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Abstract

Background

Early-stage oral squamous cell carcinoma (OSCC) patients have a one-in-four risk of

regional metastasis (LN+), which is also the most significant prognostic factor for survival.

As there are no validated biomarkers for predicting LN+ in early-stage OSCC, elective neck

dissection often leads to over-treatment and under-treatment. We present a machine-learn-

ing-based model using the quantitative nuclear phenotype of cancer cells from the primary

tumor to predict the risk of nodal disease.

Methods and findings

Tumor specimens were obtained from 35 patients diagnosed with primary OSCC and

received surgery with curative intent. Of the 35 patients, 29 had well (G1) or moderately

(G2) differentiated tumors, and six had poorly differentiated tumors. From each, two conse-

cutive sections were stained for hematoxylin & eosin and Feulgen-thionin staining. The

slides were scanned, and images were processed to curate nuclear morphometric features

for each nucleus, measuring nuclear morphology, DNA amount, and chromatin texture/

organization. The nuclei (n = 384,041) from 15 G1 and 14 G2 tumors were randomly split

into 80% training and 20% test set to build the predictive model by using Random Forest

(RF) analysis which give each tumor cell a score, NRS. The area under ROC curve (AUC)

was 99.6% and 90.7% for the training and test sets, respectively. At the cutoff score of 0.5

as the median NRS of each region of interest (n = 481), the AUC was 95.1%. We then devel-

oped a patient-level model based on the percentage of cells with an NRS� 0.5. The predic-

tion performance showed AUC of 97.7% among the 80% (n = 23 patient) training set and

with the cutoff of 61% positive cells achieved 100% sensitivity and 91.7% specificity. When

applying the 61% cutoff to the 20% test set patients, the model achieved 100% accuracy.
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Conclusions

Our findings may have a clinical impact with an easy, accurate, and objective biomarker

from routine pathology tissue, providing an unprecedented opportunity to improve neck

management decisions in early-stage OSCC patients.

Introduction

Worldwide, oral squamous cell carcinoma (OSCC) accounts for 274,000 new cases and

145,000 cancer-related deaths each year [1, 2]. Despite advances in treatment, the improve-

ment of five-year survival rates (30–60%) remains diminutive, mainly due to the proclivity of

cancer cells to spread through the lymphatics system to neck lymph nodes, which reduces sur-

vival by half [3, 4]. Therefore, neck management has been part of the treatment planning, espe-

cially for clinically node-negative necks (LN0). A commonly practiced preventative strategy is

elective neck dissection (END) to remove the nodes when no clinical evidence of nodal disease

is present. However, the decision of END remains subjective. Tumor depth of invasion (DOI)

and differentiation are markers often used as a guide for subsequent radical neck dissection or

adjuvant radiotherapy [5]. For example, DOI� to 5mm has been upgraded to T2 in the recent

edition of the Cancer Staging Manual of the American Joint Committee of Cancer [6]; how-

ever, DOI has been found to have limited sensitivity and specificity [7–9]. From our popula-

tion-based retrospective study [10] and a pan-Canadian randomized surgical trial [11], one-

in-four of the LN0 patients developed nodal disease either at the time of surgery or during

post-surgery clinical follow-up. Among those who did not receive END, 25% developed nodal

disease less than 12 months of surgery, and half of them deceased within less than 12 months

after nodal metastasis. This infers that, if identified early, high risk clinically node negative

patients may benefit from END with improved survival while others, who will not develop

LN+, would avoid unnecessary neck dissection, expensive healthcare costs, prolonged hospital

stays, morbidities, and adverse impact [12, 13]. Considering the significant clinical impacts, an

improved objective prognostic biomarker for predicting the risk of the nodal disease is needed

and can potentially guide the neck management, and consequently, reach a better survival

outcome.

Quantitative pathology (QP) is a computational image analytical approach that can be

used as a means to obtain objective and quantitative information concerning the diagnosis

and prognosis of cancers [14]. Phenotype differences in nuclear morphology, chromatin tex-

ture, and distribution the of underlying mechanisms occurring at the genomic, transcrip-

tomic, and epigenomic levels [15]. Our group and others have shown that differences in

these phenotypes have been associated with pathologic diagnosis and progression risk across

cancer types, including OSCC [16–19], prognosis [20, 21], and metastasis [22–25]. With the

aid of computer and imaging technologies, QP acts as an adjunct technology that enhances

the reliability, reproducibility, and capability to describe pathological changes. There is a

wealth of cancer research dedicated to applying image analysis techniques to quantify micro-

scopic features to understand the cancer pathology, diagnosis, and differential characteristics

in ‘at-risk’ pre-malignant cells undergoing carcinogenic transformation. Therefore, it is con-

ceivable that QP may also serve as a powerful tool for predicting the outcome of nodal

disease.
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Objective and hypothesis

The study objective is to use a supervised machine learning method to quantify features of epi-

thelial cancer cells that predict the risk of nodal disease. The hypothesis is that measurable

nuclear morphological features of cancer cells are different between LN0 and LN+ tumors.

Materials and methods

The study retrospectively includes surgically resected primary tumor samples from a cohort of

patients enrolled in a pan-Canadian surgical trial (NCT01039298) [11]. These patients received

intent-to-cure surgery and were followed-up post-surgery for at least five years. The utilization

of patient data and FFPE samples was conducted under the approval of the BC Cancer / The

University of British Columbia Research Ethics Board (REB# H09-03090 and H17-02031). All

patients gave written informed consent. Fig 1 illustrates the study scheme.

Study cohort

Patients were diagnosed with OSCC from oral anatomical sites, including C02.0 to C6.0 of the

ICD-10 (International Statistical Classification of Disease and Related Health Problems); clini-

cal node-negative at the time of initial diagnosis (cLN0); enrolled in the surgical trial and

received intent-to-cure surgery as the primary treatment with or without END. As a pilot

study, we identified 35 primary tumors that have previously analyzed and reported [26, 27]

and with enough tumor tissue for additional sections.

Outcome data included the binary status of LN+ (nodal disease confirmed by pathology) or

LN0 (at the last clinical visit); time to regional recurrence (RR), which was measured from date

of surgery to date of the diagnosis of nodal disease by pathology; and disease-specific survival

(DSS), which was measured from the date of surgery to the date of death from OSCC. Patients

who were last known to be alive and nodal-disease-free were censored at the date of the last

contact.

Sample processing and image data collection and definition of region of

interests

For each of the 35 tumors, the medial tissue blocks encompassing the largest dimension of the

tumor were retrieved, followed by serial sectioning into two consecutive 4-um-thick sections

(S1 Fig). One slide was stained for hematoxylin and eosin (HE) staining, and the other was

stained with Feulgen-thionin (FT) staining as described in the previous studies [28, 29].

Fig 1. Study scheme. In Step 1, two consecutive 4-μm tissue sections stained with hematoxylin-eosin (HE) and

Feulgen-thionin (FT), respectively, are scanned and reviewed by an experienced pathologist to define the region of

interests (ROIs) with ~3 x 3 mm2. In Step 2, the images of defined ROIs are segmented to classify objects into cell

groups of which features are extracted to describe nuclear morphology, photometric, and chromatin organization and

texture in Step 3. In Step 4, the features are used to build a patient classification model and compared with clinical-

pathological data.

https://doi.org/10.1371/journal.pone.0259529.g001
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The stained slides were imaged at 20x magnification on Pannoramic MIDI and reviewed

on Pannoramic Viewer (3DHISTECH Ltd., Budapest, Hungary). On the HE image, the tumor

areas were annotated into ~3 x 3 mm2 region of interests (ROIs) based on its location relative

to the surface, from the surface to deep, including invasion front as the deepest 10% of total

SCC layers. Given the computational limit, some ROIs were further divided into sub-areas (S1

Fig). The outlined ROIs were then extrapolated onto the corresponding FT images followed by

exporting as tag image file format (TIFF) files with 1024x1024 tile size.

Image segmentation and object classification

Each of the TIFF file was read into HistologyII, an in-house built program for segmentation

and calculation of 93 quantitative nuclear phenotypes (QNP), which are derived from the opti-

cal density of pixels of the segmented objects [30]. The QNP describes 1) nuclear morphology,

2) photometric, and 3) chromatin organization and texture [14, 18]. The full list of QNP is

described in S1 Table. After segmentation, all objects were classified into 1) good epithelial

squamous, 2) good non-squamous, and 3) rejects / junk objects. S2 Fig illustrates the simplified

object classification algorithm, which is a decision tree with a mixture of binary splits and Ran-

dom Forests models with the input of the QNP features [31]. Once the objects are classified

and cleaned, the features were normalized by the optical density of the epithelial squamous

population and exported for analysis.

Statistical analysis

Patient, tumor characteristics, and QNP features were described as either continuous or cate-

gorical variables. Comparisons between subgroups were performed by Chi-square tests for the

proportion of categorical and nonparametric Wilcox rank-sum test for means of continuous

variables. Given that nodal status is not a time-fixed variable, and the time of developing nodal

disease during follow-up varies among the LN+ patients, the comparison of DSS between the

nodal status subgroups was analyzed by using Kaplan-Meier (KM) analysis and log-rank test

with a landmark time of 2-year after surgery [32]. Based on our population-based study, the

majority of nodal disease events (80%) developed within two years after surgery [10]; thus, a

2-year landmark time was chosen to avoid the potential bias of neglecting patients who might

have died before developing nodal disease within the 2 year. With the landmark method,

patients who were alive and continued to be follow-up at 2-year were included in the KM anal-

ysis. To compare RR rates between the model predicted LN risk group, which is a time-fixed

variable defined at surgery, with no deaths among the predicted negative group within 2 years,

we performed by Kaplan-Meier analysis and log-rank test without the landmark method. All

statistical comparisons with a P < 0.05 were considered significant. All analyses were per-

formed using the software R (v.3.4.4) packages [33].

Nodal risk model development. The nodal risk score, NRS, was developed by using the

Random Forests (RF) classification modeling with the input of the QNP and binary outcomes

of LN+ and LN0. The RF was implemented in R using the Random Forest package [34]. To

build a model to predict the nodal disease, we randomly split the cancer cells from well-differ-

entiated (G1) and moderately differentiated (G2) tumors into 80% training and 20% test sets.

The RF model was optimized for the number of trees grown from a bootstrapped sample and

the number of predictors randomly tested at each node [35]. The number of trees and number

of features for each node was tuned using 5-fold cross-validation, and the sample sizes were set

to be equal to the smallest class to address the class imbalance issue [36]. Once the number

(based on out-of-bag error rate and accuracy) of correctly classified objects are acceptable, the

models were tested on the remaining 20% test set cells.

PLOS ONE Quantitative pathology for OSCC nodal disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0259529 November 4, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0259529


Predictive performance of nodal risk score. The predictive performance of NRS on LN

status was assessed by using the receiver operating characteristic (ROC) curve analysis [37],

and the area under the ROC curve (AUC) was used as the measure for accuracy. Based on the

NRS of the training cells, a two-group cutoff value was determined to classify a cell into the LN

status group, with those scored higher than the cutoff classified as ‘positive’ cells. This cutoff

was then used to calculate the percentage of positive cells for each patient. To build the

patient-level model, the G1/G2 patients were randomly split into 80% training and 20% test

sets. ROC analysis was performed on the training patient set to determine an optimal cutoff

for the percentage of positive cells that classifies a patient into risk groups, with high-risk

group being patients with a percentage of positive cells greater than the cutoff. The perfor-

mance of the cutoffs was then evaluated on the test patient set.

Results

As a pilot study, a total of 35 patients, 16 LN0 and 19 LN+, were included in this study, and

this includes 561 SCC ROIS with more than 468,000 cells. Table 1 summarizes the demo-

graphic and clinicopathological variables. There was no difference in age, sex, smoking history,

primary tumor anatomical site, or clinical T-stage between the LN groups. As expected, poorly

differentiated (G3) tumors (5 out of 6) account for most LN+ tumors. Although the depth of

invasion (DOI) was significantly higher in LN+ group (9.8±6.9mm vs. 4.9±2.8mm; P = 0.01),

there was no difference in terms of the DOI cutoff for END suggested by the 8th edition

(<5mm vs.�5mm: 4 vs. 15, P = 0.28). The median time to RR was 2.0 years among the 35

patients, with 6 had positive nodes at the time of surgery and 13 developed LN+ within 1.2±1.6

years after surgery. Of the 35 patients, all disease-specific deaths were experienced by LN+

patients; however, given the small sample size, the DSS rates were not statistically significant

from KM analysis with a 2-year landmark time (log-rank test, P = 0.15; S3 Fig).

Building nodal risk score (NRS)

As aforementioned, Grade 3 (poorly differentiated) tumors are often associated with LN+, and

as also observed in our dataset (5 of 6 Grade 3 were LN+), we excluded them from building the

prediction model. The prediction model was built from 384,041 cells of 29 Grade 1 (well-dif-

ferentiated, N = 36,156) and Grade 2 (moderately differentiated, N = 337,127) tumors. These

were randomly split all cells into 80% training (N = 307,232: LN0, n = 93,687; LN+, n =

213,545) and 20% test (N = 76,809: LN0, n = 23,370; LN+, n = 53,439) sets. Two subsample

sizes of the training set were set to be a similar number to avoid potential selection bias. The

model, which gives each cell a score ranging from 0 to 1, was subsequently tested on the test

set. Fig 2A shows the ROC curve of our model with AUC of 99.6% with an NRS of 0.5, giving

us the sensitivity of 92.6% and specificity 100% (Fig 2A) for the training accuracy of 90.7%

with a score of 0.5 gave us 86.7% sensitivity and 77.7% specificity for the test set (Fig 2B). Next,

we assessed whether intratumor heterogeneity, the variation of the ROIs within a tumor, will

impact the performance of 0.5 NRS by applying 0.5 as the cutoff across the median NRS of

each ROI (n = 481: LN0, n = 161; LN+, n = 320) among the 29 G1 and G2 tumors. The AUC

was 95.1, and at 0.5, the sensitivity was 86.3%, and specificity was 94.4% (Fig 2C). Examples of

NRS distributions of cells are respectively shown in Fig 3A and 3B for LN0 and LN+.

Determining optimal NRS cutoff and its predictive performance

For NRS to be applicable for clinical use, we needed to build models at the patient (i.e., tumor)

level. We first performed ROC analysis on each patient’s median NRS, which had AUC of

98.6% with a sensitivity 100% of and specificity of 80% at the cutoff of 0.5. We next sought to
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build a better model by considering the percentage of cells with�0.5 NRS, denoted as “positive

cells”. The 29 patients were randomized into 80% training (n = 23; LN0, n = 12 and LN+,

n = 11) and 20% test (n = 6; LN0, n = 3 and LN+, n = 3). There was no difference in tumor

characteristics between the training and test sets (S2 Table). From the training set, the percent-

age of positive cells had AUC of 97.7%; and 61% was the best two-group cutoff with 100% sen-

sitivity, 91.7% specificity, 91.7% PPV, and 100% NPV (Fig 4A) for the training set and 100%

accuracy for the test set. Prediction based on the 61% outperforms other arbitrary cutoffs as

summarized in S3 Table. Although the sample size was small, the predicted high-risk group

showed inferior RR-free rates in both the training and the test set (log-rank test, P< 0.0001

and P = 0.06, respectively; Fig 4B).

Table 1. Patient and clinical-pathological characteristics.

N (%) Total (N = 35) LN0 (n = 16) LN+ (n = 19) P value

Age, yrs 0.74

Mean (SD) 60.3 (16.1) 61.4 (18.2) 59.5 (14.5)

Median (Q1, Q3) 60.2 (51.6, 71.5) 62.6 (51.3, 75.8) 58.9 (53.6, 70.0)

Age group 0.25

<50 8 (22.9) 4 (25.0) 4 (21.1)

50–72 18 (51.4) 6 (37.5) 12 (63.2)

>72 9 (25.7) 6 (37.5) 3 (15.8)

Sex 0.37

Male 19 (54.3) 10 (62.5) 9 (47.4)

Female 16 (45.7) 6 (37.5) 10 (52.6)

Lesion Site Risk 0.12

R1R2 6 (17.1) 1 (6.2) 5 (26.3)

R3 29 (82.9) 15 (93.8) 14 (73.7)

Race 0.78

Non-White 8 (22.9) 4 (25.0) 4 (21.1)

White 27 (77.1) 12 (75.0) 15 (78.9)

Smoking 0.83

Never 16 (45.7) 7 (43.8) 9 (47.4)

Ever 19 (54.3) 9 (56.2) 10 (52.6)

cT 0.17

T1 22 (62.9) 12 (75.0) 10 (52.6)

T2 13 (37.1) 4 (25.0) 9 (47.4)

Grade 0.12

G1/G2 29 (82.9) 15 (93.8) 14 (73.7)

G3 6 (17.1) 1 (6.2) 5 (26.3)

DOI (mm) 0.01

Mean (SD) 7.5 (5.9) 4.9 (2.8) 9.8 (6.9)

Median (Q1, Q3) 6.0 (3.8, 9.5) 5.2 (1.9, 6.2) 7.0 (5.0, 14.5)

DOI (5mm) 0.28

<5 10 (28.6) 6 (37.5) 4 (21.1)

�5 25 (71.4) 10 (62.5) 15 (78.9)

Abbreviations: Lesion anatomical site risk (R): R1, buccal mucosa and gingiva; R2, soft palate complex; R3, tongue and floor of mouth. Clinical tumor size (cT), T1 (0–2

cm) and T1 (2–4 cm); Grade, G1, well differentiated, G2, moderately differentiated, and G3, poorly differentiated; Tumor depth of invasion (DOI), in mm, is grouped

into 5mm based on the AJCC [38]; LN0, lymph node negative; LN+, lymph node positive.

https://doi.org/10.1371/journal.pone.0259529.t001
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NRS in Grade 3 (poorly differentiated) tumor

Using the same algorithm of the percentage of positive cells on G3 tumors, a cutoff of 25%

achieved the best performance with 80.0% sensitivity, 100% specificity, and 83.3% accuracy.

Fig 2. Random forest based modeled score for nodal disease. The ROC of RF-based nodal-risk score, NRS, models

for training set cells (A), test set cells (B), and Grade 1 and Grade 2 ROIs (C) with the 0.5 (solid black dot) indicated as

the best cutoff with the highest performance (specificity and sensitivity). The area under the curve, sensitivity, and

specificity are shown in percentages. Abbreviations: NRS, nodal risk score; ROC, receiver operating characteristic

curve; AUC, area under the curve; Grade 1, well differentiated tumors; G2, moderately differentiated tumors; ROIs,

regions of interest; LN0, lymph node negative; LN+, lymph node positive.

https://doi.org/10.1371/journal.pone.0259529.g002

Fig 3. Examples of NRS distributions. The cell NRS is plotted for an (A) LN0 and (B) LN+ patient.

https://doi.org/10.1371/journal.pone.0259529.g003

Fig 4. NRS predicted nodal risk. (A) Receiver operating characteristic (ROC) curve of the percentage of positive

(NRS� 0.5) cells among Grade 1/2 training set. The best cutoff (solid black dot) gives 100% sensitivity and 91.7%

specificity. (B) Kaplan-Meier curves of regional recurrence free between low risk (blue) and high risk (red) groups of

patients in the training and test sets as defined by the 61% cutoff of positive cells.

https://doi.org/10.1371/journal.pone.0259529.g004
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This is comparable with tumor differentiation alone (5 of 6, 83%) when addressing Grade 3

tumors’ risk.

Discussion

Quantitative pathology (QP) measuring nuclear phenotypic characteristics has emerged as one

of the significant biomarkers informing diagnosis, treatment, and management guidance. The

advantage of QP is its ability to inform nonapparent phenotypes that are consequences of

underlying genetic and epigenetic alterations. Traditional pathology, such as tumor grade or

DOI, is subjective and limited in the accuracy of predicting nodal disease, especially for early-

stage OSCC [5, 39]. Advances in imaging analysis enable the high-throughput extraction of

nuclear features to profile and assess these tumors.

The grade of differentiation is a routinely assessed phenotype based on the degree of kerati-

nization, nuclear polymorphism, and mitosis. Poorly differentiated, Grade 3, OSCC is well rec-

ognized to be biologically more aggressive and tends to metastasize to regional lymph nodes

early in the course of the disease [40]. In this study, we developed a new biomarker, the NRS,

to predict nodal disease for well and moderately differentiated tumors. The rationale for such

split is that Grade 3 was disproportionately higher in LN+ and Grade 1 and 2 were the majority

of the cases; thus, we investigated whether a model can accurately predict Grade 1/2 tumors

and whether an optimized cutoff can be applied to Grade 3 tumors with similar performance.

The reported NRS model can predict nodal disease with high accuracy and can potentially

serve as an adjunctive tool for clinicians’ decisions in neck management of early-stage oral

cancer. When retrospectively examining our published data [10], which had 114 G3 tumors

out of the 821 cases, we observed that tumor grade for the nodal disease had 73.9% accuracy

and 86.0% specificity. This suggests that stratifying patients based on whether the tumor is

poorly differentiated can aid in the decision of END.

The NRS provides 100% accuracy for the nodal prediction of test set of well and moderately

differentiated tumors. We also observed that the model performs with similar accuracy com-

pared to the pathology of poorly differentiation. From our previous published data [26], we

found that among the 569 cases with DOI information, cutoff at 3mm, 4mm, and 5mm pro-

vide 41.9%, 46.1%, and 48.7% accuracy in predicting the nodal disease, which potentially

results in overtreatment for patients with no risk of nodal disease and undertreatment for

those later showing nodal disease [10]. For well and moderately differentiated tumors, the

accuracy of our data is much higher than the current approach using tumor DOI.

The other innovation is the assessment of multiple ROIs within the tumor to assess the

tumor heterogeneity using QNP (S4 Fig). For instance, we observed multiple modalities in the

distributions of NRS among the sub-regions of some tumors. Intratumor heterogeneity repre-

sents clonal evolution and a crucial aspect in understanding the underlying evolving biology

and its possible clinical implications [41, 42]. This diversity within the tumors has been an

important challenge in personalized therapy as identified molecular-expression does not

always represent the entire population of tumor cells [43]. As of current, there has not been in-

depth research in the tumor heterogeneity of OSCC as it requires profiling of tumor at single-

cell level [44–46]. Intratumoral heterogeneity is an important biology feature and can poten-

tially impact drug therapy’s effectiveness; however, this is beyond the scope and objective of

the study. Also, we did not observe its impact on the nodal risk prediction in our cases as one

can see using 0.5 NRS as cutoff of the median of each ROIs, we acquire accuracy of 95.1% in

predicting nodal disease.

Our group has been investigating the prognostic value of QNP in various types of cancer;

however, the efforts have focused on the progression from precancer or local recurrence
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[18, 47]. This is the first study to use tumor-wide phenotype of OSCC and to address regional

nodal metastasis, a clinically critical problem. Our results have demonstrated the superior pre-

dictive performance of the NRS. The study has a few limitations. First, quantifying nuclear fea-

tures requires segmenting nuclei into complete single objects that are non-overlapping, non-

touching, in-focus, and resemble the cell of interest. Based on the tumor growth patterns and

behaviors, most tumors show a high proliferative index. This limits the number of well seg-

mented objects for analysis, especially for high density areas and heavily inflamed tumors.

Improved segmentation methods continue to be developed through deep-learning algorithms

that could eventually bring us to maximize the number of informative objects. Second, a small

sample size of tumors can be a concern; however, we have analyzed enormous data points,

including >468,000 nuclei/objects and 561 ROIs. The NRS is developed via analysis of QNP of

all nuclei identified. The application would be even more clinically useful when applied on

small biopsy samples. To further validate the usage of 0.5 NRS, we have been prospectively col-

lecting new independent cases for further validation.

Our study’s most important message is that prognostic and biological information enclosed

in tissue can be easily acquired from a routine pathology specimen. Our data support the use

of NRS as an accessible, accurate, and objective test for the decision of G1 and G2 tumors for

the need of END, and poorly differentiated tumors have a high risk of nodal disease. Further

validation of observed predictive performance is underway.
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