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Abstract
Background: Two of the main objectives of the genomic and post-genomic era are to structurally
and functionally annotate genomes which consists of detecting genes' position and structure, and
inferring their function (as well as of other features of genomes). Structural and functional
annotation both require the complex chaining of numerous different software, algorithms and
methods under the supervision of a biologist. The automation of these pipelines is necessary to
manage huge amounts of data released by sequencing projects. Several pipelines already automate
some of these complex chaining but still necessitate an important contribution of biologists for
supervising and controlling the results at various steps.

Results: Here we propose an innovative automated platform, FIGENIX, which includes an expert
system capable to substitute to human expertise at several key steps. FIGENIX currently automates
complex pipelines of structural and functional annotation under the supervision of the expert
system (which allows for example to make key decisions, check intermediate results or refine the
dataset). The quality of the results produced by FIGENIX is comparable to those obtained by
expert biologists with a drastic gain in terms of time costs and avoidance of errors due to the
human manipulation of data.

Conclusion: The core engine and expert system of the FIGENIX platform currently handle
complex annotation processes of broad interest for the genomic community. They could be easily
adapted to new, or more specialized pipelines, such as for example the annotation of miRNAs, the
classification of complex multigenic families, annotation of regulatory elements and other genomic
features of interest.
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Background
Detecting genes, their organization, structure and func-
tion is a major challenge of the genomic and post-
genomic era. Two fields of genomic biology are dedicated
to this task and are known as structural and functional
annotation. Structural annotation refers to the task of
detecting genes, their location on a biological sequence,
their exon/intron structure and predicting the protein
sequences that they encode. Functional annotation aims
to predict the biological function of genes and proteins.

Structural annotation methods can be classified into sev-
eral types:

• Ab-initio methods, based on content sensor and detec-
tors to discriminate between coding and non-coding
regions, and then decipher a putative gene.

• Homology-based methods use evolutionary conserva-
tion concepts to deduce gene localization and structure.

• Hybrid methods couple these two approaches and usu-
ally present the best compromise in terms of sensibility
and specificity in gene detection [1].

Computational methods of functional annotation are
mainly divided into two types:

• Similarity based approaches intending to infer a func-
tion based on the pairwise similarity of a given sequence
with a sequence of known function. These approaches
have been criticized for their propensity of propagating
annotation errors [2] deducing false homology relation-
ships [3,4], and thus producing systematic errors [5].

• Phylogenomic inference approaches, based on evolu-
tionary history and relationships between biological
sequences. These methods avoid most of the false homol-
ogy inference problems, and allow distinguishing
between orthologous and paralogous genes [4,6]. Orthol-
ogous genes, which are produced by a speciation event,
are more likely to share the same function than paralo-
gous genes which originate from duplications [7]. These
methods are also able to detect potential functional shifts
through the study of genes' evolutionary behavior, [6].
Nevertheless, these methods require a high degree of bio-
logical expertise, are time consuming, complex, and are
difficult to automate in their whole [4,8,9].

Aside from detecting protein coding genes and predicting
their function, structural and functional annotation also
have other aims such as detecting regulatory elements,
repetitive elements, non protein-coding genes (i.e.
miRNA), or other important genomic features.

Whatever the objective, structural and functional annota-
tion usually require the complex chaining of various dif-
ferent algorithms, software and methods each with its
own particular set of parameters and output format. At
key steps of these "pipelines", expert biologists are often
required to make important decisions, modify the dataset,
compare intermediate results, manually handle and con-
vert several files (and so on...) which is labor intensive
and can be error prone. For the treatment of huge
amounts of data released by sequencing projects, automa-
tion of these pipelines is an absolute necessity. Several
attempts have been made in the development of annota-
tion platforms automating some of these pipelines, partic-
ularly in the field of structural annotation (for example
the Ensembl pipeline [10], or the Otto system [11]). With
regards to functional annotation, several platforms auto-
mate pairwise similarity based approaches [9,10,12,13],
and fewer have automated the more complex phyloge-
nomic inference approaches [4,14]. While these latter
platforms allowed both a gain in the time cost and avoid
errors due to the manual manipulation of files, they still
strongly require intervention of human experts at various
steps.

Here we present an automated annotation platform fea-
turing an expert system that substitutes for human exper-
tise at various steps and, thus, allows more complete
automation than ever considered. The expert system mod-
els the biologists' expertise and is able to compare inter-
mediate results from different methods, to modify the
dataset, to evaluate the significance of predictions along
with other usually "biologist-made" tasks. The FIGENIX
platform currently automates 8 different pipelines of
structural and functional annotation. In particular, a
structural annotation pipeline, which is a hybrid method
coupling ab-initio and homology-based approaches, and
a functional annotation pipeline fully automating a com-
plex phylogenomic inference method. The present manu-
script will specifically focus on the phylogenomic
functional inference pipeline which illustrates how an
expert system allows automation of complex chaining
usually requiring amounts of non-trivial human
intervention.

Implementation
FIGENIX is an intranet/extranet server system usable
through any recent Web browser accepting JAVA 2 Plugin
installation. FIGENIX is freely available to academic users
through the web interface [15]. Users first have to contact
us to request a login and password. The source code is
available upon request under the GNU GPL (General Pub-
lic License).
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FIGENIX's technical architecture
The FIGENIX (1.0) platform is structured as a 3 tiered soft-
ware which means that it is composed of three layers: the
database management system, the server-side compo-
nents and the graphical user interfaces (Figure 1). Soft-
ware components are distributed through JAVA RMI
middleware technology, on our laboratory's network. To
increase computation capabilities and to further offer
FIGENIX services to the biologists' community, deploy-
ment on GRID middleware architectures like UNICORE is
technically possible and can be considered.

For software development and production deployment,
we chose the LINUX operating system (for production we
use RED HAT 9.0 open access version), for several reasons:
UNIX kernel reliability, free and open source software and
especially the availability of algorithmic software widely
used for genomic annotation in their command line ver-
sion (e.g. BLAST [16], GENSCAN [17], HMMGENE [18],

CLUSTALW [19], PAUP* [20], PHYLIP [21], TREE-PUZ-
ZLE [22], HMMPFAM [23]). The Relational Database
Management System, which is responsible for the persist-
ence of annotation tasks (pipelines instances) and the
genomic results produced during tasks executions, is
POSTGRESQL [24]. Server-side components (see figure 1)
are developed in the JAVA language [25] (exhaustive list of
used technologies: JAVA, RMI, SWING, JSP, TOMCAT,
HTML, JAVASCRIPT, XML, XSLT, POSTGRESQL, GNU
PROLOG FOR JAVA, BIOJAVA, FORESTER, C). A server
called "Persistence Layer" manages "Objects" mapping for
tasks and their results in the relational database server. A
"Repository" centralizes information concerning operat-
ing conditions of FIGENIX (e.g. the load balancing ticket
between "Annotation Engines"). The "Annotation
Engine" is a component able to execute several annota-
tion tasks at the same time (multi-threading) and, thus, to
drive several pipelines. The Engine works with local copies
of genomic databases, automatically downloaded and

FIGENIX software architectureFigure 1
FIGENIX software architecture. FIGENIX software servers can be distributed on several CPU. Some servers, like "Anno-
tation Engine" or "Expert System" can be cloned and distributed on these CPU (theEnsembl pipeline includes a similar 
approach, named "Computer Farm"). This allows load balancing inside the FIGENIX platform. Fault tolerance is not yet imple-
mented but can easily be integrated to this kind of architecture.
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updated from academic Web sites (NR, SWISSPROT/
NCBI [26], Ensembl [10], PFAM [27]). We do not include
a task manager like the "Rule Manager" of the Ensembl
pipeline [12], but rather all tasks to be run are placed in
the database server and each "Annotation Engine" looks
periodically if some tasks can be executed on its CPU. The
"Annotation Engine" obligatorily works in conjunction
with an "Expert System". This module integrates static
empiric rules associated with genomic knowledge
extracted from the laboratory scientists and dynamic
information given during the pipeline execution. The
static knowledge base is shared by all tasks executing on
the engine asking expert, but each task owns its "world"
which encapsulates its specific dynamic information (e.g.
multiple alignments, domains, temporary phylogenetic
trees that are given to the expert system or tests' results).

This module was developed with PROLOG language (see
Table 1) (Colmerauer, unpublished, 1972) with GNU
PROLOG FOR JAVA interpreter [28]. Based on first order
logic, it offers easy knowledge modeling using logical
rules. This language is very well adapted to data structures
like lists and trees. In bioinformatics solutions, these
kinds of structure are numerous and common. In a natu-
ral way, a PROLOG engine (interpreter) works in "back-
ward chaining" mode, i.e. like a predicate verifier and not
like a facts producer ("forward chaining"). In other words,
it answers to questions rather than producing new infor-
mation. This mode is well appropriated to the way the
"expert system" takes part in task execution (as illustrated
in the examples detailed hereafter). As shown further, the
choice of a rule based system like PROLOG, offers a great
"expression capability" in very short and powerful sen-
tences used to model scientists' knowledge and methods.
Procedural or "Object Oriented" languages (like C/C++/
C#, JAVA, PERL, or PASCAL) do not offer such powerful,
concise and interpreted syntax for knowledge modeling
and manipulation purpose.

Complex pipeline example: phylogenomic inference
As an example to illustrate the potential of an expert sys-
tem in automating complex and human intervention-
requiring pipelines; we focused on the phylogenomic
functional inference pipeline. Phylogenomic functional
inference is, as previously introduced, labor intensive,
time consuming, requires a high level of expertise and
human intervention at various different steps. For these
reasons, such functional annotation approaches, while
clearly more reliable than similarity based approaches,
have been considered as impossible or very difficult to
automate without dramatically sacrificing the quality (by
substituting general default parameters and decisions to
human expertise).

The phylogenomic inference pipeline that we integrated
and automated in the platform is mainly the one
described in Abi-rached et al. 2002 [29], and in Vienne et
al. 2003 [30], the pipeline is described on Figure 2's
legend.

Phylogenomic inference can be summarized into five
main steps:

1. Creation of a dataset of sequences homologous to the
sequence of interest.

2. Multiple alignment of these sequences, with elimina-
tion of data producing bias, noise, or distorting the evolu-
tionary signal.

3. Phylogenetic reconstruction based on the multiple
alignment using several different methods.

4. Inference of Orthologs and paralogs through compari-
son of gene trees with a reference species tree.

Table 1: PROLOG rules, syntax and semantic, example

% X belongs to a list if X is at the start of the list
Element(X, [X|_]).
% or X belongs to a list if the list starts with Y different from X but X belongs to the list 's queue
Element(X, [Y|;L]) :- different(X, Y), element(X, L).

a user of a such program asks it like this: Answer
>element(9, [5, 3, 4, 7]. answer = fail
>element(3, [5, 3, 4, 7]. answer = ok
>element(X, [5, 3, 4, 7]. answer = ok, X = 5 or X = 3 or X = 4 or X = 7

a(X, Y) :- b(X), c, d(X, Y) can be read like this: a is true for X and Y values if b is true for X value, c is true and d is true for X and Y value. Here is 
a very short example to explain how works a PROLOG program. Suppose we want to write a program able to verify that an element belongs to a 
list or able to enumerate list's elements. In PROLOG we just have to describe "belonging" concepts.
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Phylogenomic inference pipelineFigure 2
Phylogenomic inference pipeline. For more details about all the steps and functionalities automated in the pipeline see 
material and methods sections of the 2002 and 2003 phylogenomic papers [29, 30]. From the query sequence, a dataset of 
putative homologous sequences is first built by BLAST [16] on a protein database like NR. We filter raw dataset to eliminate 
sequences potentially non-homologous, disturbing alignments and doubles. User can choose to focus on a specific scope on any 
node of the tree of life (the vertebrates, the bilaterians...). In the next step, we produce an alignment with CLUSTALW [19]. 
Then the alignment is modified to eliminate large gaps. Since phylogenetic analysis is done at the domain level, we next detect 
these domains with HMMPFAM [23]. For each domain alignment (extracted from the original alignment), a bias correction 
phase is run, to eliminate: – Non-monophyletic "repeats" in a tree built with NJ [31] algorithm on CLUSTALW software. – 
Sequences with a diverging composition by using an amino-acid composition test of TREE-PUZZLE software [22] (with an 
alpha risk set to 5%). – Sites not under neutral evolution [35]. Once domains are "purified", and after congruent domains selec-
tion with HOMPART test from PAUP package [20], a new alignment is built by merging preserved parts of domains' align-
ments. From this alignment, three phylogenetic trees are generated using NJ, ML (with TREE-PUZZLE [22]) and MP (with 
PAUP [20] package) methods. By comparing topologies of these trees with PSCORE command ("Templeton winning sites" 
test) from PAUP package and KISHINO-HASEGAWA [34] test from TREE-PUZZLE package, fusion of these trees in a unique 
consensus tree is produced. Through the comparison of this consensus protein tree with a reference species tree, (the tree of 
life from NCBI [26]), we then deduce orthologous proteins to the query sequence.
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5. Retrieval of experimentally verified functional data for
orthologs and paralogs to the query sequence, on Web
databases (Gene Ontology, MGI and NCBI's dbEST).

In each of these five steps, human intervention is required
multiple times. For example, at step 1 to choose sequences
from a BLAST [16] output that are more likely to be
homologous to the query sequence. At step 2 to eliminate
sequences producing biases in the alignment or having a
divergent composition, and to mask sites with highly
divergent evolution. At step 3 to compare the topologies
of trees produced by different methods and check whether
they are congruent. At step 4 the biologist compares the
topology of the gene tree to the topology of a reference
species' tree, then deduces the position of duplication and
speciation events, and finally infers orthology and paral-
ogy relationships. Once orthologs to a sequence of inter-
est have been identified, biologists then usually look for
known functional data in other species and infer for
example a likely biochemical function for the unknown
gene (step 5).

A complex pipeline's computational translation
From a data-processing point of view, a procedure, such as
phylogenomic inference introduced here, consists of a
genomic data flow circulating through a software unit set.
This data flow or "pipeline" is a directed cyclic graph (see
figure 2 and figure 3).

Each graph's node, i.e. each unit takes one or more
streams as an input and builds a new stream as an output,
which is transferred to the input of one or many related
units in the stream orientation.

Unit's jobs can be executed in a parallel mode. A "rendez-
vous" type, synchronization, which means that a unit
starts its work when the complete set of related input
streams are present, is thus possible (see the 3 phyloge-
netic trees building units on figure 2) but not mandatory
(unit's work can be started by the arrival of a unique input
stream). This kind of parallelism, with explicit and large
granularity, at the unit's level, allows us to benefit from
multi-processors hardware architecture, and also, by an
appropriate deployment, from distribution on several
CPUs.

We name algorithmic or "A-units", units that produce a
mathematical computation.

Like other adaptable and flexible pipelines systems, we
didn't choose to rewrite new software for each algorithmic
step. We preferred the use of the "reference" publicly avail-
able software in their command line version (e.g.
sequence similarity search is done by the BLASTALL local
runtime, downloadable on NCBI web site). Thus the

BLAST process is driven by a "A-unit" which wraps its
input/output streams.

We used the same approach for all software (gene predic-
tion, domain detection, phylogenetic reconstruction,
multiple alignment...). Plugging of existing software with-
out modification in our pipelines, allows us to use the
most advanced bioinformatics software research develop-
ment, with a very easy maintenance. It also allows easy
evolution of the platform by integrating new software or
replacing the older versions by the most up to date ones.
New versions of applications (such as BLAST, or HMMP-
FAM) are not directly and automatically updated in
FIGENIX, they are first tested, validated and if needed
adapted (due to possible changes in the input/output
formats).

The "tool" units, or "T-units" category contains units like
enumerators, data accumulators, multiplexers/demulti-
plexers, simple filters, data converters and so on (e.g. con-
verting data from GENSCAN output data to GFF format).

"Result" units, or R-units, are in charge of the most impor-
tant genomic results production. Those results are
intended to be the components of a scientific report pro-
duced by an annotation task started by the biologist.

Interface with the expert system is made through two
types of dedicated units. Their role is to "substitute to"
human expertise and "memory". Some of them keep
information necessary for later reasoning, they are named
expert knowledge units, or EK-units. Others take decisions
concerning stream direction inside the graph or produce,
on output stream, new data resulting from the analysis of
the current situation in the data world of the task. These
units are named expert decision units, or ED-units. This
part of the analysis is based on empiric rules specified by
biologists, rather than on an algorithmic approach.

EK and ED units are thus gateways to the expert system,
which purpose is to take decisions, using genomic knowl-
edge and data provided by EK units during pipeline
processing. Like a human, this expert system has a
"memory" and an "intelligence" (limited to the problems
managed by our system) used to "supervise" a pipeline
execution.

Pipelines themselves are coded as XML files. We are devel-
oping a GUI (graphical user interface) for pipeline editing,
dedicated to the biologists' use. Scientists will be able to
construct their own data flows, chaining available tool
units. A semantic control will prevent invalid buildings.
Users can propose a given application not currently avail-
able in FIGENIX to be included as a new A-unit. This
allows for example to substitute a new more accurate or
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more adapted application to the application currently
used in the available pipeline. Users can also decide to
share their custom pipelines with other FIGENIX users.

Expert system usefulness examples
To illustrate the importance of a rules-based system, we
selected two key examples in which the expert system sub-
stitutes for human expertise to take important decisions,

Task creation and running (GUI)Figure 3
Task creation and running (GUI). Here is shown a phylogenomic inference task on human Notch1 protein. The graph 
associated to the phylogenomic pipeline is displayed on the left part of the figure, as a graphical tree. We introduced a virtual 
concept of "step of work" that allows to show a cyclic oriented graph as a tree. At each step one or several units can act. (e.g.: 
at the step named "Protein", the unit "sequenceProvider", whose role is to read protein sequences from a file, will work). At 
the level just next to the current unit, are represented the units that will be activated as its continuation. (e.g. "BLAST" unit fol-
lows "sequenceProvider" cause the first treatment executed on a protein is the BLAST search). At the same graphical level as 
nodes related to a unit, are shown the parameters which can be customized for this unit (e.g. on "sequenceProvider" unit, the 
parameter "taxeid" (the query sequence's taxon) or parameter "$filePath" (path to the file with proteins to be analyzed)). The 
task given as an example in the figure was currently running when we took the screenshot. In green are shown units that fin-
ished their work, in red those which are running, in blue those which are not running. One can guess, by observing buttons on 
the right part of the figure, that the presented task: is an instance of pipeline model named "__ProtPhyloGenix__" (the one 
which produces phylogenomic inference studies for proteins), can be interrupted at any time, can be cloned (when user want 
to run it again modifying only several parameters), and finally explored through the scientific results web pages already pro-
duced according to the execution.
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to compare intermediate results, or deduce biological
information.

One simple example is from step 3 of the phylogenomic
inference approach summarized previously, which
consists of reconstructing phylogenetic trees from a multi-
ple alignment, then comparing the topologies of trees
produced by different methods and producing a unique
consensus tree on which all data are projected. The other
more complex example is from the step 2, which consists
of producing a reliable multiple alignment with elimina-
tion of sequences and masking of positions producing
biases in the alignment or improper for phylogenetic
reconstruction. This step is crucial in the phylogenomic
approach because depending of the quality of the align-
ment in terms of phylogenetic signal and noise, a reliable
phylogeny may not be able to be produced.

Example 1: trees consensus
In FIGENIX's phylogenomic inference approach, three
phylogenetic trees are produced, with three different
approaches, the Neighbor Joining (NJ) method [31], the
Maximum Parsimony (MP) method [32], and the "Quar-
tet Puzzling" Maximum Likelihood (ML) method [33].
Usually, at the end of this step, an expert biologist manu-
ally examines the topology of each tree, runs different tests
to compare trees one to one and finally tries to produce a
projection onto a unique consensus topology of all the
information from the three trees. This process is necessary

to check whether the three reconstruction methods give
congruent results or only partially congruent subtrees of
the original trees. Depending on these congruence tests,
conclusion could be drawn for the whole tree or only for
subtrees. It also allows evaluating the reliability of the
tree.

In the phylogenomic inference pipeline, two EK units give
to the expert system the results of NJ, MP and ML topolo-
gies comparison tests produced by the automatically
launched "TEMPLETON winning sites" test [20] and
KISHINO-HASEGAWA test [34]. One data is given by test
and by tree: (a numerical value or the label "best" show-
ing which of the three trees has the "best" topology). Thus
we get 6 data, from which an ED unit asks to expert system
which fusion must be done in a consensus tree (Table 2).

The knowledge to be modeled and the different possible
cases are shown in Table 3 and Table 4, and the corre-
sponding PROLOG code is shown and commented on
Appendix 1.

Example 2: multiple alignment masking for sites not evolving under 
neutrality
At step 2 of phylogenomic inference approaches, a multi-
ple alignment of putative homologous sequences is
produced. Before being sent for phylogenetic reconstruc-
tion, multiple alignments need to be corrected for various
different biases. Among those corrections, sites having

Table 2: Data allowing export system to decide what kind of fusion must be done

Kishino-Hasegawa Templeton

Neighbor joining 0.1266 Neighbor joining 0.2170
Maximum Parsimony best Maximum Parsimony best
Maximum likelihood <0.0001* Maximum likelihood 0.0010

In this conceptual example, Templeton and Kishino-Hasegawa tests' results indicate that the Maximum Parsimony phylogenetic tree's topology is 
the "best" one and only the Neighbor Joining topology is congruent with this one.

Table 3: All possible cases provided by tree topologies comparison tests

Method T1/K1 T2/K2 T3/K3

Parsimony (p) Best >=0.05 >=0.05 Best Best Best

Neighbor 
joining (n)

>=0.05 Best >=0.05 <0.05 >=0.05 <0.05

Maximum 
Likelihood (l)

>=0.05 >=0.05 Best >=0.05 <0.05 <0.05

T indicates support from Templeton test. K indicates support from Kishino-HaseGawa test. Values returned by the tests that are >=0.05 indicate 
that the fusion is possible for the considered reconstruction method.
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high rates of evolution must be removed from the multi-
ple alignment. Similarly, sites for which the rate of
substitution is highly divergent in two or more paralogous
groups, underlying a possible "non neutrality", should
also be removed. Indeed phylogenetic reconstruction
methods are not tolerant to sites highly divergent to neu-
tral evolution and molecular clock. Sites not respecting
this rule potentially produce errors in trees' reconstruc-
tion; they thus have to be masked.

In the FIGENIX's phylogenomic inference pipeline, we
use the "Functional divergence test" [35] (at individual
domain level) to detect sites not evolving under neutral-
ity. An EK unit gives to the expert system a phylogenetic
tree (see figure 4), built with Neighbor Joining algorithm
from the dataset alignment area associated with a specific
domain. An ED unit asks the expert system to determine
in this tree the paralogy groups. Once these paralogy
groups are determined, divergence test [35] is applied to
all of them to get the sites (site <=> amino acid column in
the multiple alignment) that don't respect the rule of evo-
lution under neutrality.

Biologists use to determine theses groups by just looking
at the tree. After doing an in depth analysis of their exper-
iment and reasoning, it seems that the knowledge to be
modeled can be summarized in this sentence: "Paralogy
groups contained in a phylogenetic tree are the biggest
sub-trees containing sequences from different species
(sequences groups containing only one species are equiv-
alent to a unique node), but containing no sequence
belonging to the species chosen as "out group" parameter
by the biologist if any"

This is typically the kind of knowledge that can be mod-
eled in the expert system and that is detailed in Appendix
2.

These two examples, clearly show the interest of this
approach for knowledge and reasoning modeling in a very

few and easily maintainable concise ruleset. These exam-
ples are taken from the phylogenomic inference pipeline
which is intentionally over-summarized in this section
into 5 main steps (detailed on the supplement). The
whole phylogenomic inference pipeline included in FIGE-
NIX contains 50 different steps (figure 2). Each of these
steps automates processes usually requiring manual inter-
vention of a biologist, 14 of these steps represented by
"expert steps" require expert biologists' knowledge and
decisions. This last category of steps accounted to date for
the main difficulties in automating pipelines such as the
one described here in their whole complexity.

Results and discussion
Results
FIGENIX currently proposes 8 pipeline models allowing
both structural and functional annotation. While the
architecture and design of the platform do not restrict its
usage for a particular scope of species, the pipelines
currently available are more suitable for eukaryotic spe-
cies, and this is especially the case for structural annota-
tion pipelines. This is due to the fact that research in our
laboratory is more eukaryotes-centered, but specific pipe-
lines designed by experts of prokaryotic genomics could
easily be integrated in the flexible architecture of FIGE-
NIX. A complete list of the pipelines available today is pre-
sented on Table 5. The type of data that can be used as an
entry to the various different pipelines is, depending on
the pipeline used, virtually any FASTA sequence (or set of
sequences), ranging from ESTs to cosmids, scaffolds or
genomic region for nucleotides, or any number of protein
sequences from any species for amino-acids based pipe-
lines. The only limitation, as discussed later is the size of
the input sequence which depends on the available com-
putational power.

Validation and performance of FIGENIX's results
Complete automation of complex pipelines through the
use of an expert system, although providing obvious gains
in time cost, does not necessarily presume of the quality

Table 4: Interpretation of phylogenetic trees topologies comparison tests

Fusion 
Cases

T1 T2 T3

K1 Case 1:
3 trees fusion on NJ labeled npl_A

Case 3:
3 trees fusion on NJ labeled npl_A

Case 5:
3 trees fusion on NJ labeled npl_K

K2 Case 2:
3 trees fusion on NJ labeled npl_A

Case 9:
«best» tree if the same in the two tests 
with congruent tree labeled: pl or lp or nl 
or ln or np or pn

Case 6:
no fusion

K3 Case 4:
3 trees fusion on NJ labeled npl_T

Case 7:
no fusion

Case 8:
no fusion

"T" indicates support from Templeton test. "K" indicates support from Kishino-HaseGawa test. "A" means support from all the tests. Suffix "1" 
indicates full congruence, "2" partial congruence, "3" non congruence.
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of the produced results. We addressed this question by
evaluating the quality of the results and the performance
of FIGENIX's pipelines.

Structural annotation results
With regards to the structural annotation pipeline, FIGE-
NIX has already been used to produce results published in
peer-reviewed journals. For example we annotated several
amphioxus cosmids [36] and Ciona savignyi scaffolds
[37] from which we deciphered several genes whose
orthologs are found in human in the Major Histocompat-
ibility Complex (MHC) or paralogous regions. In parallel
we also evaluated specificity and sensitivity of our method
in comparison to two widely used ab-initio methods,

Genscan [17] and Hmmgene [18] (Table 6). Results are of
course more specific and sensitive than ab-initio methods
used alone since our hybrid approach includes homology
based predictions. Our approach resembles the one used
in Procrustes [38], with two main differences:

- The platform chooses itself from a BLASTX output the
reference protein sequence to compare to raw DNA
sequence for gene prediction.

- Extension of BLAST's high scoring pairs (HSPs) to splice
donor and acceptor sites, start and stop codon is done
under supervision of the expert system, as well as the

Intermediate domain tree (NJ)Figure 4
Intermediate domain tree (NJ). This tree, built with Neighbor Joining method, is used by expert module to detect paral-
ogy groups. The reconstruction was made with Human Notch1 as query on the NCBI NR database. Here we have three signif-
icant groups tagged "G" on the figure (species taxon end the labels).

R

{gi|12057020|emb|CAC19873.1|_putative_notch_receptor_protein__Bra.Notch.7739}

{gi|22770986|gb|AAN06819.1|_notch_like_protein__Boophilus_micropl.Notch.6941}

{gi|48134434|ref|XP_396734.1|_similar_to_ENSANGP00000005397__Apis.Notch.7460}

{gi|157988|gb|AAB59220.1|_Notch_growth_factor__Drosophila_melanog.Notch.7227}

{gi|20139103|sp|Q99466|NTC4_HUMAN_Neurogenic_locus_notch_homolog_.Notch.9606}

{gi|46237578|emb|CAE83957.1|_Notch_homolog_4___Drosophila___Rattu.Notch.10116}

{gi|1401160|gb|AAC52630.1|_Notch4.Notch.10090}

{gi|18859115|ref|NP_571516.1|_notch_homolog_1a__neurogenic_locus_.Notch.7955}

{NOTCH_HSA.Notch.9606}

{gi|6093542|sp|Q07008|NTC1_RAT_Neurogenic_locus_notch_homolog_pro.Notch.10116}

{gi|1352528|sp|Q01705|NTC1_MOUSE_Neurogenic_locus_notch_homolog_p.Notch.10090}

{gi|1709335|sp|P21783|NOTC_XENLA_Neurogenic_locus_notch_protein_h.Notch.8355}

{gi|26005794|dbj|BAC41349.1|_receptor_protein_Notch1__Cynops_pyrr.Notch.8330}

{gi|2209059|dbj|BAA20535.1|_Notch_2__Takifugu_rubripes_.Notch.31033}

{gi|37620143|ref|NP_571624.2|_notch_homolog_5__Danio_rerio__>gi|8.Notch.7955}

{gi|3108187|gb|AAC15789.1|_Notch_3__Homo_sapiens_.Notch.9606}

{gi|6679096|ref|NP_032742.1|_Notch_gene_homolog_3__Notch_gene_hom.Notch.10090}

{gi|9966775|ref|NP_064472.2|_Notch_3__Rattus_norvegicus__>gi|2013.Notch.10116}

{gi|20138948|sp|Q04721|NTC2_HUMAN_Neurogenic_locus_notch_homolog_.Notch.9606}

{gi|33859592|ref|NP_035058.1|_Notch_gene_homolog_2__Notch_gene_ho.Notch.10090}

{gi|13242247|ref|NP_077334.1|_notch_gene_homolog_2___notch_gene_h.Notch.10116}
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alignment of predicted proteins with the reference
protein.

Phylogenomic inference results
Concerning the phylogenomic inference pipeline, several
phylogenies produced by FIGENIX have already been val-
idated in peer reviewed article [39]. The results of these
phylogenies turned out to be congruent with previously
published phylogenies (e.g. the PSME, TAP and GRP78
families [40,41]). Additionally, as the pipeline automated
and implemented in the platform is based on the meth-
ods developed in our lab and published in 2002 [29]; we
compared the phylogenies produced today by FIGENIX's
pipeline to the 31 trees published in 2002 [29] and to the
38 in 2003 [30] that were all manually produced in our
lab. All the trees produced by FIGENIX led to the same
orthologs and paralogs inference than the 69 trees
published in 2002 and 2003, with similar confidence
(bootstrap) values, and with obviously additional
sequences in the phylogenies produced today due to
automatically updated databases in FIGENIX. In this case

also, phylogenies produced by the platform where con-
gruent (with additional species) with previously pub-
lished phylogenies (e.g. the RXR, Notch, C3-4-5, PBX, and
LMP families [41]). The quality of the phylogenies pro-
duced by FIGENIX's pipeline can thus be compared to the
one of phylogenies produced by expert biologists through
the manual chaining of algorithmic tools and software.
The major difference is that, while it usually takes one to
several weeks to manually produce phylogenies of this
quality, it takes minutes to few hours with FIGENIX.

We illustrate this gain in time cost with quality compara-
ble to expert human-made phylogenetic analysis, with an
example of phylogenetic reconstruction done on the
Human Notch1 protein, with the phylogenomic inference
pipeline (Figure 5) which is followed by an automatic
research of known experimental data for orthologs to the
query gene summarized in a "functional report" (Figure
6).

Table 5: The 8 pipeline models currently available in FIGENIX

Pipeline Name Pipeline Purpose

ProtPhyloGenix The phylogenomic functional inference pipeline shown in this paper and detailed in the supplement.
TwinBaseMatix Builds a FASTA database, eliminating redundant sequences obtained from two different query databases. For example, 

mixes protein coming from NR and Ensembl databases, and eliminates doubles.
BaseProtPhylogenix Composition of the two previous pipelines. This pipeline first builds a temporary protein database (mixing two different 

databases and eliminating doubles). The phylogenomic inference process is then run using the built database.
TwinESTMatix Builds a FASTA database, mixing sequences obtained on the one hand from a filtered given database and on the other 

hand by a database of automatically clustered ESTs. For example, it allows mixing protein coming from NR and 
translations of EST contigs from NCBI dbEST database.

BaseESTPhylogenix Composition of TwinESTMatix and ProtPhyloGenix__ pipelines. Phylogenomic inference on FASTA databases built with 
TwinESTMatix This allows construction of phylogenetic tress mixing proteins and translated EST contigs.

GenePredix Runs our structural annotation method (mixing ab-initio and homology information) to DNA sequence up to ~50 kb (due 
to current computational power limitations) to predict genes. For larger DNA sequences, SlidingGenePredix can be used.

SlidingGenePredix: Apply the GenePredix pipeline on a sliding window. This allows gene prediction on larger DNA sequences, and bypasses 
the ~50 kb limitation.

PhyloGenix: Composition of GenePredix and ProtPhyloGenix pipelines. This model allows automatic structural and functional 
annotation of DNA sequences. Indeed it produces gene prediction in DNA sequences using GenePredix, and then 
performs phylogenomic functional inference for each putative gene using ProtPhyloGenix.

Table 6: Performance of two Ab-initio methods vs. FIGENIX's structural annotation method

Program Initial exons 
(55)

Internal exons 
(186)

Terminal exons 
(55)

False positive 
(overprediction)

Correct full length 
protein prediction

Genscan 0.55 0.80 0.65 0.22 0.31
HMMGene 0.75 0.81 0.78 0.15 0.38
FIGENIX 0.91 0.92 0.95 0.05 0.87

Performances were measured on a modified version of the HMR195 [53] dataset. The new dataset contains 55 sequences from Mouse and Rat 
genomes. They were annotated with Genscan, HMMGene and FIGENIX (with the human section of Swissprot [54] as a reference database for 
homology-based approach).
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We don't show here all the intermediate results produced
by the task's execution, nor details on parameters used for
each tree building algorithm but FIGENIX users can
consult, via the Web interface, all produced genomic
results and associated parameters.

To automatically detect from the fusion-tree (figure 5)
duplications (D-labeled nodes) and speciation (S-labeled
nodes) events, we use the Forester (JAVA library) detec-
tion algorithm [42]. To compare our consensus tree with

a reference tree, we don't use the tree of life given by the
Forester library [42], but, instead, a minimum species tree
dynamically extracted from a local copy of NCBI taxon-
omy's tree of life for each dataset (other reference trees can
be chosen). Once duplications are detected, the platform
automatically deduces sequences orthologous to the
query sequence (here human Notch1 protein labeled
"NOTCH_HSA"). At the end of this step, known and
experimentally verified functions for all these sequences

Consensus phylogenetic tree of the Notch familyFigure 5
Consensus phylogenetic tree of the Notch family. The tree is midpoint rooted. At the root of the trees, a "npl_A" label 
means that the tree is the result of the fusion of three independently reconstructed trees with Neighbor Joining, Maximum 
Parsimony, and Maximum Likelihood methods. In this case, the fusion is done on the NJ topology (branches' lengths can be dis-
played but are not shown here to keep the tree easily readable). That means that topologies are strongly congruent. The boot-
strap values are given for the three methods when a node exists as identical in the three trees. (sometimes a node exists only 
in two trees or only in the Neighbor Joining tree, e.g. a bootstrap 100_*_99 means that the node exists in NJ tree with a boot-
strap value equal to 100 in ML tree with a bootstrap value equal to 99, but doesn't exist in the MP tree).

RD
npl_A

100_100_97

D
91_*_59

100_90_99

gi|20139103|sp|Q99466|NTC4_HUMAN_Neurogenic_locus_notch_homo

gi|46237578|emb|CAE83957.1|_Notch_homolog_4___Drosophila___Ratt

gi|1401160|gb|AAC52630.1|_Notch4

D
95_*_85

95_78_94

D
63_*_98

100_99_99

100_*_99
100_*_*

gi|37620143|ref|NP_571624.2|_notch_homolog_5__Danio_rerio__>gi|8

99_94_100

gi|3108187|gb|AAC15789.1|_Notch_3__Homo_sapiens_

gi|6679096|ref|NP_032742.1|_Notch_gene_homolog_3__Notch_gene_hom

gi|9966775|ref|NP_064472.2|_Notch_3__Rattus_norvegicus__>gi|2013

100_100_79

gi|2209059|dbj|BAA20535.1|_Notch_2__Takifugu_rubripes_

98_83_85

gi|20138948|sp|Q04721|NTC2_HUMAN_Neurogenic_locus_notch_homolog_

gi|13242247|ref|NP_077334.1|_notch_gene_homolog_2___notch_gene_h

gi|33859592|ref|NP_035058.1|_Notch_gene_homolog_2__Notch_gene_ho

D
99_96_99

gi|18859115|ref|NP_571516.1|_notch_homolog_1a__neurogenic_locus_

58_57_*

gi|1709335|sp|P21783|NOTC_XENLA_Neurogenic_locus_notch_protein_h

100_100_100

gi|26005794|dbj|BAC41349.1|_receptor_protein_Notch1__Cynops_pyrr

100_100_100

NOTCH_HSA

gi|6093542|sp|Q07008|NTC1_RAT_Neurogenic_locus_notch_homolog_pro

gi|1352528|sp|Q01705|NTC1_MOUSE_Neurogenic_locus_notch_homolog_p

100_100_97

gi|12057020|emb|CAC19873.1|_putative_notch_receptor_protein__Bra

99_97_99

gi|22770986|gb|AAN06819.1|_notch_like_protein__Boophilus_micropl

gi|157988|gb|AAB59220.1|_Notch_growth_factor__Drosophila_melanog

gi|48134434|ref|XP_396734.1|_similar_to_ENSANGP00000005397__Apis
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are automatically searched as shown in functional report
on Figure 6.

The execution of the whole pipeline (run on the NR data-
base) takes 25 minutes on the platform (running on a
DELL POWEREDGE 1600SC dual-processor Xeon 2.4
Ghz with 1 GB Ram) The quality of the results can be com-
pared to the one published in 2002 by Abi-Rached et al.
on the notch family [29] that took around one week of

processing by human expert biologists. The gain in terms
of time cost here is evident and is obtained without com-
promising result quality.

Input limitations
Performance and size limitations of the input sequence
both depend on several parameters and on the type of
pipeline used. For phylogenetic inference the size of the
query protein, the number of homologs, and the number

Human Notch1 functional reportFigure 6
Human Notch1 functional report. The browser window shows a Web page with part of an automatically generated func-
tional report. One of the orthologs (NTC1_MOUSE) to the query sequence (NOTCH_HSA) is shown, including some associ-
ated functional terms. At the end of each phylogenomic pipeline (Figure 5), after orthologs detection was produced on the 
consensus tree, an additional process is run. The goal of this process is to search on the Web experimentally verified functional 
data on proteins orthologous to the studied sequence. A HTML report synthesizing functional retrieved data is then built. It 
includes links to Web database and publication associated to retrieved functional terms. Current implementation of this system 
manages data coming from: GENE ONTOLOGY [51], MGD [52], and EST expression data available on NCBI Web site. This 
system is open for integration of other data sources.
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of domains all account in the global performance of the
pipeline. Typically FIGENIX can handle phylogenomic
inference tasks in less than an hour for protein up to 1000
amino acids and having up to 50 homologs. Concerning
structural annotation pipelines, the size of the input
sequence as well as the predicted gene density and com-
plexity (in terms of number of exons/introns) all have an
impact on the process's performance. To date, we have
annotated amphioxus cosmids of sizes around 40 kb with
a mean number of 5 predicted genes in less than half an
hour per cosmid. We have already tested FIGENIX with
several hundred kb long sequences [37], but not yet with
longer genomic portions. The annotation of whole
eukaryotic genomes would probably need more computa-
tional power. However, the global architecture of the plat-
form has been designed to support multiple CPU and can
thus potentially handle annotation of whole genomes
with appropriate computational power.

Pairwise-based vs. phylogenomic-based homology 
prediction methods
Methods like Inparanoid [9] or Homologene [13] already
exist to automatically find orthologs and paralogs to a
sequence of interest. From these methods, biologists
could then extract known biological function of detected
orthologous genes to infer, as we do, a biological function
to the query sequence. However, as expected [2-5], these
methods based on pairwise similarity suffer from limita-
tions compared to multiple alignments and phylogeny
based methods such as the phylogenomic inference pipe-
line currently included in FIGENIX. The major problem
shared by these two approaches is that none give a
representation of the evolutionary history and behavior of
the genes. Thus, possibly useful information to under-
stand gene function are missed, such as, for example, the
detection of sites responsible of functional divergence
between two groups of paralogy or the evaluation of the
rate of evolution possibly indicating functional shifts
between homologous genes. Another drawback of these
approaches is that they are unable to correctly manage dif-
ferential losses of paralogous and orthologous genes

Table 7: Specific differences between FIGENIX's phylogenomic inference pipeline and other software

FIGENIX RIO PhyloGenie

Homologous sequences search on any NCBI-
formatted database including nr, Swissprot and 
Ensembl.

Homologous sequences search limited to 
Swissprot and trEMBL.

Homologous sequences search on any NCBI-
formatted database including nr.

Choice of the scope of phylomes by the user 
(root = all phylomes by default)

No choice of the scope of phylomes by the 
user.

Choice of the scope of phylomes by the user.

Automatic detection of domains on the query 
sequence.

Manual input of a domain that must be present 
in pfam and for which pairwise distances must 
have been precalculated.

Phylogenetic reconstruction at BLAST's high 
scoring pairs (HSPs) level converted after 
corrections in multiple sequence alignment 
(MSA).

Expert system selection of domains and repeats 
whose evolutionary behaviour are congruent.

Phylogenetic reconstruction on a single domain 
provided by the user.

No test for domains congruence. Phylogenies 
constructed on a corrected alignment with a 
HMM profile.

When no domain is found phylogenetic 
reconstruction on the "alignable" portion of the 
query sequence.

No reconstruction possible when no known 
domain is present on the query sequence.

Phylogenetic reconstruction possible regardless 
the presence of a known domain on the query 
sequence.

Elimination of sites not evolving under neutral 
evolution.

No elimination of sites producing biases in 
phylogenetic reconstruction.

No elimination of sites producing biases in 
phylogenetic reconstruction.

Elimination of sequences having a divergent 
amino acids composition

No elimination of sequences with divergent 
composition.

No test for sequence composition but 
selection for sequences producing significant 
alignments with the query HMM.

Phylogenetic reconstruction with three 
different methods and projection on a 
consensus tree.

Phylogenetic reconstruction with one single 
method (NJ).

Choice of reconstruction method (NJ by 
default) but only one method at a time and no 
fusion with multiple methods.

Comparison of the consensus tree with NCBI 
reference tree of life containing around 
200,000 taxa.

Comparison of the NJ tree with a reference 
tree of life containing around 2,500 taxa.

Comparison of the one-method tree with 
NCBI reference tree of life containing around 
200,000 taxa.

Automatic detection of speciation and 
duplications, of orthologs and paralogs.

Automatic detection of speciation and 
duplications, of orthologs and paralogs.

Functionality not available. Possibility to scan a 
database of trees for a given topology.

Automatic extraction of experimentally verified 
functional information for all detected 
orthologs and paralogs.

Functionality not available Functionality not available
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between different species [43,44]. These two approaches
also have specific limitations. For example, Inparanoid
only allows two by two comparisons of proteomes and
requires that genomes compared are fully sequenced and
annotated with high quality, which reduces the scope of
usable data. However, when all these requirements are
fulfilled, Inparanoid produces orthologs predictions with
high specificity and sensibility [45], and is able to distin-
guish in-paralogs, out-paralogs, and orthologs. With
regards to Homologene, the problem is different; it allows
multiple species comparisons but the system is unable in
a non-negligible proportion to provide all the orthologs
that would be found through a phylogenetic reconstruc-
tion. What is more this system does not consider phylum-
specific duplications and is unable to predict paralogy and
co-orthology relationships. This problem is illustrated in
Table 7 in which we compared orthologs found by
Homologene to orthologs and paralogs found with our
pipeline for the set of MHC-related genes we published in
2004 [39] and on the Notch family taken as an example
in this paper. As shown on table 7, approaches like
Homologene give rather reliable predictions of orthologs
when single copy genes are studied. In contrast, such
approaches systematically fail to detect specific genes
duplications and are thus unable to find paralogous
genes. For example, Homologene fails to detect human
Notch2, Notch3 and Notch4 as co-orthologs to dro-
sophila N gene. Homologene considers Notch1 as the
only human ortholog to Drosophila N gene. In the case of
multiple-copy genes, using such approaches to infer func-
tional data for a gene can be misleading. Indeed after
duplication, paralogous genes that are fixed in evolution
usually undergo either neo-functionalization or sub-func-
tionalization, compared to the original function of the
ancestral gene [46].

While comparison between pairwise-based and phyloge-
nomic-based approaches to detect homology relationship
can appear biased, it illustrates what kind of information
is missed by the widely-used pairwise approaches and
what kind of systematic errors they are likely to produce
and spread on biological databases. Comparison of FIGE-
NIX's pipeline with other automated phylogenomic infer-
ence software is discussed in the next section.

Discussion
In the field of structural and functional annotation,
Ensembl [12] or BioPipe [47] automated systems propose
quite similar frameworks, but independently of
implementation's differences that were detailed
previously, FIGENIX adds a new concept concretized by
expertise units (or E units) which are responsible of cru-
cial points in annotation process automation. They con-
stitute "native" expert module gateways that do not have
their counterpart in the Ensembl or BioPipe architectures.

Such architectures thus still abundantly require human
expertise and cannot fully automate processes such as
phylogenomics inference.

Comparison with other software proposing expertise 
integration
Counter to Ensembl [12] or BioPipe [47], the overall
approach in FIGENIX can somewhat be compared to
MAGPIE system [48,49] which also includes a kind of
expert system. However, FIGENIX automated pipelines
are data flow circulating, in a specific order, through com-
putation tools. The expert system acts punctually to take
decisions, extract or correct data. In contrast, in the MAG-
PIE system, computations are done independently on
asynchronously incoming data and a PROLOG daemon
produces logical deductions, verifying them on the "from
data" computed results.

Other major differences in the concept and architecture of
these two systems can be listed. For example, while MAG-
PIE was designed for local installation on a biologist's
workstation, FIGENIX was designed as a server made
accessible through the internet without the need of install-
ing any additional software than a JAVA 2 browser plugin.

Differences which are not at the architecture or conceptual
level reside in the type of biological applications which
have been integrated in these two different systems. While
MAGPIE automates processes mainly dedicated to struc-
tural annotation, FIGENIX additionally integrates Phylog-
enomic inference pipelines.

Comparison with other automated phylogenomic 
inference software
Phylogenomic inference is, as stated in Background, a
labor-intensive, complex and highly human-dependant
process. These are the main reasons why other processes
of functional and homology inference which are less com-
plex and more straightforward (ie pairwise-based), have
been considered for automation. But, as seen in the previ-
ous section, these automated processes ignore some of the
functional information that could be deciphered through
phylogenomic inference.

However, other groups have already proposed the com-
plete automation of phylogenetic reconstruction pipe-
lines like RIO [50] or like PhyloGenie [14] to address
simpler methods'issues. To illustrate benefits from the use
of an expert system we will discuss here the differences
between the processes automated in these software and
the phylogenomic inference pipeline included in FIGE-
NIX (Table 8). Both methods of phylogenetic analysis
automation [14,50] tackle most of the drawbacks linked
to pairwise-similarity based approaches, in particular they
allow multispecies comparison and are able to detect
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duplications and thus the existence of paralogs and co-
orthologs. They thus propose notable improvements to
similarity based approaches and allow high throughput
phylogenetic analysis. The major difference with our
phylogenomic inference pipeline resides in our expert sys-
tem that allows automation of a more complex and
refined process including more bias corrections and
proposing building of a consensus tree which is an intel-

ligent projection of three topologies built by three inde-
pendent methods (NJ, ML, MP). Existing methods
propose either only one reconstruction method (NJ for
RIO) or choice between several methods but only one by
task and no comparison between multiple methods (Phy-
loGenie). The gains in term of reliability are obvious with
topologies supported by three independent methods
compared to trees supported by a single method.

Table 8: Comparison of homology inference between FIGENIX's pipeline and Homologene

Gene Family Query Gene* Paralogy relationship 
missed

Co-orthology 
relationship missed

Orthologs not detected 
in Taxa

Different orthology 
assignment

Notch Human Notch1 Notch2, Notch3, and 
Notch4 are not detected as 
paralogs of Notch1.

Notch2, Notch3, and 
Notch4 are not detected as 
co-orthologous to 
Drosophila N.

Amphibian Ray-finned fish 
Cephalochordata Arachnida

3 different C.elegans genes are 
detected for Hs Notch1, Notch2, 
and Notch3, suggesting that 
duplications giving rise to this 
family took place before the 
divergence between protostomes 
and deuterostomes, and that 
Notch2, and Notch3 were lost in 
Drosophila.

Calnexin/Calreticulin Human Calnexin Calmegin and Calreticulin 
are not detected as 
paralogs of Calnexin.

Calmegin is not detected as 
a Human co-ortholog to 
Drosophila CG9906 gene.

Amphibian Ray-finned fish Calmegin is detected to be 
orthologous to another 
Drosophila gene than CG9906, 
suggesting Calmegin and Calnexin 
already existed as two duplicates 
before the divergence between 
protostomes and deuterostomes 
and Calmegin was secondary lost 
in C. elegans

ENPEP/TRHDE/LNPEP/
ERAP/LRAP/ANPEP

Human TRHDE ENPEP, LNPEP, ERAP, 
LRAP, and ANPEP are not 
detected as paralogous to 
TRHDE.

None None Each human gene of this family has 
been assigned a distinct ortholog 
in protostomes (e.g. Drosophila) 
suggesting this multigenic family 
emerged before the separation of 
Protostomes and Deuterostomes.

PSMB5/PSMB8 Human PSMB5 PSMB8 is not detected as 
paralogous to PSMB5

PSMB8 is not detected as 
co-orthologous to the same 
Drosophila gene than 
PSMB5.

Ray-finned fish Avian 
Cephalochordata. 
Amphibian

PSMB5 and PSMB8 are each 
assigned a distinct Drosophila 
ortholog suggesting they already 
existed as two copies in the last 
common ancestor of human and 
Drosophila.

PSMB7/PSMB10 Human PSMB7 PSMB10 is not detected as 
paralogous to PSMB7.

PSMB10 is not detected as 
co-orthologous to the same 
Drosophila gene than 
PSMB7.

Ray-finned fish Avian 
Cephalochordata. 
Amphibian

PSMB7 and PSMB10 are each 
assigned a distinct Drosophila 
ortholog suggesting they already 
existed as two copies in the last 
common ancestor of human and 
Drosophila.

Cathepsins L, M, P, R Human Cathepsin R Cathepsins L, M and P are 
not detected as paralogous 
to Cathepsin R.

None Amphibian Avian Ray-finned 
fish

Each cathepsin gene is assigned a 
distinct drosophila ortholog 
suggesting the cathepsin family 
emerged before the separation 
between human and Drosophila.

Tpp2 Human Tpp2 None (not a multigenic 
family)

None Drosophila None

ERP57 (GPR58) Human GRP58 None (not a multigenic 
family)

None Fungi Bovine Schistosoma 
Avian

None

HSPA5 (GRP78) Human HSPA5 None (not a multigenic 
family)

None Amphibian Aplysia 
Lepidopteran Avian 
Schistosoma

None

TAP1, TAP2, ABCB9, 
MDR1

Human TAP1 TAP2, ABCB9, and MDR1 
are not detected as 
paralogous to TAP1.

None Drosophila Avian 
Amphibian Ray-finned fish

TAP1, and TAP2 are each 
assigned a distinct C.elegans 
ortholog and none in Drosophila, 
suggesting there was already two 
copies of these genes in the last 
common ancestor of these two 
species, and that the two copies 
were secondary lost in the 
Drosophila lineage.

PSME1, PSME2, PSME3 Human PSME1 PSME2, and PSME3 are not 
detected as paralogous to 
PSME1.

None Protostomes Ray-finned 
fish

None

THOP1, NLN Human THOP1 NLN is not detected as 
paralogous to THOP1

NLN is not detected as co-
orthologous to the same 
N.crassa gene than THOP1.

Amphibian Bacteria None

*Query gene is identical to the Query gene we used for phylogenetic reconstruction with FIGENIX's phylogenomic inference pipeline.
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FIGENIX's phylogenomic inference pipeline also has spe-
cific differences with each of the two methods (Table 8).
None of the compared methods already available propose
functionalities such as for example the fusion of trees con-
structed by different methods, tests on domains and
repeats congruence and their evolutionary behavior.

Conclusion
Reliable automation is an absolute necessity for structural
and functional annotation of huge amounts of genomic
data coming from increasingly prolific sequencing
projects. Many automated pipelines or genomic annota-
tion platforms already exist as an answer to various differ-
ent biological questions. However, to the best of our
knowledge, no publicly available pipeline or platform yet
includes an expert system (with "artificial intelligence")
allowing such complete automation or automation of
more complex process as FIGENIX does. The FIGENIX
platform has today the capacity of detecting protein cod-
ing genes in raw nucleic sequences, of inferring their puta-
tive function through phylogenomic inference, of
clustering ESTs and integrating them in phylogenomic
analysis as well as gathering associated expression data.
Several other complex pipelines whose automation was
impossible so far because of the absolute requirement of
human intervention at several steps can now be consid-
ered through FIGENIX.

Availability and requirements
• Project name:FIGENIX

• Project home page: http://www.up.univ-mrs.fr/evol/fige
nix/

• Operating system(s):Platform independent (accessible
through a web browser)

• Other requirements:JAVA 1.4.2 JRE plugin for web
browsers.

• License:free for academic users (contact us to request login
and password), source code is available upon request under the
GNU General Public License.

• Any restrictions to use by non-academics:collaboration con-
tract needed
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Appendix
Appendix 1 – PROLOG code for the fusion of trees built
with 3 different methods

We modeled biologists' interpretation in a very natural
way in PROLOG by these rules:

fusion(npl_A) :- full_congruence(templeton, _),
full_congruence (kishino-hasegawa, _).

fusion(npl_A) :- full_congruence (templeton, _),
partial_congruence(kishino-hasegawa, _).

fusion(npl_A) :- full_congruence (kishino-hasegawa, _),
partial_congruence(templeton, _).

fusion(npl_T) :- full_congruence (templeton, _),
no_congruence(kishino-hasegawa, _).

fusion(npl_K) :- full_congruence (kishino-hasegawa, _),
no_congruence(templeton, _).

fusion(no_fusion) :- partial_congruence(kishino-hasegawa,
_), no_congruence(templeton, _).

fusion(no_fusion) :- no_congruence(kishino-hasegawa, _),
partial_congruence(templeton, _).

fusion(no_fusion) :- no_congruence(kishino-hasegawa, _),
no_congruence(templeton, _).

fusion(Label) :- partial_congruence(kishino-hasegawa, Label),
partial_congruence(templeton, Label).

Val1 < 0.05,

Val2 >= 0.05,

concat_labels (Best, Label2, Label).
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These rules can be easily maintained. For example, we can
decide to do the fusion on the "best" tree and not always
on NJ tree like we do today by default in the 5 first cases.
Rules will so look like this:

fusion(FusionOnTheBestLabel) :-

full_congruence(templeton, Best),

full_congruence (kishino-hasegawa, Best),

get_fusion_label(Best, FusionOnTheBestLabel).

Information brought by EK unit during the pipeline exe-
cution take a form like this:

topology(NameOfTest, Best, [Label1, Val1], [Label2, Val2]).

(e.g.: topology(templeton, n, [p, 0.15], [l, 0.01]). that means
that for Templeton test, the tree with the best topology is the one
built with Neighbor Joining, that tree built with Maximum Par-
simony is congruent with a 0.15 rate and that the one built
with Maximum Likelihood is congruent with a 0.01 rate.)

Here are the rules for congruence tests:

% congruence is full when comparing rates are higher or equal
to the chosen threshold

full_congruence(Test, Best) :-

topology(Test, Best, [_, Val1], [_, Val2]),

Val1 >= 0.05,

Val2 >= 0.05.

% we have no congruence when comparing rates are lower than
the chosen threshold

no_congruence(Test, Best) :-

topology(Test, Best, [_, Val1], [_, Val2]),

Val1 < 0.05,

Val2 < 0.05.

% congruence is partial when one of comparing rates is lower
than the chosen threshold

% the label associated to the fusion type is just the concatena-
tion of label for "best" (see before) tree and for its congruent
tree

partial_congruence(Test, Label) :-

topology(Test, Best, [Label1, Val1], [Label2, Val2]),

Val1 >= 0.05,

Val2 < 0.05,

concat_labels(Best, Label1, Label).

partial_congruence(Test, Label) :-

topology(Test, Best, [Label1, Val1], [Label2, Val2]),

Appendix 2 -Commented prolog code for paralogy
groups' detection

Each node of domain's phylogenetic tree, given to the
"expert system" by an EK- unit, can have many children
but for implementation reasons, we code it as a binary
tree. Each node is a term like this:

node(TheSpecies, LeftChild, RightChild)

In the annotated tree, each node knows how many
sequences it contains and has the full list of the different
species it includes:

node(NumberOfSequences, AllSpecies, LeftChild, RightChild)

The main PROLOG rule for groups' detection is:

% detecting paralogy groups in a phylogenetic tree implies
annotating tree nodes with species information then searching
biggest groups with different species

paralogy_groups(PhylogeneticTree, ParalogyGroups) :-

subtree_species(PhylogeneticTree, AnnotedPhylogeneticTree),

biggest_groups(AnnotedPhylogeneticTree, ParalogyGroups).

(Rules with the same signature express a "logical OR" between
them)

% a leaf node which species is different as the one chosen as out
group can belong to a paralogy group

% (*) ! character in a PROLOG rule means that if the first
rule is successful, PROLOG engine doesn't try other rules with
same signature

subtree_species(node(Species, no, no), noeud(1, [Species], no,
no)) :-
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outgroup_species(OutgroupSpecies),

Species ≠ OutgroupSpecies, !.

% a leaf node which species is the same as the one chosen as out
group can't belong to a paralogy group

subtree_species(node(_, no, no), node(1, no, no, no)) :- !.

% annotate a node which has only one child is equivalent to
annotate this child

% (we have pseudo nodes to force binary structure)

subtree_species(node(_, Child, no), AnnotatedNode) :-
subtree_species(Child, AnnotatedNode), !.

% annotate a sub-tree with two children is equivalent to anno-
tate the children and to compile found species

subtree_species(node(Species, LeftChild, RightChild),
node(N, SpeciesList, Left, Right)) :-

subtree_species(LeftChild, Left),

Left = node(NL, SpeciesListL, _, _),

subtree_species(RightChild, Right),

Right = node(NR, SpeciesListR, _, _),

compile_annotations(NL, SpeciesListL, NR, SpeciesListR, N,
SpeciesList)

% two sub-trees with the same unique species merge in a leaf of
this species

compile_annotations(_, [Species], _, [Species], 1, [Species]).

% if one of the two sub-trees is invalidated for merging, the
compilation is a tree invalidated for merging

% however we compute the total number of sequences in the
sub-tree

compile_annotations(NL, no, NR, _, N, no)) :- is(N, NL +
NR).

compile_annotations(NL, _, NR, no, N, no)) :- is(N, NL +
NR).

% if no species is common between the two sub-trees, we can
merge all species

compile_annotations(NL, SpeciesListL, NR, SpeciesListR, N,
SpeciesList)) :-

is(N, NL + NR).

intersection(SpeciesListL, SpeciesListR, CommonSpecies),

CommonSpecies = [],

concat(SpeciesListL, SpeciesListR, SpeciesList).

% search biggest paralogy groups

biggest_groups(node(N, no, Child1, Child2), Groups) :-

biggest_groups(Child1, Groups1),

biggest_groups(Child2, Groups2),

concat(Groups1, Groups2, Groups), !.

% accept group if more than 4 different species

biggest_groups(Group, [Group]) :-

Group = node(N, TaxeIds, _, _),

diff(TaxeIds, no),

N >= 4, !.

% reject subtree as a group

biggest_groups(_, []).
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