, informatics, statistics, and mathematics, 
has emerged as a promising and increasingly 
important method for investigating promising 
targets.

Research into novel biomarkers is an effective 
way to improve the probability of satisfactory out-
comes, including the prognosis and quality of life 
in patients with retinoblastoma. Although new 
molecular biomarkers for retinoblastoma have 
been revealed in recent years [7–11], they are still 
in the experimental stage and have not been 
approved for clinical use[12]. Currently, there is 
no gold standard biomarker for the diagnosis and 
treatment of retinoblastoma. Therefore, further 
investigation of feasible biomarker candidates for 
retinoblastoma is necessary, which would also lead 
to a deeper understanding of the disease. 
Integrative bioinformatics analysis offers hopeful 
support for screening and discovery of novel tar-
gets, which is the principal approach in our study.

The purpose of this study was to identify potential 
biomarkers of retinoblastoma. We screened out dif-
ferentially expressed genes for retinoblastoma by ana-
lyzing three retinoblastoma gene expression matrices 
from the Gene Expression Omnibus (GEO) database. 
Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses, gene set enrichment analysis (GSEA), 
gene set variation analysis (GSVA), and protein- 
protein interaction analysis were employed to explore 
the molecules and key hub genes involved in the 
pathogenesis of retinoblastoma. Among the identified 
genes, the centromere protein E (CENPE) gene, the 
least known hub gene in retinoblastoma, was exten-
sively analyzed, including in terms of immune infil-
tration and interaction networks with non-coding 
RNAs and transcription factors. We validated 
CENPE expression in two retinoblastoma cell lines 
using immunoblotting and reverse transcription- 
quantitative polymerase chain reaction (RT-qPCR).

2. Materials and methods

2.1 Data sources

The study was conducted in accordance with the 
tenets of the Declaration of Helsinki. GSE24673 

[13], GSE97508[14], and GSE110811 [15] were 
retrieved from the GEO database (https://www. 
ncbi.nlm.nih.gov/geo/), an international public 
repository of microarray profiles. The platform 
for GSE24673 was GPL6244 (Affymetrix Human 
Gene 1.0 ST array; Thermo Fisher Scientific, 
Waltham, MA), which included 9 retinoblastoma 
samples and 2 normal control retinas. The plat-
form for GSE97508 was GPL15207 (Affymetrix 
Human Gene Expression Array; Thermo Fisher 
Scientific), which included 6 retinoblastoma sam-
ples and 3 control retinas. The platform for 
GSE110811 was GPL16686 (Affymetrix Human 
Gene 2.0 ST array; Thermo Fisher Scientific), 
which included 28 retinoblastoma samples and 3 
control tissues. The H (hallmark) gene sets, C2 
curated gene sets, and C5 ontology gene sets 
were downloaded from the molecular signatures 
database (MSigDB, https://www.gsea-msigdb.org/ 
gsea/msigdb/)[16]. Expression profiles, immune 
subtypes, stem cell transcriptomes, and stem cell 
DNA methylation data were downloaded from the 
Xena Functional Genomics Explorer (https://xena. 
ucsc.edu/)[17].

2.2 Identification of differentially expressed 
genes

The Affy package in R software 4.0.3 (R Foundation 
for Statistical Computing, Vienna, Austria) was used 
to preprocess the raw data of these three datasets 
[18], and the corresponding gene expression profiles 
were obtained. The ‘combat’ function of the ‘sva’ 
package was used to remove batch effects from the 
three datasets and generate a box plot of the data 
distribution after correction[19]. Principal compo-
nent analysis was performed using the ‘princomp’ 
function in R, and 3D principal component analysis 
of the samples was performed using the ‘scatter-
plot3d’ R package[20].

Differentially expressed genes that met the cri-
teria of |logFC| (an absolute log2 value in the fold 
change of gene expression) >1 and P value <0.05 
were screened and filtered using the ‘limma’ 
R package[21]. Screened differentially expressed 
genes were visualized using the ‘ggplot2’ R package 
to create volcano plots and the ‘pheatmap’ 
R package was used to draw clustered heatmaps 
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[22]. A Venn diagram utilizing an online tool 
(http://bioinformatics.psb.ugent.be/webtools/Venn/ 
) was generated to determine common differentially 
expressed genes among the three datasets.

2.3 Enrichment analysis

GO functional enrichment analysis, including terms 
related to biological process (BP), cell components 
(CC), and molecular function (MF), was used to 
identify the characteristic biological features[23]. 
KEGG functional analysis was performed to identify 
pathways involved in various cellular processes and 
organismal systems[24]. GO term and KEGG path-
way analyses of the above common differentially 
expressed genes were performed and visualized 
using clusterProfiler V3.14.3 [25] and the Goplot 
package [26] in R software. Only terms with both 
false discovery rate (FDR) < 0.05 and P value <0.05 
were considered significantly enriched.

2.4 GSEA and GSVA

GSEA was performed on the differentially 
expressed genes of GSE110811 with the largest 
sample size using clusterProfiler V3.14.3[25], and 
C2 curated gene sets of the MSigDB were used as 
the reference. Gene sets were considered signifi-
cantly enriched if they had a P value <0.05, FDR 
<0.25, and normalized enrichment score (|NES|) 
>1. The ten pathways with the most significant 
enrichment scores were selected for visualization 
using the R packages ‘gseaplot2’ and ‘ggridges’.

The R package ‘GSVA’[27] was utilized to 
explore the differences in enrichment pathways 
in GSE110811, and five different MSigDB gene 
sets were used as references, including the 
Hallmark, GO_BP, GO_CC, GO_MF, and curated 
KEGG gene sets. A logFC value <0.05 and a P 
value < 0.05 were used as the cutoffs to identify 
significantly enriched pathways.

2.5 Protein-protein interaction network 
construction

To further investigate the interactions between of the 
above common differentially expressed genes, 
a protein-protein interaction network of differentially 
expressed genes was analyzed using the Search tool 

for the retrieval of interacting genes (STRING data-
base, https://string-db.org/, version 11.0b). [28] An 
interaction with a combined score higher than 0.4, 
which is a widely used threshold, was considered 
statistically significant. Cytoscape software (version 
3.8.2; Cytoscape Consortium, San Diego, CA) [29] 
was used to visualize the regulatory relationship of 
differentially expressed genes. The Molecular 
Complex Detection (MCODE) [30] plugin of 
Cytoscape was employed to detect significant mod-
ules (MCODE score ≥4). In addition, cytoHubba[31], 
another plugin of Cytoscape, was utilized to explore 
essential nodes and screen out the top six weighted 
hub genes in the protein-protein interaction network 
using the maximal clique centrality (MCC) algorithm.

2.6 Drug sensitivity analysis of hub genes

To assess the correlation between potential drugs 
and hub gene expression, drug sensitivity and 
genomic data were obtained from CellMiner 
(https://discover.nci.nih.gov/cellminer)[32]. Drugs 
that were significantly positively correlated with 
hub genes were then screened out and visualized 
using the R package ‘corrplot’.

2.7 Pan-cancer analysis of hub genes

To further explore the role and significance of 
these five hub genes in cancer, we analyzed their 
expression profiles in six cancer immune subtypes 
and their relevant co-expression across cancer 
types. To measure the stemness of tumors, 
mRNA expression-based stemness score (RNAss) 
and DNA methylation-based stemness score 
(DNAss) were evaluated using pan-cancer data 
from The Cancer Genome Atlas (TCGA, https:// 
portal.gdc.cancer.gov/). All results were visualized 
using the R packages ‘ggplot2’ and ‘corrplot’.

2.8 Construction of the CENPE-microRNA-long 
non-coding RNA network and 
CENPE-transcription factor network

Since CENPE, one of the six hub genes, has rarely 
been studied in retinoblastoma, we further focused 
on CENPE and analyzed its potential regulatory 
microRNAs (miRNAs). Three databases, including 
the Encyclopedia of RNA Interactomes (ENCORI, 
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http://starbase.sysu.edu.cn/)[33], MicroRNA target 
prediction database (miRDB, http://mirdb.org/) 
[34], and miRWalk database (version 3.0, http:// 
mirwalk.umm.uni-heidelberg.de/)[35], were inte-
grated, and we analyzed their intersection. 
Moreover, the interaction between the predicted 
miRNAs and long-non-coding RNAs (lncRNAs) 
was estimated using the ENCORI database. The 
CENPE mRNA-miRNA-lncRNA competing endo-
genous RNA (ceRNA) network was constructed 
using Cytoscape software.

Furthermore, relevant transcription factors of 
CENPE were predicted using ChIP-X enrichment 
analysis version 3 (ChEA3, https://maayanlab. 
cloud/chea3/) [36] and visualized using 
Cytoscape software. Classification of transcription 
factors was performed using the Human 
Transcription Factor Database (HumanTFDB, 
http://bioinfo.life.hust.edu.cn/HumanTFDB/ 
#!/)[37].

2.9 Analysis of immune infiltration

Immune infiltration analysis of the three datasets 
was performed using CIBERSORT (https://ciber 
sort.stanford.edu/)[38], an online tool that utilizes 
547 gene expression profiles to estimate the rela-
tive proportions of 22 immune cell types in 
a mixed cell population with a deconvolution algo-
rithm. The different fractions of infiltrating 
immune cells in each sample of the three datasets 
were obtained and visualized using ‘ggplot2’ 
through bar plots. The comparison of infiltrating 
immune cell expression between retinoblastoma 
and normal retinas was visualized using ‘ggplot2’ 
through heatmaps and violin plots.

The infiltration levels of immune cells under 
different CENPE expression levels were also inves-
tigated, and samples were divided into high and 
low CENPE expression groups as previously 
described. Box plots were generated using 
‘ggplot2’.

2.10 Pan-cancer analysis of CENPE expression

The correlation between CENPE and the other five 
hub genes in the 33 tumor types from TCGA were 
investigated. In addition, pathway enrichment 
analysis was performed between high and low 

CENPE expression groups across various types of 
cancer and visualized using ‘ggplot2’. The correla-
tion between CENPE expression and the prognosis 
of patients with various tumor types was explored 
based on Gene Expression Profiling Interactive 
Analysis (GEPIA, http://gepia.cancer-pku.cn/) 
[39]. CENPE expression profiles in tumor and 
normal samples were obtained from GEPIA and 
Oncomine (http://www.oncomine.org). CENPE 
mutation analysis was performed and acquired 
from the cBioPortal for Cancer Genomics (http:// 
www.cbioportal.org/)[40].

2.11 Cell culture

The retinal pigment epithelium cell line Adult 
retinal pigment epithelium-19 (ARPE-19, cat. no. 
CRL-2302), the low-invasive human retinoblas-
toma cell line WERI-Rb-1 (cat. no. HTB-169), 
and the high-invasive retinoblastoma cell line 
Y79 (cat. no. HTB-18) were purchased from the 
American Type Culture Collection (ATCC, 
Manassas, VA). ARPE-19 cells were cultivated in 
Dulbecco’s modified Eagle’s medium/nutrient 
mixture F-12 (DMEM/F-12; Thermo Fisher 
Scientific) supplemented with 10% fetal bovine 
serum (FBS; Thermo Fisher Scientific). WERI-RB 
-1 and Y79 cells were cultured in modified Roswell 
Park Memorial Institute (RPMI)-1640 medium 
(Thermo Fisher Scientific) containing 10% FBS. 
All cells were incubated in a humidified atmo-
sphere containing 5% CO2 at 37°C.

2.12 RT-qPCR

CENPE mRNA expression in retinoblastoma cell 
lines was evaluated by qRT-PCR. Total RNA was 
extracted from cells using an RNA simple total 
RNA kit (Tiangen Biotech, Beijing, China) accord-
ing to the manufacturer’s protocol. The isolated 
RNA was quantitated by spectrophotometry at 
260 nm using a NanoDrop 2000 spectrophot-
ometer (Thermo Fisher Scientific). qRT-PCR was 
performed according to the manufacturer’s proto-
col using the QuantiTect SYBR Green PCR Kit 
and QuantiTect Reverse Transcription Kit 
(Qiagen, Hilden, Germany). The primers for 
CENPE and β-actin were as follows: CENPE for-
ward 5ʹ- GATTCTGCCATACAAGGCTACAA 
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−3ʹ; reverse, 5ʹ- TGCCCTGGGTATAACTCCCAA 
−3ʹ; β-actin forward, 5ʹ- CTCGCCTTTGCCGA 
TCC −3ʹ; and everse, 5ʹ- TCTCCATGTCGT 
CCCAGTTG −3ʹ. The thermal cycling conditions 
were 95°C for 5 min, followed by 40 cycles at 95°C 
for 15 s and 60°C for 30 s. Experiments were 
performed in triplicate for each datapoint. 
Relative CENPE expression was quantified using 
the 2ΔΔCt method and normalized to β-actin.

2.13 Immunoblotting

Cell lysates were prepared from cell lines using 
a radioimmunoprecipitation lysis and extraction 
buffer kit (Thermo Fisher Scientific), and the pro-
cedure was performed as described previously[41]. 
Primary antibodies for CENPE (ab124733, RRID: 
AB_10974754; Abcam, Cambridge, UK) and β- 
actin (cat. no. 3779, RRID:AB_735551; ProSci, 
Fort Collins, CO) were diluted at 1:1,000, and the 
corresponding secondary antibodies (Proteintech 
catalog number SA00001-2, RRID:AB_2722564, 
Proteintech, Rosemont, IL) were diluted 1:2,000.

2.14 Statistical analysis

Statistical analyses in the bioinformatic analysis 
work were performed with R software, while statis-
tical analyses of in vitro experiments were per-
formed by SPSS Statistics 23.0 (IBM, Armonk, 
NY). The in vitro validation experiments were per-
formed in triplicate. Data are presented as means ± 
standard deviation (SD). Differences among multi-
ple groups were analyzed by one-way analysis of 
variance (ANOVA) with Tukey’s post hoc test. 
Statistical significance was set at P < 0.05.

3. Results

In the present study, potential biomarkers of reti-
noblastoma were explored using bioinformatics 
analysis. In addition, in vitro validation was per-
formed for CENPE expression, which is the least 
known hub gene in relation to retinoblastoma 
identified in our study. First, we retrieved three 
datasets from the GEO database and overlapping 
upregulated DEGs were screened out. Functional 
enrichment analysis suggested that differentially 
expressed genes in retinoblastoma were enriched 

in accelerated cell cycle events. Protein-protein 
interaction analysis constructed a network consist-
ing of six hub genes. Drug sensitivity analysis 
showed that nelarabine was positively correlated 
with five hub genes. All six genes were expressed 
differently in the six immune subtypes and were 
positively correlated with stemness indices in most 
human cancer types. Furthermore, we built inter-
action networks of ceRNAs and TFs. Immune cell 
infiltration, especially by plasma and B cells, was 
enhanced in samples with high CENPE expression. 
Pan-cancer analysis illustrated that CENPE was 
highly expressed in a wide range of human 
tumors. Finally, RT-qPCR and immunoblotting 
revealed that CENPE was significantly upregulated 
at both the mRNA and protein levels in two reti-
noblastoma cell lines.

3.1 Identification of differentially expressed 
genes in retinoblastoma by analyzing three 
datasets

The expression profiles of the three datasets after 
standardization are shown as box plots in Figure 1 
(a-c). The median values of gene expression for 
each sample were similar (Figure 1(a-c)). As 
shown in the 3D principal component analysis 
plot (Figure 1(d-f)), samples in the same group 
(retinoblastoma/normal control) were close to 
each other, while samples in different groups 
were far apart, indicating that tumor and normal 
samples could be clearly distinguished and that the 
data sources were qualified for further analysis.

Based on the defined criteria (|logFC|> 1 and 
P value <0.05), upregulated and downregulated 
genes are displayed by heatmap plots and vol-
cano plots in Figure 1(g-l), where red represents 
upregulated genes and blue represents downre-
gulated genes. A total of 5847 differentially 
expressed genes were identified, of which 
GSE24673 contributed 476 upregulated genes 
and 1075 downregulated genes, GSE97508 con-
tributed 2169 upregulated genes and 2600 down-
regulated genes, and GSE110811 contributed 473 
upregulated genes and 350 downregulated genes 
(Figure 1(g-i); Supplementary Tables 1–3). The 
relative expression of differentially expressed 
genes between the three datasets was signifi-
cantly different (Figure 1(j-l)). Moreover, 
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Figure 1. Identification of differentially expressed genes in retinoblastoma. (a-c) Box plots of gene expression profiles after 
data standardization in GSE24673 (a), GSE97508 (b), and GSE110811 (c). (d-f) Principal component analysis of retinoblastoma 
samples and normal control samples in GSE24673 (d), GSE97508 (e), and GSE110811 (f). (g-i) Heatmap of differentially expressed 
genes identified in GSE24673 (g), GSE97508 (h), and GSE110811 (i). (j-l) Volcano plot of differentially expressed genes identified in 
GSE24673 (j), GSE97508 (k), and GSE110811 (l). (m-n) Venn diagram of overlapping upregulated (m) and downregulated (n) 
differentially expressed genes from the three datasets.
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a total of 240 overlapping differentially 
expressed genes were identified, including 128 
upregulated and 112 downregulated genes. The 
distribution of overlapping genes is illustrated in 
Venn diagrams in Figure 1(m-n).

3.2 Functional enrichment analysis of 
differentially expressed genes showed increased 
cell cycle and proliferation in retinoblastoma

GO and KEGG pathway analysis of the differen-
tially expressed genes was performed to identify 
significant signaling pathways. As shown in 
Figure 2(a-e), GO enrichment analysis demon-
strated that for biological process, differentially 
expressed genes were significantly enriched in 
organelle fission, nuclear division, light stimulus, 
and chromosome segregation, which are critical 
for the mitotic cell cycle. Regarding cell compo-
nents, differentially expressed genes were signifi-
cantly enriched in chromosomal regions, spindles, 
and microtubules, which play pivotal roles in cell 
proliferation. For molecular function, differentially 
expressed genes were significantly enriched in 
tubulin binding, microtube binding, and activity, 
which are mostly associated with the mitotic cell 
cycle and proliferation. Collectively, GO enrich-
ment analysis showed that cell cycle–related GO 
terms were significantly enriched in differentially 
expressed genes associated with retinoblastoma.

Additionally, 9 KEGG pathways and 5 KEGG 
modules were significantly enriched in retinoblas-
toma samples. ‘Phototransduction’ and ‘cell cycle’ 
were the two most significantly enriched KEGG 
pathways, which were relevant to visual percep-
tion, retinal function, and cell proliferation (figure 
2(f-h)).

3.3 GSEA and GSVA demonstrated cell cycle 
dysregulation and visual cell impairment in 
retinoblastoma

GSEA was performed on GSE110811, which was 
the largest sample among the three datasets, to 
identify the possible mechanisms involved in the 
pathogenesis of retinoblastoma. Five significantly 
upregulated pathways and five significantly down-
regulated pathways are shown in Figure 3(a-c) and 
Table 1, indicating cell cycle dysregulation and 

visual cell impairment during retinoblastoma 
development.

Furthermore, we performed GSVA, a non- 
parametric approach to facilitate the evaluation 
of gene set enrichment variation of each expres-
sion profile on GSE110811. The H hallmark gene 
sets, C2 curated gene sets, KEGG subsets, and C5 
ontology gene sets including GO_BP, GO_CC, and 
GO_MF subsets were used as reference sets. The 
most significantly upregulated pathways in retino-
blastoma were related to cell cycle events such as 
DNA replication, homologous recombination, reg-
ulation of DNA damage checkpoints, and base 
excision repair (Figure 3(d-f)), which were in line 
with the GSEA results.

3.4 Network analysis and hub gene selection 
narrows down to CENPE

As illustrated in Figure 4(a), the protein-protein 
interaction network of 240 differentially 
expressed genes was constructed based on the 
STRING database and gathered as a cluster con-
sisting of 186 nodes and 2482 edges. The 
MCODE plugin was used to determine the 
most significant module that contained 70 
nodes and 2042 edges (Figure 4(b), MCODE 
score ≥30), which were all upregulated differen-
tially expressed genes. The clusters obtained 
were further explored using the cytoHubba plu-
gin by the MCC method (score ≥5000), and the 
top six hub genes, including budding uninhibited 
by benzimidazoles 1 (BUB1), cyclin dependent 
kinase 1 (CDK1), CENPE, kinesin family member 
20A (KIF20A), PDZ binding kinase (PBK), and 
targeting protein for xklp2 (TPX2), were screened 
out (Figure 4(c)).

3.5 Drug sensitivity analysis showed that 
nelarabine is a potential drug for retinoblastoma 
targeting multiple hub genes

CellMiner is a database and online query tool that 
facilitates the integration and research of molecu-
lar and pharmacological data for NCI-60, a group 
of 60 multiple human cancerous cell lines, to eval-
uate more than 100,000 chemical compounds and 
natural products. As illustrated in Figure 5(a,b,d 
and e), chelerythrine and nelarabine had the most 
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Figure 2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially 
expressed genes in retinoblastoma. (a) Bubble chart displaying GO enrichment terms of differentially expressed genes in 
retinoblastoma, including biological processes (BP), cellular components (CC), and molecular functions (MF). (b) Enriched network 
of differentially expressed genes and enriched GO terms. (c-e) ClueGO network of differentially expressed genes and enriched GO 
terms of biological process (c), cell components (d), and molecular function (e). (f) Bubble chart displaying the enrichment of 
differentially expressed genes in KEGG pathways in retinoblastoma. (g) Enriched network of differentially expressed genes and 
enriched KEGG pathways. (h) ClueGO network of differentially expressed genes and enriched KEGG pathways.
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significant positive correlations with CENPE and 
TPX2, indicating that both CENPE and TPX2 are 
targeted by chelerythrine and nelarabine. Similar 
correlations were found for allopurinol and 

nelarabine for BUB1 (Figure 5(g-h)), irofulven for 
KIF20A (Figure 5(j)), nelarabine for PBK (Figure 5 
(k)), and nelarabine and PX-316 for CDK1 (Figure 
(5l-m)).

Figure 3. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in the GSE110811 dataset. (a-b) Multi- 
GSEA plot showing the five most significantly upregulated pathways (a) and the five most significantly downregulated pathways (b) 
in GSE110811 samples. (c) Ridge plot displaying the normalized enrichment score (NES) of the above ten pathways. (d-f) Heatmap of 
GSVA results showing GSVA scores of the GO gene set (d), KEGG gene set (e), and hallmark gene set (f) enriched in GSE110811.
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Interestingly, nelarabine, an anticancer che-
motherapy drug used to treat T-cell leukemia and 
lymphoma, was found to be positively correlated 
with five hub genes (BUB1, CDK1, CENPE, PBK, 
and TPX2), suggesting its potential use in the 
treatment of retinoblastoma (Figure 5(o)).

3.6 Pan-cancer analysis of hub genes

Pan-cancer analysis provides a panoramic view of 
the oncogenic processes that contribute to human 
cancer. Thorsson et al [42]. classified more than 

10,000 tumors into 6 immune subtypes by immu-
nogenomic analyses, including C1 (wound heal-
ing), C2 (IFN-γ dominant), C3 (inflammatory), 
C4 (lymphocyte-depleted), C5 (immunologically 
quiet), and C6 (TGF-β dominant), which corre-
spond to different immune response patterns. As 
indicated in Figure 6(a), immunosubtyping analy-
sis showed that hub gene expression differed sig-
nificantly among these six pan-cancer immune 
subtypes. All six hub genes were highly expressed 
in the C1 and C2 subtypes and lowly expressed in 
the C3 and C5 subtypes.

Figure 4. Protein-protein interaction network and the most significant modules of differentially expressed genes. (a) The 
protein-protein interaction network was analyzed using the STRING database. There were 186 nodes and 2482 edges in the network. 
(b) The most significant module identified by the MCODE plugin (score ≥30) consists of 70 nodes and 2042 edges. (c) The cytoHubba 
plugin identified the top six genes as hub genes by the maximum correlation criteria method (score ≥5000).
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Table 1. Significantly upregulated and downregulated pathways through gene set enrichment analysis.

Description
Enrichment score 

(ES)
Normalized enrichment score 

(NES) P-value
False discovery rate 

(FDR)

Reactome_Transcriptional_Regulation_by_ Tumor Protein 
P53

0.600427 2.767542 0.001988 0.004122

Reactome_Regulation_of_ Tumor Protein P53_Activity 0.572310 2.066904 0.003816 0.006433
Reactome_G2_M_DNA_Damage_Checkpoint 0.570086 2.058872 0.005725 0.008753
Reactome_Homologous_DNA_Pairing_and_ 

Strand_Exchange
0.569061 1.972560 0.007692 0.010738

Wp_G1_to_S_Cell_Cycle_Control 0.555013 2.257859 0.001972 0.004122
Reactome_G_Alpha_I_Signalling_Events −0.566715 −3.133801 0.002118 0.004122
Reactome_Visual_Phototransduction −0.727044 −3.426219 0.002000 0.004122
Reactome_The_Phototransduction_Cascade −0.754767 −3.314062 0.002008 0.004122
Pid_Rhodopsin_Pathway −0.780250 −3.364626 0.002012 0.004122
Reactome_Activation_of_The_Phototransduction_Cascade −0.876170 −3.201726 0.002092 0.004122

Figure 5. Drug sensitivity analysis of six hub genes using NCI-60 cell line data in the CellMiner database. (a-n) Scatter plots 
displaying the most significant positive correlations between hub genes CENPE (a-c), TPX2 (d-f), BUB1 (g-i), KIF20A (j), PBK (k), CDK1 
(l-n) and drug sensitivity based on Pearson correlation. (o) Network of the six hub genes and sensitive drugs. Ellipses indicate hub 
genes in light yellow, and rectangles represent sensitive drugs targeting these hub genes.
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Additionally, the expression levels of all six hub 
genes were highly positively correlated with each 
other in pan-cancer (Figure 6(b)). mRNA expres-
sion-based stemness analysis showed that, except 
for a negative correlation in thyroid carcinoma, all 

hub genes were positively correlated with stemness 
index in the other 32 tumors (Figure 6(c)). DNA 
methylation-based stemness analysis demonstrated 
that the six hub genes were negatively correlated 
only with thymoma (Figure 6(d)).

Figure 6. Correlation analysis of expression levels of the six hub genes with immune infiltration subtypes and cancer 
stemness in pan-cancer. (a) The distribution of expression levels of the six hub genes with immune infiltration subtypes across all 
33 cancer types. C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte-depleted); C6 (TGF-β dominant). 
***, P < 0.001. (b) Correlation matrix based on Pearson’s correlation test among the six hub genes. The circle color intensity is 
proportional to the correlation coefficient. Blue represents positive correlations and red represents negative correlations. (c-d) 
Heatmaps showing the correlation between the expression levels of the six hub genes and the RNAss (c) and DNAss (d) stemness 
indices in 33 TCGA cancer types. DNAss, DNA methylation-based stemness score; RNAss, RNA-based stemness score. Yellow points 
represent a positive correlation while green points represent a negative correlation. ACC, adrenocortical carcinoma; BLCA, bladder 
urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esopha-
geal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, 
kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade 
glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothe-
lioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; 
PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 
adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial 
carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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3.7 CENPE is a critical point in the ceRNA and 
TF interaction network

Currently, little is known regarding the role of 
CENPE in retinoblastoma; thus, we focused on 
CENPE for further analysis. The ceRNA hypoth-
esis suggests that some RNAs possessing miRNA- 
binding sites can competitively bind to target 
miRNAs as molecular sponges and subsequently 
alter the expression of genes encoding proteins 
[43]. As shown in Figures 7(A), 2 miRNAs and 
141 lncRNAs were identified as nodes in the net-
work. hsa-miR-642a-3p and hsa-miR-556-3p were 
predicted to interact with 95 and 50 lncRNAs, 
respectively, of which opa interacting protein 
5-antisense RNA 1 (OIP5-AS1), nuclear paraspeckle 
assembly transcript 1 (NEAT1), poly(RC) binding 
protein 1-antisense RNA 1 (PCBP1-AS1), and non-
coding RNA activated by DNA damage (NORAD) 
were shared by the two miRNAs.

Transcription factors regulate gene expression 
by binding and unbinding near coding sequences 
to control the rate of gene transcription. In this 
study, a transcription factors regulatory network 
was established to identify potential transcription 
factors involved in retinoblastoma. As shown in 
Figure 7(b), CENPE was modulated by 172 tran-
scription factors. Among these, 100 transcription 
factors belonged to the zinc-coordinating group, 
while 36 transcription factors were categorized as 
helix-turn-helix (Supplementary Table 4).

3.8 Immune cell infiltration, especially by 
B cells and plasma cells, was enhanced in 
samples with high CENPE expression

The compositions and proportions of twenty-two 
types of immune cells in each sample in the three 
datasets are shown in Figure 8(a-c). The correla-
tion of immune cells is illustrated by heatmaps 
(Figure 8(d-f)). The populations with the most 
significantly positive relationship were monocytes 
and CD8+ T cells (r = 0.95) in GSE24673, mono-
cytes and resting mast cells (r = 0.96) in 
GSE97508, and memory B cells and plasma cells 
or activated mast cells (r = 0.97) in GSE110811. 
The populations with the most significant negative 
relationship included monocytes and activated 
natural killer (NK) cells (r = −0.93) in GSE24673; 
monocytes and naïve B cells (r = −0.87) in 
GSE97508, and monocytes and resting mast cells 
(r = −0.75) in GSE110811.

Next, we compared the immune cell expression 
between retinoblastoma and normal retinas. 
T follicular helper cells were significantly downregu-
lated in retinoblastoma in GSE97508 but upregulated 
in retinoblastoma in GSE110811. Monocytes and 
naïve B cells were significantly upregulated, while 
resting mast cells were downregulated in GSE97508 
(Figure 8(g)). Memory B cells and activated dendritic 
cells were downregulated in the GSE110811 cells 
(Figure 8(h)). No significant changes in the immune 
cell fraction were detected in GSE24673 

Figure 7. The CENPE-miRNA-lncRNA competing endogenous RNA (ceRNA) network and CENPE-transcription factor inter-
action network. (a) ceRNA network. Orange triangles represent lncRNAs and blue rectangles represent miRNAs. (b) Transcription 
factor network for CENPE. The right part of the diagram indicates the transcription factors predicted to interact with CENPE.
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Figure 8. Profile of immune infiltration in retinoblastoma and normal retinas. (a-c) The proportions of immune cells in each 
sample of GSE24673 (a), GSE97508 (b), and GSE110811 (c) are displayed with different colors, and the lengths of the bars in the 
stacked bar chart indicate the proportion of each immune cell population. (d-f) Correlation matrices of immune cell proportions in 
GSE24673 (d), GSE97508 (e), and GSE110811 (f). A positive correlation is indicated in red, while a negative correlation is indicated in 
blue. The darker the color, the stronger the correlation. (g-h) Differences in the proportion of each immune cell in retinoblastoma 
and normal samples of GSE97508 (g) and GSE110811 (h). Blue represents normal retinas, and red represents retinoblastoma tissues. * 
P < 0.05. (i) Comparison of immune cells in samples with high and low CENPE expression. * P < 0.05.
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(Supplementary Fig. 1). Moreover, naïve B cells and 
plasma cells were significantly upregulated, while reg-
ulatory T cells were significantly downregulated in the 
sample with high CENPE expression (Figure 8(i)).

3.9 Expression profiles and mutation features 
of CENPE in pan-cancer

Co-expression analysis showed that CENPE was 
positively correlated with the other five hub genes 
in most of the thirty-three cancer types (Figure 9 
(a)). In most cases, CENPE was remarkably upre-
gulated in tumors in human organs or tissues such 
as colorectal, cervical, and gastric cancer, whereas 
it was downregulated in leukemia (Figure 9(b)). 
Moreover, CENPE expression was significantly 
elevated in thirty-two cancer types from the 
GEPIA database, which computed TCGA and 
Genotype-Tissue Expression (GTEx) profiles in 
the form of transcripts per million, whereas it 
was decreased in acute myeloid leukemia 
(Figure 9(c)). The Oncomine database also 
revealed that CENPE mRNA expression was rela-
tively higher in breast cancer, lung cancer, and 
sarcoma, but less expressed in leukemia 
(Figure 9(d)). All the genetic alterations of 
CENPE were mutations, with no amplifications, 
deletions, or fusions detected. The highest muta-
tion frequency of CENPE (>6%) occurred in acral 
melanoma and melanoma of unknown origin 
(Figure 9(e)). Missense mutations of CENPE 
were the main type of genetic alteration, such as 
a P121S alteration in the kinesin domain could 
lead to mistranslation from P (Proline) to 
S (Serine) at the 121 site of CENPE protein (figure 
9(f-g)).

3.10 CENPE upregulation was validated in 
retinoblastoma cell lines

CENPE expression was further validated by RT- 
qPCR and immunoblotting in two different reti-
noblastoma cell lines, Y79 and WERI-RB-1. As 
illustrated in Figure 10(a), RT-qPCR assays 
revealed that CENPE expression was significantly 
higher in Y79 and WERI-RB-1 cells than in ARPE- 
19 cells by approximately 77.8% and 61.8%, 
respectively. Simultaneously, immunoblotting also 
showed upregulated CENPE expression in two 

retinoblastoma cell lines compared to ARPE-19 
cells (Figure 10(b)). Both differences were statisti-
cally significant (P < 0.05, Figure 10(c)).

4. Discussion

Retinoblastoma, with an estimated mortality rate 
of 70% in juvenile patients in developing coun-
tries[44], might metastasize to the brain along 
the optic nerve or via hematogenous metastasis 
to the bones, bone marrow, or liver[45]. Early 
diagnosis would offer pediatric patients opportu-
nities for treatment. Although imaging examina-
tions such as magnetic resonance imaging and 
computerized tomography are effective 
approaches for diagnosing malignancy, they still 
have some limitations. Therefore, exploration of 
new biomarkers could facilitate a more thorough 
understanding of the molecular mechanisms 
involved in retinoblastoma and offer novel 
insights into the development of effective treat-
ments for patients[46]. Although diverse biomar-
kers associated with the pathogenesis of 
retinoblastoma have been recognized, there is 
still a deficit in the identification of expression 
biomarkers involved in retinoblastoma tumori-
genesis[47].

In this study, we performed integrative bioin-
formatics analysis based on three GEO datasets to 
investigate potential biomarkers of retinoblastoma. 
Functional enrichment analysis, including GO, 
KEGG, GSEA, and GSVA, suggested that differen-
tially expressed genes in retinoblastoma were sig-
nificantly enriched in various mitotic procedure 
events, which were related to uncontrolled cell 
growth. Previous publications reported that loss 
of proliferative regulation is a pivotal characteristic 
of tumors and that disordered cell organelles and 
nuclear division lead to excessive proliferation of 
tumor cells[48]. The progression of retinoblastoma 
is intimately associated with accelerated and 
improper proliferation and the capacity to survive 
mitotic infidelity[49]. Knockdown of integrin- 
linked kinase (ILK), a protein that mediates micro-
tubule dynamics and centrosome clustering in the 
cell cycle process and tumor transformation, 
results in mitotic arrest[50]. Therefore, our present 
study is consistent with previous studies, suggest-
ing that dysregulation of mitosis and imbalanced 
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Figure 9. Expression profiles and mutation features of CENPE in different types of human cancers. (a) Correlation analysis of 
CENPE expression and the other five hub genes across thirty-three cancer types. The lower right rectangles in red color represent 
positive correlations whereas blue rectangles represent negative correlations. The darker the color, the stronger the correlation. The 
upper left rectangles represent the P value. As the P value approaches zero, the color of the triangle is closer to dark green. 
***P < 0.001, **P < 0.01. (b) The median expression of tumor and normal samples in a body map. A darker red color corresponds to 
a higher gene expression level. T, tumor (red); N, normal (green). (c) Dot plot showing the expression profile of CENPE across thirty- 
three tumor samples and paired normal tissues. Red dots represent tumor samples while green dots represent normal samples. 
Tumor annotations in red represent significant CENPE upregulation and blue represents significant CENPE downregulation. (d) 
Expression of CENPE in different types of cancers compared with normal samples in the Oncomine database. (e-f) The alteration 
frequency with mutation type (e) and site (f) of CENPE in pan-cancers based on the cBioPortal database. (g) The mutation site with 
the highest alteration frequency (P121S) is marked with a circle in the crystal structure of CENPE.
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cell proliferation play essential roles in the pro-
gression of retinoblastoma.

Six hub genes (BUB1, CDK1, CENPE, KIF20A, 
PBK, and TPX2) were determined using protein- 
protein interaction network assays and Cytoscape 
software. All hub genes were upregulated in reti-
noblastoma, and five (BUB1, CDK1, CENPE, PBK, 
and TPX2) were predicted to be sensitive and 
positively related to nelarabine, an antineoplastic 
medicine used to treat T-cell acute lymphoblastic 
leukemia and lymphoma. This is well-explained by 
the pharmacological mechanism of nelarabine 
being demethylated to its active form (9-beta- 
D-arabinosylguanine) which exerts its S-phase- 
specific cytotoxic potency by suppressing DNA 
synthesis and inducing tumor cell death[51], as 
the identified hub genes are mainly involved in 
the cell cycle.

Previous studies suggest that these six hub genes 
exert tumorigenic effects in various cancers 
through different mechanisms. BUB1, initially 
identified in budding yeast, encodes a serine/ 
threonine-protein kinase that plays a crucial role 
in mitosis [52,53]. BUB1 expression is significantly 
upregulated in advanced-stage multiple myeloma, 
resulting in aggravated mitotic segregation errors 
and chromosome instability[54]. Aberrantly high 
BUB1 expression was detected in three retinoblas-
toma tissues via RNA sequencing[55]. Suppression 
of BUB1 could alleviate the progression of osteo-
sarcoma by inhibiting phosphoinositide 3-kinase 
(PI3K)/AKT serine/threonine kinase (AKT) and 
extracellular signal-regulated kinase (ERK) 

signaling pathways[56]. CDK1 is a member of 
the serine/threonine-specific protein kinase family 
and is fundamental for G1/S and G2/M phase 
transitions of the cell cycle[57]. Nishida et al. 
reported that CDK1 was upregulated and corre-
lated with poor prognosis in gastric cancer[58]. 
A pilot quantitative phosphoproteomics study 
revealed that CDK1 was hyperphosphorylated in 
retinoblastoma[59]. CDK1 is upregulated in the 
nuclear factor-kappa b (NF-κB) dependent pattern 
in glioblastoma[60]. KIF20A is generally located in 
the center of mitotic spindles and engages in pro-
cedures driving mitosis[61]. Upregulation of 
KIF20A in renal carcinoma promotes tumor pro-
gression and is related to an adverse clinical prog-
nosis[62]. KIF20A promotes colorectal cancer 
tumor progression through the janus kinase 
(JAK)/signal transducer and activator of transcrip-
tion 3 (STAT3) signaling pathway[63]. PBK was 
initially identified as a serine/threonine protein 
kinase for mitogen-activated protein kinase and 
is associated with cytokinesis and spermatogen-
esis[64]. PBK has been suggested as a promising 
prognostic predictor for patients with oral squa-
mous cell carcinoma treated with radiotherapy 
[65]. PBK can enhance aggressive phenotypes of 
cervical cancer by regulating the ERK/c-Myc sig-
naling pathway[66]. TPX2 is a microtubule- 
relevant protein that modulates the formation of 
mitotic spindles during the cell cycle[67]. A recent 
breast cancer cohort study demonstrated an 
intense correlation between upregulation of TPX2 
and invasive cancer behaviors[68]. Inhibition of 

Figure 10. In vitro study of CENPE expression in retinoblastoma cells. (a) Evaluation of CENPE mRNA expression using RT-qPCR 
in two human retinoblastoma cell lines, WERI-Rb-1 and Y79, with ARPE-19 cells as a normal control. ***P < 0.001. (b) Representative 
image of CENPE protein expression in the three groups using immunoblotting. (c) Statistical analysis of CENPE protein expression in 
the three groups. *P < 0.05.
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TPX2 could suppress the progression of hepatocel-
lular carcinoma through the PI3K/AKT signaling 
pathway[69]. CENPE is a mitotic motor protein 
that accumulates in the G2 phase of cell division, 
and its inactivation obstructs the spindle assembly 
checkpoint[70]. High CENPE expression in non- 
small cell lung cancer samples is related to poor 
prognosis[71]. To date, the mechanism of CENPE 
in cancers has rarely been reported, and the role of 
CENPE in retinoblastoma remains unclear.

Additionally, we categorized tumor samples by 
C1-C6 immune signature subtypes and analyzed 
the expression of the six hub genes from C1 to C6, 
which all showed significant differences. These 
immune characteristics, as well as extracellular 
matrix, stromal cells, and blood vessels, comprise 
the tumor microenvironment[72], the heterogene-
ity of which greatly affects therapeutic efficacy and 
clinical prognosis[73]. Stemness is used to evaluate 
the stem cell-like features of tumors, including 
self-renewal and dedifferentiation[74]. Miranda 
et al [75]. proposed that tumor cells would acquire 
stem cell-like characteristics during tumor pro-
gression. We evaluated mRNA expression-based 
and DNA methylation-based stemness scores in 
thirty-three TCGA cancer types and correlated 
them with transcriptional signatures of the six 
hub genes, and found that the higher the expres-
sion of the hub genes, the more poorly differen-
tiated the tumor cells in thirty-two cancers (not in 
thyroid carcinoma), suggesting that these hub 
genes might contribute to stemness maintenance.

Through an online publication search, we failed 
to retrieve any literature regarding CENPE in 
either retinoblastoma or pan-cancer analysis. 
Therefore, we preliminarily validated CENPE 
expression in two retinoblastoma cell lines and 
found that CENPE was significantly upregulated 
at both the mRNA and protein levels. 
Interestingly, the mean expression level in highly 
invasive Y79 cells was higher than that in less 
invasive WERI-Rb-1 cells, suggesting that CENPE 
might be positively correlated with retinoblastoma 
invasion behavior. We also assessed CENPE in 
multiple tumor types based on TCGA, GEPIA, 
and Oncomine databases. Comprehensive pan- 
cancer bioinformatics analysis demonstrated that 
CENPE is highly expressed in a wide range of 
human tumors. All the above findings indicate 

that CENPE plays a pivotal role in the pathogen-
esis of retinoblastoma, although the mechanisms 
exerted by CENPE merit further exploration.

Moreover, we comprehensively analyzed CENPE 
in 33 different tumors based on the profiles of TCGA, 
GEPIA, Oncomine, and cBioPortal databases. 
CENPE was upregulated in most cancers but down-
regulated in leukemia, as indicated in the GEPIA and 
Oncomine databases. It has been reported that 
approximately 80% of patients with acute lympho-
blastic leukemia manifested low expression of CENPE 
in bone marrow samples[76]. Alternative splicing of 
the CENPE transcript might contribute to this contra-
dictory role in different cancers.

The present study has some limitations that war-
rant consideration. First, the patient samples 
enrolled in this study were from India and the 
United States, and we did not ascertain the effect of 
ethnic heterogeneity on our research. Second, due to 
the limited sample size and incomplete clinical infor-
mation, it is challenging to establish a prediction 
model for the prognosis of patients with retinoblas-
toma. Third, we measured CENPE expression only 
in vitro, and the molecular mechanisms involved in 
retinoblastoma remain to be elucidated.

5. Conclusion

To the best of our knowledge, our work provides 
a multidimensional analysis of potential interven-
tion targets for retinoblastoma. We identified the 
differentially expressed genes in retinoblastoma, 
revealed accelerated cell cycle events as possible 
functional pathways, constructed a protein- 
protein interaction network comprising six hub 
genes associated with mitosis, and predicted 
potential sensitive therapeutic drugs. In addition, 
we suggest manipulating CENPE as a novel bio-
marker and therapeutic target for retinoblastoma. 
These findings may facilitate the development of 
targeted therapies for retinoblastoma. Further 
research is required to validate and explore the 
underlying mechanisms.

Research highlights

(1) CENPE, BUB1, CDK1, KIF20A, PBK, and 
TPX2 are potential biomarkers of 
retinoblastoma.

BIOENGINEERED 5967



(2) CENPE expression is positively related with 
immune cell infiltration.

(3) CENPE and the five other hub genes are 
highly expressed in various other cancers.

(4) Nelarabine may be a potential antitumor 
agent in the treatment of retinoblastoma.
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