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 1 

Abstract 2 

Background 3 

People with HIV on antiretroviral therapy with good CD4 T cell counts make effective 4 

immune responses following vaccination against SARS-CoV-2. There are few data on 5 

longer term responses and the impact of a booster dose.  6 

 7 

Methods 8 

Adults with HIV were enrolled into a single arm open label study. Two doses of 9 

ChAdOx1 nCoV-19 were followed twelve months later by a third heterologous vaccine 10 

dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µl. 11 

Immune responses to the ancestral strain and variants of concern were measured by 12 

anti-spike IgG ELISA, MesoScale Discovery (MSD) anti-spike platform, ACE-2 13 

inhibition, Activation Induced Marker (AIM) assay and T cell proliferation.  14 

 15 

Findings 16 

54 participants received two doses of ChAdOx1 nCoV-19. 43 received a third dose (42 17 

with BNT162b2; 1 with mRNA-1273) one year after the first dose. After the third dose, 18 

total anti-SARS-CoV-2 spike IgG titres (MSD), ACE-2 inhibition and IgG ELISA results 19 

were significantly higher compared to Day 182 titres (P<0.0001 for all three). SARS-20 

CoV-2 specific CD4+ T cell responses measured by AIM against SARS-CoV-2 S1 and 21 

S2 peptide pools were significantly increased after a third vaccine compared to 6 22 

months after a first dose, with significant increases in proliferative CD4+ and CD8+ T 23 
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cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, 1 

Gamma, and Delta variants were boosted, although to a lesser extent for Omicron.  2 

 3 

Conclusions 4 

In PWH receiving a third vaccine dose, there were significant increases in B and T cell 5 

immunity, including to known VOCs.  6 

 7 

Key Words:  8 

SARS-CoV-2; COVID-19; Vaccination; Immune Response; HIV; People with HIV; T cell; 9 

Antibody 10 

 11 
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Background 1 

Currently licensed vaccines targeting SARS-CoV-2 protect against severe COVID-19 2 

disease (1-6). They induce robust humoral and cellular immunity against SARS-CoV-2 3 

(2,4,7,8), although with evidence of waning 6-8 months following vaccination (9,10,11). 4 

The emergence of variants of concern (VOCs) including the B.1.1.7 (Alpha), B.1.351 5 

(Beta), P.1 (Gamma), B.1.617.2 (Delta) and more recently the B.1.1.529 (Omicron) 6 

lineages showing increasing numbers of mutations (12,13), high transmissibility (14,15), 7 

immune escape (16-20), and increased incidence of breakthrough infections (21,22) is 8 

particularly relevant to vulnerable populations (23), including people living with HIV 9 

(PWH). These factors contributed to the recommendation of a third dose of COVID-19 10 

vaccine by some countries (10, 24-26).  11 

 12 

For PWH, there is evidence for poorer immune responses and more severe clinical 13 

outcomes following infection with other non-related pathogens, including SARS-CoV-2 14 

(27-33). This can be partially rescued through antiretroviral therapy (ART)-mediated 15 

reconstitution of CD4 T cell counts and T cell effector function (34). We recently 16 

demonstrated that similar to HIV seronegative individuals, PWH make potent T and B 17 

cell immune responses following two doses of ChAdOx1 nCoV-19 vaccination (3,9), 18 

although with evidence of declining immunity at 6 months.  19 

 20 

Third dose boosting with either homologous or heterologous combinations of COVID-19 21 

vaccines results in vigorous immune responses (35,36). A third dose of BNT162b2 22 

protected against infection and severe COVID-19 disease in adults >60 years of age 23 
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(37). For PWH, the increased immune responses afforded by booster vaccination may 1 

therefore offer protection, help overcome antigenic variation seen in some SARS-CoV-2 2 

strains (38), and reduce the incidence of COVID-19.  3 

 4 

We performed qualitative and quantitative assessment of humoral and cellular immune 5 

responses to SARS-CoV-2 and circulating VOCs following a third booster dose vaccine 6 

in PWH.  7 

 8 

Materials and methods 9 

Study design and cohort 10 

The cohort has been described previously (3). The study comprised people living with 11 

HIV in an open-label non-randomised group within the larger multicentre phase 2/3 12 

COV002 trial. Inclusion criteria were age 18–55 years, a diagnosis of HIV infection, 13 

virological suppression on ART at enrolment (plasma HIV viral load <50 copies per mL), 14 

and a CD4 count >350 cells/μL. Participants received two standard intramuscular doses 15 

of the ChAdOx1 nCoV-19 vaccine 4–6 weeks apart, and a third dose of any licensed 16 

COVID-19 vaccine after 1 year.  17 

Participants with a history of laboratory-confirmed SARS-CoV-2 infection by anti-N 18 

protein IgG immunoassay (Abbott Architect, Abbott Park, IL, USA) at screening were 19 

excluded. Participants self-reported COVID-19 infection. Visits on day 0 (pre-ChAdOx1 20 

nCoV-19 vaccine prime), 182 and ‘Post-Third Dose’ were the main study timepoints for 21 

immunological analysis. As some participants did not attend their ‘Post-Third Dose’ visit 22 

as they were lost to follow up, there is a maximum of n=43 at this timepoint. Where 23 
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possible, we collected PBMCs from participants before and after the third dose booster 1 

vaccine dose (n = 9).  2 

 3 

SARS CoV-2 spike IgG ELISA 4 

Humoral responses at baseline and following vaccination were assessed using a 5 

standardised total IgG ELISA against SARS CoV-2 spike as described previously (2). 6 

Full details are in Supplementary Materials. 7 

 8 

Mesoscale Discovery (MSD) binding assays 9 

IgG responses to SARS-CoV-2 variant spike antigens including Wuhan strain, Alpha, 10 

Beta, Gamma, Delta, Omicron were measured using a multiplexed V-PLEX COVID-19 11 

Coronavirus Panel 23 Kit (K15570U-2) from Meso Scale Diagnostics, Rockville, MD 12 

USA. Full details are in Supplementary Materials.  13 

 14 

T cell proliferation assay 15 

T cell proliferation was measured use a CTV assay (3,9). Full details in Supplementary 16 

Table 2. 17 

 18 

AIM Assay 19 

The Activation Induced Marker (AIM) assay was used to identify and characterise 20 

antigen-specific T cells (3,9). Full details in Supplementary Table 3.  21 

 22 
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ACE-2 inhibition assay  1 

A multiplexed MSD immunoassay (MSD, Rockville, MD) was used to measure the 2 

ability of human sera to inhibit ACE-2 binding to SARS-CoV-2 spike (B, B.1, B.1.1.7, 3 

B.1.351 or P.1, B.1.617, B.1.1.59). Full details are in Supplementary Materials.  4 

 5 

Statistical analysis 6 

We analysed all outcomes in all participants who received specified doses of the 7 

vaccination schedule and with available samples, unless otherwise specified. We 8 

present medians and IQRs for immunological endpoints. For comparison of two non-9 

parametrically distributed unpaired variables, we used the Wilcoxon rank sum (Mann 10 

Whitney U) test. Where multiple data points were compared, we used a Kruskal Wallis 11 

Test with Dunn’s multiple comparison. For comparison of two non-parametrically 12 

distributed paired datasets, we used the Wilcoxon matched pairs signed rank test. All 13 

analyses were carried out using Prism 9 (GraphPad Software). 14 

 15 

Study Approval 16 

Study approval in the UK was by the Medicines and Healthcare products Regulatory 17 

Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research 18 

Ethics Committee (reference 20/SC/0145). COV002 is registered 19 

with ClinicalTrials.gov, NCT04400838.  20 
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Results 1 

Participants  2 

Participants with HIV (n=54; all male) were recruited as a sub-study group in the 3 

COV002 clinical trial (NCT04400838) in November 2020. Participants were 4 

administered two doses of ChAdOx1 nCoV-19 vaccine at day 0 and after 4-6 weeks. 5 

They were offered a third dose with a heterologous vaccine around 365 days after their 6 

first ChAdOx1 nCoV-19 dose. All participants had undetectable VL (<50 HIV RNA 7 

copies/ml) and a median CD4 count of 694 cells/µl (IQR 573.5 – 859.5) at the time of 8 

recruitment. Ethnicity was mostly white (81.5%). Other reported ethnicities were Asian 9 

(3.7%), mixed (7.4%) and other (7.4%). Participants returned for study visits on day 14, 10 

28, 42, 56, 182 and ‘Post-Third Dose‘. The ‘Post-Third Dose’ visit was recorded as the 11 

first study visit following the third dose of vaccine (mean number of days post third dose 12 

= 33, range: 5 – 115, IQR  21 – 41). Participants received mostly BNT162b2 vaccine for 13 

their day 365 boost (42/43; 1/43 received mRNA-1273; Moderna) (Supplementary 14 

Table 1). For this study, baseline (Day 0), 6 months (Day 182) and ‘Post-Third Dose’ 15 

samples were considered. The introduction of the booster vaccine as NHS policy by the 16 

UK government meant some third doses were given out of sync with the study protocol, 17 

and so blood draws before the third dose were not available for all participants. 18 

However, for some (n = 9), samples were available either side of the third dose, as pre- 19 

and post-third dose visits (Figure 1a, Table 1). All participants self–reported an 20 

absence of SARS-CoV-2 infection at every study visit based on interviews with the 21 

study team, and SARS-CoV-2 nucleocapsid responses measured for 6 months after 22 

recruitment.  23 
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 1 

Antibody responses to SARS-CoV-2 are boosted following a third dose of COVID-2 

19 vaccine in PWH 3 

The MesoScale Discovery (MSD) assay platform was used to quantify plasma levels of 4 

circulating total anti-SARS-Cov-2 spike IgG. We previously reported that anti-spike IgG 5 

and pseudo-neutralising antibody levels 182 days after first vaccination were 6 

significantly higher than baseline levels measured on day 0 (13). Analysis of plasma 7 

samples ‘Post-Third Dose’ showed that total anti-SARS-Cov-2 spike IgG titres were 8 

significantly higher than day 182 titres (n = 32; day 182 = median 2644 (IQR 1341 – 9 

6614) AU/ml, post-third dose = median 143,088 (IQR 96854 – 189674) AU/ml; 10 

P<0.0001), and to an even higher degree when compared to baseline levels (n = 32; 11 

day 0 = median 40 (IQR 19.5 – 109.6) AU/ml; P<0.0001) (Figure 1b). To further 12 

evaluate the impact of a third dose on antibody levels, we measured anti-SARS-CoV-2 13 

spike IgG in plasma of the subset of 9 participants with both pre- and post-3rd boost 14 

samples. We found a significant increase in anti-SARS-CoV-2 spike IgG titres in 15 

participants following booster vaccination (pre-boost = median 1714 (IQR 417 – 4622) 16 

AU/ml; post-boost = median 188,590 (IQR 104,806 – 290,778) AU/ml; p=0.0078) 17 

(Figure 1c, Supplementary Figure 1a). Antibodies against the SARS-CoV-2 spike 18 

protein were also measured by IgG ELISA, which supported the increased response 19 

after a third dose. IgG responses peaked 42 days after the first of the two initial vaccine 20 

doses (median 1440 ELISA units [EU], IQR 704-2728; n=50), but had reduced 21 

significantly by the 6 months timepoint (median 158 ELISA units [EU], IQR 88-325; 22 

n=47)(P<0.0001)(Supplementary Figure 1b). After the third vaccine dose the response 23 
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was significantly boosted (median 17,025 ELISA units [EU], IQR 10634-22847; 1 

n=43)(P<0.0001)(Figure 1d). 2 

 3 

Next, we evaluated the level of antibodies capable of out-competing the binding of 4 

SARS-CoV-2 to human ACE-2 to prevent viral entry in an ACE-2 inhibition assay, a 5 

surrogate of antibody neutralisation. We found significantly higher titres of antibodies 6 

capable of blocking ACE-2 binding of SARS-CoV-2 ‘Post-Third Dose’ visit compared to 7 

day 182 and day 0 (n = 27, day 0 = median 0.39 (IQR 0.253 – 0.50) AU/ml, day 182 8 

median 0.99 (IQR 0.83 – 1.37) AU/ml, ‘post-third dose’ median 27.15 (IQR 15.36 – 9 

42.77) AU/ml) (Figure 1e). This booster effect of the vaccination was confirmed in 10 

participants with pre- and post-boost timepoints (n = 9 pre-boost median 0.1 (IQR 0.1 – 11 

4.44) AU/ml, post-boost median 37.05 (IQR 30.42 – 73.1) AU/ml) (Figure 1f and g, 12 

Supplementary Figure 1c). We did not observe any correlations between the number 13 

of days post-boost and antibody titres or ACE-2 binding inhibition (data not shown).  14 

 15 

Increased magnitude of T cell responses after third COVID-19 vaccine dose in 16 

PWH  17 

T cell immune responses were first measured using an ex vivo activation induced 18 

marker (AIM) assay to measure effector-type responses and then a CTV proliferation 19 

assay on 7-day expanded cells to quantify recall response. (Flow cytometric gating 20 

strategy for AIM and proliferation assays are shown in Supplementary Figures 2a and 21 

f, respectively). SEB and CMV responses were used as mitogenic and antigenic control 22 
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responses in the AIM assay (Supplementary Figure 2b-e) while PHA and FECT were 1 

used as controls in the proliferation assays (Supplementary Figure 2g–j).  2 

 3 

The AIM assay showed that the frequency of SARS-CoV-2 specific CD4+ T cell 4 

responses against SARS-CoV-2 S1 and S2 peptide pools was significantly increased by 5 

>3-fold after a third vaccine compared to their levels 6 months post ChAdOx1 nCoV-19 6 

prime (CD4+ SARS-CoV-2 S1: day 182 median 0.35% (IQR 0.21 – 0.56), post-third 7 

dose median 1.11% (IQR 0.68 – 3.93); CD4+ SARS-CoV-2 S2: day 182 median 0.235% 8 

(IQR 0.12 – 0.3), post-third dose median 0.76% (IQR 0.42 – 1.17)) (Figure 2a and b). 9 

The frequency of AIM+ SARS-CoV-2 specific CD8+ T cells targeting SARS-CoV-2 S1 10 

but not S2 significantly increased at the ‘Post-Third Dose’ visit compared to 6 months 11 

(CD8+ SARS-CoV-2 S1: day 182 = median 0.03% (IQR 0.003 – 0.057), post-third dose 12 

median 0.1% (IQR 0.06 – 0.21); CD8+ SARS-CoV-2 S2: day 182 median 0.04% (IQR 13 

0.02 – 0.066), post-third dose median 0.04% (IQR 0.03 – 0.1)) (Figure 2c and d).  14 

 15 

These observed T cell responses from the AIM assay were also seen when measuring 16 

T cell proliferation, although with a greater magnitude. Proliferative CD4+ and CD8+ T 17 

cell responses to SARS-CoV-2 S1 and S2 following the third dose were significantly 18 

greater than responses at baseline (day 0) and day 182 after first dose (Figure 2e – h). 19 

Analysis of the magnitude of the CD4+ and CD8+ proliferative response following 20 

vaccination showed that T cell responses were primed after initial vaccine, peaking 21 

between days 28 – 42, had waned by day 182 (13), and then increased again following 22 
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the third dose (Supplementary Figure 3a – h). These assays indicate potent boosting 1 

of T cell responses by vaccination and efficient recall upon antigen re-exposure.  2 

 3 

Phenotypic analysis of SARS-CoV-2 specific cells following booster vaccination  4 

As we had observed an increase in the magnitude of SARS-CoV-2 T cells following 5 

third dose vaccination, we assessed if there were changes in the distribution of the 6 

phenotype of the CD4+ T helper cell subsets following the booster vaccine. We first 7 

compared the magnitude of all antigen-specific cells within CD4 and CD8+ T cell 8 

compartments using the AIM assay. We observed that despite the recent boost of 9 

SARS-CoV-2 spike-specific T cells, CMVpp65-specific T cell response remained at a 10 

higher frequency compared to SARS-CoV-2 spike-specific responses (Figure 3a and 11 

b). We then used chemokine receptors CXCR3 and CCR6 to evaluate the distribution of 12 

CD4+ T cells subsets within the antigen-specific AIM+ CD4+ T cells 6 months after 13 

priming vaccination and after the third dose. We found no change in the frequency of 14 

SARS-CoV-2 spike-specific CD4+ T cells that exhibited a Th1 (CXCR3+ CCR6-), Th17 15 

(CXCR3- CCR6+) or circulating Tfh (CXCR5+) phenotype following a third dose (Figure 16 

3c, e, and f). We noted an increase in the frequency of Th2 (CXCR3- CCR6-) cells 17 

within the CD4+ antigen-specific compartment, however this was found with all antigens 18 

(including CMV) and, in the absence of functional data, larger studies would be needed 19 

to determine if this was reproducible (Figure 3d).  20 

 21 

  22 
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Potent VOC immune responses are induced following booster vaccines 1 

Lastly, we evaluated the magnitude of humoral and T cell responses to circulating 2 

VOCs (including the recently categorised Omicron BA1 variant) after a third dose. 3 

Compared to total anti-SARS-CoV-2 spike IgG titres in the ancestral strain, total anti-4 

spike antibody responses to all VOCs were significantly reduced (Figure 4a). This was 5 

also found with the SARS-CoV-2 ACE-2 binding assay which indicated a decreased 6 

potency of neutralising antibodies in the ‘Post-Third Dose’ sample to bind to spike 7 

protein from VOCs (Figure 4b). For VOCs – Alpha, Beta, and Gamma - for which we 8 

had historical day 0 and day 182 data, we assessed the kinetics of the antibody 9 

response after the third dose. We noted a striking increase in ACE inhibition 10 

(Supplementary Figure 1 d-f) and antibody titres (Supplementary Figure 4a–c). after 11 

the third dose compared to samples tested at baseline and 6 months after the first of the 12 

two ChAdOx1 nCoV-19 doses.  13 

 14 

We also investigated T cell responses to VOCs in comparison to the ancestral SARS-15 

CoV-2 Victoria strain. Similar to our previous report (13), the magnitude of the 16 

proliferative CD4+ and CD8+ T cell response was comparable between the ancestral 17 

strain and the Beta, Gamma, and Delta variants – with the exception of the CD8+ T cell 18 

response to SARS-CoV-2 S2 peptide pool. Interestingly, we found, the proliferative T 19 

cell response to the Omicron variant targeting both spike S1 and S2 peptide pools was 20 

significantly reduced in the CD4 and CD8+ T cell compartments (Figure 4c-f). Where 21 

sample availability allowed, we compared the kinetics of the T cell response 6 months 22 

after first vaccination and after a third dose, and found an increase in T cell responses 23 
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to all variants tested after a third dose, with the sole exception of the CD8 T cell 1 

response to the SARS-CoV-2 Beta variant S1 subunit (Supplementary Figure 4d-o).  2 

 3 

As Omicron-directed antibody and T cell responses were significantly lower than the 4 

responses to the ancestral SARS-CoV-2 strain, we looked in more detail in participants 5 

sampled before and shortly after their third dose of COVID-19 vaccine (n = 9). We found 6 

moderate but statistically significant increases in both humoral (Supplementary Figure 7 

5a and b) and CD4+ and CD8+ T cell (Supplementary Figure 5c – d) responses to the 8 

Omicron variant after the third dose. Taken together our data shows that booster 9 

vaccination in PWH significantly boosts antibody and T cell responses to Alpha, Beta, 10 

Gamma, and Delta VOCs, and to a lesser extent to Omicron.  11 

 12 
 13 

Discussion 14 

We show evidence that a third dose of the licensed COVID-19 vaccines significantly 15 

boosted antibody and T cell responses in PWH (VL undetectable and CD4 count 16 

>350cells/ul). The robust responses generated in our cohort of PWH following 17 

heterologous third dose regimen are consistent with reports in people without HIV (39-18 

41) and are reassuring, especially as the ChAdOx1 nCov-19 vaccine is well designed 19 

for distribution in low-middle income countries including those with a significant 20 

prevalence of PWH (42).  21 

 22 

Equally crucial in the strategic management of the COVID-19 pandemic is that boosted 23 

SARS-CoV-2 immune responses can target circulating VOCs, especially as immune 24 

escape has been reported (16,17,18,43). We found humoral responses to VOCs to be 25 
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boosted although to a lesser degree than responses targeting the ancestral strain. 1 

There was no difference between the magnitude of T cell responses to the VOCs 2 

except for the Omicron variant, which was boosted but to lower levels than other VOCs. 3 

The relatively high number of mutations on key sites of antibody target including K417N 4 

and N501Y in the Omicron spike protein may account for this (13, 44). Interestingly, our 5 

data may suggest that antibody immune evasion is more prevalent than T cell escape in 6 

immune response to VOCs - whether T cells may therefore play a role in protection from 7 

VOC-mediated COVID-19 needs further investigation (49). Real world data would also 8 

be needed to determine if boosted VOC responses confer protection from severe 9 

COVID-19 disease in PWH. Finally, the quality of the induced immune response may be 10 

impacted by the vaccine platform. For example, there is evidence that the ChAdOx1 11 

nCoV-19 vaccine results in a more dominant Th1-driven response (45) and mRNA 12 

vaccines may induce stronger antibody responses (46), possibly by soliciting Tfh cell 13 

help (47,48,50).  14 

 15 

Our study has some limitations. We do not have access to a control group of HIV 16 

seronegative volunteers tested with the same assays in the same conditions post-boost, 17 

and so cannot comment on how the magnitude of immune response in our cohort of 18 

PWH would compare to HIV negative controls. We assessed breakthrough infection 19 

with SARS-CoV-2 by direct questioning of participants at every study visit. This was 20 

supported by nucleocapsid responses, but only for the first six months of the study. Our 21 

cohort of PWH represent the scenario of ART suppressed volunteers with an 22 

undetectable VL and high CD4 count. This is not the case for many PWH. As such, the 23 
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data from our cohort should be extrapolated cautiously to other populations with HIV, 1 

especially as our cohort was also biaised to male participants in the UK. Due to the roll-2 

out of the UK vaccination program during the study, we were only able to obtain pre-3 

third dose samples from nine participants. It is therefore difficult to state exactly what 4 

the immediate increase in immune response was, although it is clear that the overall 5 

response was significantly augmented. Lastly, as most participants received the 6 

BNT162b2 vaccine as the third dose after the two ChAdOx1 nCoV-19 doses, we did not 7 

have the scope to perform a comparative analysis of immune responses following a 8 

different third dose vaccine, which may be especially relevant in countries without 9 

access to RNA vaccines. In summary, we show a robust booster effect on antibody and 10 

T cell responses  to SARS-CoV-2 in PWH after a third dose in a heterologous 11 

vaccination schedule.   12 

 13 
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Figure Legends 1 

 2 
Figure 1 – Anti-SARS-CoV-2 antibody responses are boosted following third dose 3 

of COVID-19 vaccines in PWH. A) vaccination schedule for all participants showing 4 
timepoints where samples were used for this study in black.  PWH received either 5 
BNT162b2, mRNA1273, or ChAdOx1 nCoV-19 vaccines. The third dose was given as 6 
close to 1 year after the first vaccine dose as possible. The ‘Day 365’ visit sample was 7 
the ‘post-third dose’ sample’. B) anti-SARS-CoV-2 spike IgG antibody titres before 8 

priming vaccine dose at day 0 and post-prime doses at day 182 and 365 (after third 9 
dose) C) anti-SARS-CoV-2 spike IgG antibody titres in HIV+ participants with pre- and 10 
post-third dose timepoints. D) In-house ELISA showing anti-spike IgG responses at 11 
baseline, day 182 and after third dose E) ACE-2 inhibition assay on day 0, 182, and 12 
after third dose in all participants. F,G) ACE-2 inhibition assay in participants with pre- 13 

and post-third dose timepoints expressed as F) AU/ml or G) % inhibition. Comparison of 14 
two timepoints within the same group was done by Wilcoxon matched pair sign ranked 15 

test. Where indicated * = <0.05, ** = <0.01, *** = < 0.001 and **** = <0.000. ‘Pre-B’ and 16 

‘Post-B’ refer to pre-third dose and post-third dose. Dotted lines indicate cut off points 17 
determined for each SARS-CoV-2 spike antigen based on pre-pandemic sera + 3X SD. 18 
n = 27 – 33 for HIV+ volunteers in MSD assay. Error bars represent median and 19 

interquartile range.  20 
 21 

Figure 2 – T cell response to SARS-CoV-2 following third dose of COVID-19 22 
vaccines in PWH. T cell responses measured by AIM assay showing magnitude of 23 
CD4+ T cell responses to A) SARS-COV-2 S1 and B) SARS-COV-2 S2 and magnitude 24 

of CD8+ T cell responses to C) SARS-COV-2 S1 and D) SARS-COV-2 S2 on days 182 25 

and after third dose (D365). Proliferative T cell responses assessing kinetics of the T 26 

cell response longitudinally for CD4+ T cells to E) SARS-COV-2 S1 and F) SARS-COV-27 
2 S2 and CD8+ T cells to G) SARS-COV-2 S1 and H) SARS-COV-2 S2. Statistical test 28 

in A – D was done by Mann Whitney T test. Statistical test in E – H was done by 29 
Wilcoxon matched pair sign ranked test. Where indicated * = <0.05, ** = <0.01, *** = < 30 
0.001 and **** = <0.000. Dotted lines in indicate cut off points determined based on 31 

DMSO controls + 3X SD. n = 24 – 40 for AIM assay and 41 – 52 for proliferation assay. 32 
Error bars represent median and interquartile range. 33 

 34 
Figure 3 – Phenotype of AIM+ antigen specific responses following third COVID-35 
19 vaccine dose in PWH. Comparative analysis of the magnitude of antigen-specific T 36 

cells to SARS-CoV-2 S1, SARS-CoV-2 S2 and CMVpp65 in A) CD4+ and B) CD8+ T 37 

cells. Phenotype of antigen specific T cells 6 months after the priming ChAdOx1 nCoV-38 
19 dose and after third heterologous dose showing C) CXCR3+ CCR6-Th1, D) CXCR3- 39 
CCR6-Th2, E) CXCR3- CCR6+ Th17 and F) CXCR5+ circulating Tfh CD4+ T cells. 40 

Statistical tests for A and B were done by Kruskal Wallis with Dunn’s multiple 41 
comparison. Statistical tests in C – F were done by Mann Whitney T test. Where 42 
indicated * = <0.05, ** = <0.01, *** = < 0.001 and **** = <0.000. n = 20 – 40. Error bars 43 
represent median and interquartile range.  44 
 45 
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Figure 4 – Immune response to SARS-CoV-2 variants of concern (VOC) following 1 

third dose of COVID-19 vaccines in PWH. A) total anti-spike IgG antibody responses 2 
B) ACE-2 inhibition assay to circulating variants of concern. Proliferation assay 3 

comparing magnitudes of proliferative T cell response to SARS-CoV-2 parental strain to 4 
a panel of VOC for CD4+ C) SARS-CoV-2 S1, D) SARS-CoV-2 S2 and CD8+ E) SARS-5 
CoV-2 S1, F) SARS-CoV-2 S2.  Statistical tests were done by Wilcoxon matched pair 6 
sign ranked test. Where indicated * = <0.05, ** = <0.01, *** = < 0.001 and **** = <0.000. 7 
Dotted lines in indicate cut off points determined for each SARS-CoV-2 spike antigen 8 

based on pre-pandemic sera + 3X SD for antibody responses and cut off points 9 
determined based on DMSO controls + 3X SD for proliferative responses. n = 37 - 40 10 
for antibody analysis and n = 41 or proliferation assay. Error bars represent median and 11 
interquartile range. 12 
 13 

 14 
 15 

 16 
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Table 1 – Demographic information for participants used in this study 1 

 2 

Participant Summary 

Sex Male 54 (100%) 

  Female 0 (0%) 

Age in years  42.5 (37.2 - 49.8) 

Ethnicity White 44 (81.5%) 

  Black 0 (0%) 

  Asian 2 (3.7%) 

  Mixed 4 (7.4%) 

  Other 4 (7.4%) 

Antiretroviral 
therapy Y 54 (100%) 

  N   

Plasma HIV VL (copies/ml) <50 

CD4 count > 350 cells/ul 694.0 (573.5 - 859.5)* 

Nadir CD4 count (cells/ul)** 366 (220-514)* 

*median (IQR); ** data available for n=31 3 
 4 
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