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The fight against Mycobacterium tuberculosis (MTB) has been going on for thousands
of years, while it still poses a threat to human health. In addition to routine detections,
metagenomic next-generation sequencing (mNGS) has begun to show presence as a
comprehensive and hypothesis-free test. It can not only detect MTB without isolating
specific pathogens but also suggest the co-infection pathogens or underlying tumor
simultaneously, which is of benefit to assist in comprehensive clinical diagnosis. It also
shows the potential to detect multiple drug resistance sites for precise treatment.
However, considering the cost performance compared with conventional assays
(especially Xpert MTB/RIF), mNGS seems to be overqualified for patients with mild
and typical symptoms. Technology optimization of sequencing and analyzing should
be conducted to improve the positive rate and broaden the applicable fields.

Keywords: metagenomic next-generation sequencing, tuberculosis, Mycobacterium tuberculosis, precise
treatment, infectious disease

INTRODUCTION

Tuberculosis (TB), an infectious disease that has plagued humankind for thousands of years,
disturbingly causes an estimated 10 million people to fall ill in the world in 2019 (1). Among
the 10 million cases, the proportion of drug resistance against either rifampicin (RIF) or isoniazid
(INH) is approximately 15% (2). It still exists as a dilemma to detect Mycobacterium tuberculosis
(MTB) promptly and determine the drug resistance definitely to guide clinical treatment (3), which
is considered one of the leading causes of the high mortality rate (4). Therefore, the World Health
Organization is calling for taking early diagnosis and comprehensive drug susceptibility testing
(DST) as a priority and key component for TB care (2, 5). To obtain a rapid and accurate diagnosis
of the culprit microorganism, scientists and clinicians spare no effort to modify routine detections
or apply advanced technologies to maximize detection efficiency.

Metagenomic next-generation sequencing (mNGS) is increasingly reckoned as a comprehensive
and hypothesis-free test, which outperformed in pathogen detection (6). Without isolating specific
pathogens, it directly extracts all the hereditary material fragments (DNA or RNA) from clinical
samples and sequences them simultaneously and independently. After that, experimenters compare
the detected sequences with the reliable database that comprehensively covers known pathogenic
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microorganisms (7). Besides detecting MTB, it shows potential
to find co-infection pathogens, suggest underlying tumors, or
determine drug resistance in one run, which is significant for
overall diagnosis and timely treatment.

Herein, we will briefly summarize the advantages and
deficiencies of routine detections, introduce the recent progress
of mNGS in TB, concentrate on practical considerations and
corresponding solutions, and finally, look forward to broader
application in the future.

Mycobacterium tuberculosis INFECTION
AND ROUTINE DETECTIONS

Infected by MTB does not imply the inevitable onset of
typical symptoms (8). Clinical manifestations vary from
person to person according to the strain virulence and host
immunocompetence, presenting as active TB and latent TB
infection (LTBI) (9). Active TB can harm multiple organs,
including the lung, brain, joint, and bone, even resulting
in disseminated damage. LTBI accounts for 90% of human
infections, potentially affecting 2 billion individuals (1). It poses
a potential hazard to public health security (10). When the
infected individuals are in a low immune state [such as co-
infected with HIV (11) or coronavirus disease 2019 (COVID-19)
(12)], the newly activated TB is more aggressive and awkward
to cope with. Additionally, the emergence and transmission
of drug-resistant strains have challenged the prevention and
treatment, characterized as rifampin resistance (RR), multidrug
resistance (MDR), or extensive drug resistance (XDR). They
greatly increase the medical expense and financial burden (13).

Given the characteristics of MTB [thick-walled, weakly gram-
positive, and acid-fast and long growth cycle (14)] and complex
host immunoreaction, routine detections show limited effects
(Table 1). Tests universally used for MTB are culture and acid-
fast staining (AFS), providing intuitionistic evidence (15). While
limited by a long growth circle and low positive rate, it is not
so dependent on the clinic (16). Imaging examination, such
as chest radiography or computed tomography (CT), plays a
vital role in diagnosis and follow-up (17) but is not specific in
extrapulmonary TB (18). In recent decades, molecular diagnosis
has made significant breakthroughs. Polymerase chain reaction
(PCR) after extracting nucleic acid directly from clinical samples
is widely acknowledged (1). Xpert MTB/RIF (Xpert) has been
applied to detect MTB and RIF resistance (19). Also, the
improved version, Xpert MTB/RIF Ultra (Ultra), shows better
performance with higher sensitivity and increases the detection
rate of immunodeficient patients with HIV infection (20).
Researchers are also pushing the boundaries to apply advanced

Abbreviations: AFS, acid-fast staining; ATT, antituberculosis treatment; BALF,
bronchoalveolar lavage fluid; CI, Confident Intervals, all results mentioned
in this chart were 95% CI; CSF, cerebrospinal fluid; PPV, positive predictive
value; MTB, Mycobacterium tuberculosis; MTBC, MTB complex, including
Mycobacterium tuberculosis, Mycobacterium canettii, Mycobacterium africanum,
and Mycobacterium bovis, whose genome sequences showed high genomic
similarity; NPV, negative predictive value; PCR, polymerase chain reaction; PTB,
pulmonary tuberculosis; Sen, Sensitivity; Spe, Specifcity; TB, tuberculosis; TBM,
tuberculous meningitis.

technologies to detect MTB, such as CRISPR-based diagnostic
tests for MTB (CRISPR-MTB) (21). Additionally, indicating
cellular immune response, tuberculin skin test (TST) and
interferon-γ release assay (IGRA) can be used to identify LTBI
(22). However, they have low sensitivity in immunocompromised
populations, and they show poor discrimination between LTBI
and active TB (22, 23) as well as TB and Bacille Calmette-Guerin
(BCG) vaccination (24).

Drug resistance detection is necessary for the confirmation
of RR/MDR/XDR-TB strain, generally using molecular tools (1).
Xpert, an integrated hands-free real-time PCR testing to amplify
the RR-determining region (RRDR) of the MTB rpoB gene,
provided us with a new perspective of detecting certain sites
(25). It simultaneously detects MTB and RR using the molecular
technique, which revolutionarily shortened the detection time
to 2 h (26, 27). The improved version, Ultra, incorporates two
different multicopy amplification targets, namely, IS6110 and
IS1081, and RRDR of the rpoB gene (28). However, routine
drug resistance detections are only designed to detect partial
known mutation sites.

METAGENOMIC NEXT-GENERATION
SEQUENCING WORKFLOW FOR
Mycobacterium tuberculosis INFECTION

With the booming development of sequencing technology,
mNGS has begun to show presence as a comprehensive and
powerful detection, which detects nucleic acid fragments with
high sensitivity and specificity (29, 30). The most striking feature
is that it can sequence all the nucleic acid components directly
from the clinical samples (31), allowing for a hypothesis-free
detection and comprehensive diagnosis.

The dominant sequencing technology in the current market
is the next-generation short-read and long-read sequencing
approach (32). Also, the most representative platforms are the
Illumina sequencers (Illumina MiSeq and iSeq100) and the
Nanopore sequencers (Oxford Nanopore MinION), respectively
(33). Short-read platforms are widely used in the clinic for
satisfying stability; while the long-read platform has been widely
adopted in development prospects for detecting drug resistance,
surveilling epidemic outbreaks, and so on (34–36).

The process of mNGS mainly includes two parts: experimental
procedures (wet lab) and bioinformatic analysis (dry lab). After
collecting suitable samples under the guide of clinicians, the wet
lab workflow can be roughly divided into three stages, namely,
DNA/RNA extraction, library preparation, and sequencing (33)
(Figure 1). Also, the dry lab is the last step to generate
the final report. Brief bioinformatic procedures mainly start
from raw input FASTQ files, followed by quality and low-
complexity filtering, human host subtraction, and microorganism
identification aligning to reference databases (7). Raw data
generated from different platforms should be, respectively,
separated and strictly quality-controlled (Q30 qualified) (33).
To obtain clean reads, low-quality reads can be removed by
the Trimmomatic or fastp tools, low-complexity regions can be
masked by DustMasker, and duplicated reads can be removed by

Frontiers in Medicine | www.frontiersin.org 2 April 2022 | Volume 9 | Article 802719

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-802719 March 28, 2022 Time: 15:28 # 3

Li et al. mNGS for Tuberculosis

TABLE 1 | Summary of advantages and limitations of routine detections for Mycobacterium tuberculosis (MTB).

Detections Advantages Limitations

Culture • Gold standard;
• Low cost;
• Drug susceptibility testing.

• Long growth circle (it takes up to 8 weeks to grow into visible colonies on solid culture
media) (16);
• Low sensitivity and poor positive rate.

Acid-fast staining • Low cost;
• Short turnaround time (the average time is
16.6 h) (90).

• Hard to distinguish between Mycobacterium leprae and non-tuberculous Mycobacteria
(NTM) (96);
• Tend to receive negative results in HIV-infected patients or children, who bear low
bacterial load (97);
• Low sensitivity and poor positive rate.

Imaging examination • Assist in diagnosis and follow-up (17, 18) • Atypical when co-infection or low immune status occur (17);
• Not specific in extrapulmonary TB (18).

Xpert MTB/RIF • Short turnaround time (the average
turnaround time is 24.1 h) (90);
• Drug resistance detection (against RIF) (98);
• High sensitivity and specificity (20)

• Only specific sites can be detected (20, 99);
• Xpert has limited sensitivity in HIV patients with miliary lung infiltrates, mainly due to
paucibacillary specimens (20, 99);
• Better testing might not improve the outcomes (100, 101).

TST and IGRA • Low cost;
• Identify LTBI (22).

• Low sensitivity in immunocompromised populations;
• False-positive in patients vaccinated with Bacillus Calmette-Guerin (BCG) via TST (24);
• Unable to differentiate between LTBI and active TB (22, 23)

PRINSEQ (37, 38). Then, it is necessary to remove human host
reads to shorten analysis time with mapping software (Bowtie
2, BWA, and HISAT2) or software specialized in removing
host sequences (BMTagger and CS-SCORE) (39, 40). Taxonomic
classification is based on the sequence similarity with the
alignments with reference genomes. Only the alignments that
fulfill the abovementioned criteria were used for further pathogen
identification. Finally, the data must be filtered by a certain
threshold. For MTB, choosing genus-specific read numbers ≥ 1
as the reporting threshold can result in credible reports (14).

With the technical advance, the turnaround time has been
dramatically shortened, making it possible to get a report within
24 h (no more than 23 h on Illumina and less than 5–7 h on
Nanopore) (41).

In addition to comprehensive testing, targeted next-
generation sequencing (NGS) is playing an alternative role
(5). Targeted NGS is focused on specific genomic regions in
a genome, selecting gene regions of suspected pathogen or
specific phenotype (5). Therefore, it is of great importance for
the low-load pathogen, from which MTB detection can benefit
a lot. Also, it offers a new thread to drug resistance detection,
especially on the Nanopore sequencers (42–44).

DIAGNOSTIC METAGENOMIC
NEXT-GENERATION SEQUENCING FOR
Mycobacterium tuberculosis INFECTION

Mycobacterium tuberculosis Detection
and Identification
Regarding different clinical manifestations, disease stages, and
lesion organs, relevant sample types are available for testing,
including various infectious body fluids and tissues (Table 2).

Pulmonary TB (PTB): Pulmonary involvement is common in
MTB infection, affecting more than 75% of the total number
of cases (1). Through the respiratory tract, multiple sample
types can be taken, including bronchoalveolar lavage fluid

(BALF), sputum, and lung tissue (45). Supported by the results
of published studies, mNGS performed well in PTB: overall
sensitivity was 44–59.9%, and specificity was 88.9–100%. Its
sensitivity was superior to culture and AFS, while similar to
Xpert. Lung tissue mNGS shows the peak sensitivity of 89% [95%
confidence interval (CI), 51–99%] (30, 46), while sputum mNGS
results are not superior to sputum culture (mNGS: 52%, 95% CI,
31–73%; culture: 61%, 95% CI, 39–80%), which may imply that
mNGS shows better performance in sputum-negative PTB (30).
BALF mNGS is more sensitive than blood mNGS in detecting
bacteria (47), which may be due to the low number of detectable
microbial sequences in the blood (41). While existing studies were
partly contradictory against each other, inconsistent parts need to
be viewed dialectically.

Extrapulmonary TB: MTB can be spread to invade
extrapulmonary organs, including brain (48), bone, and
joint (49). Therefore, corresponding samples [cerebrospinal
fluid (CSF) (50, 51), joint fluid, and abscess (52)] can be used
to ascertain the MTB infection in the specific organ. Studies
on mNGS for tuberculous meningitis (TBM) have approved
that mNGS showed excellent performance. The combination of
CSF mNGS and routine methods increased the detection rate
to 95.65% (51). Few systematic studies have been carried out on
osteoarticular tuberculosis (OAT), but accurate detection results
and good clinical outcomes have been reported in some cases
(53, 54).

Disseminated TB: Although disseminated TB tends to
endanger patients with immunodeficiency (55, 56), it is worth
noting that immunocompetent patients may also suffer from
that: a 51-year-old man had been repeatedly seeking for medical
advice for hepatic mass without any discomfort for 2 years.
With the help of mNGS of surgical specimens and BALF, he was
eventually diagnosed with disseminated TB with systemic multi-
organ involvement, including the lung, spine, mediastinum, liver,
and prostate (57).

Additionally, the comparison of characteristic sequences
can make the results accurate to the species level. mNGS
complements the deficiency of traditional detections in
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TABLE 2 | Effectiveness of metagenomic next-generation sequencing (mNGS) for MTB detection.

References Research type and sample size Research conclusions and results

Li et al. (46) • Type: A *
• Sample: lung tissue (n = 20)
• Pre-ATT samples (not mentioned)
• MTBC mNGS positive (n = 4)
• Pathogenic TB diagnoses (n = 4)
Diagnosis basis: AFS, Xpert, PCR, etc.

• MNGS showed the highest Spe and PPV for MTBC when compared with
histopathology method.
• For MTBC lung tissue mNGS: compared with smear: Sen: 100.0%
(19.8–100.0%), Spe: 88.9% (63.9–98.1%); compared with histopathology:
Sen: 100.0% (31.0–100.0%), Spe: 94.1% (69.2–99.7%).

Miao et al. (6) • Type: C
• Sample: all samples (n = 511)
• Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 42)
• Total TB diagnoses (n = 92)
Pathogenic TB diagnoses (n = 25)
Diagnosis basis: culture, clinical criteria

• MNGS outperformed culture, especially for MTB [odds ratio = 4 (1.7–10.8)].
• For MTB mNGS: Sen: 45.7% (42/92).
• For NTM mNGS: Sen: 29.8% (17/57).

Wang et al. (51) • Type: A + B
• Sample: CSF (n = 29)$

• Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 42)
• Total TB diagnoses (n = 23)
Pathogenic TB diagnoses (n = 12)
Clinical TB diagnoses (n = 11)
Diagnosis basis: culture, AFS, PCR, clinical criteria

• Combining mNGS and conventional methods (culture, AFS, PCR) increased
the detection rate to 95.65%.
• For MTBC CSF mNGS: Sen: 66.67% (8/12); Spe: 100% (6/6); PPV: 100%
(8/8); NPV: 60% (6/10); accuracy: 77.78% (14/18).

Zhou et al. (62) • Type: B
• Sample: all samples (n = 105)
Pulmonary samples (n = 27)
CSF samples (n = 49)
Other extrapulmonary samples (n = 29)
• Pre-ATT samples (n = 27)
• TB mNGS positive (n = 20)
• Total TB diagnoses (n = 45)
Diagnosis basis: culture, Xpert, PCR, clinical criteria

• Combining mNGS and Xpert improved the etiology diagnosis, increased
specificity from 44% (20/45, 30–60%) to 60% (27/45, 44–74%);
• Empirical ATT reduced diagnostic efficacy of culture, Xpert, and mNGS.
• For MTB mNGS: Sen: 44% (20/45, 30–60%), Spe: 98% (59/60, 91–100%);
• For MTB pulmonary samples mNGS: Sen: 62% (8/13, 32–86%); Spe: 100%
(14/14, 77–100%);
• For MTB CSF mNGS: Sen: 44% (7/16, 20–70%); Spe: 97% (32/33,
84-99%);
• For MTB other extrapulmonary samples mNGS: Sen: 31% (5/16, 11–59%);
Spe: 100% (13/13, 75–100%).

Xing et al. (77) • Type: A
• Sample: CSF (n = 213)
Pre-ATT samples (not mentioned)
• TB mNGS positive (shown rightward)
• Total TB diagnoses (n = 44)
Pathogenic TB diagnoses (n = 6)
Clinical TB diagnoses (n = 38)
Diagnosis basis: AFS, Xpert, clinical criteria

• When the genus-specific read number ≥ 1 was considered MTB positive,
the AUC (61.9%, 51.6–72.1%) was largest.
• Given high specificity (96.4%, 163/169) of mNGS in the diagnosis of TBM, it
allows a negative mNGS test to be used as one of the diagnostic methods to
exclude TBM.
• For MTB CSF mNGS: if genus-specific read numbers ≥ 1, 2, 3, 5, 10 was
considered positive; the positive consistency rates were 27.3, 20.5, 18.2,
13.6, 6.8%; the negative consistency rates were 96.4, 97.6, 98.2, 99.4, and
100%; the total consistency rates were 82.2, 81.7, 81.7, 81.2, and 80.8%,
respectively.

Yan et al. (50) • Type: A + B
• Sample: CSF (n = 51)
• Pre-ATT sample (n = 51)
• TB mNGS positive (n = 38)
• Total TB diagnoses (n = 45)
Pathogenic TB diagnoses (n = 38)
Clinical TB diagnoses (n = 7)
Diagnosis basis: culture, AFS, PCR, Xpert, clinical criteria (102)

• Patients with a significant increase in CSF cell number and protein
quantification might have a higher likelihood of positive MTB detection of
mNGS.
• For MTB CSF mNGS: Sen: 84.44% (38/45, 69.94–93.01%); Spe: 100%
(6/6, 51.68–100%); PPV: 100.0% (40/40, 88.57–100%); NPV: 46.15% (6/13,
20.40–73.88%).

Chen et al. (70) • Type: B.
• Sample: all samples (n = 70)
Pulmonary samples (n = 37)
Extrapulmonary samples (n = 33)
• Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 25)
• Total TB diagnoses (n = 36)
Pathogenic TB diagnoses (n = 36)
Diagnosis basis: pathological test, PCR

• Combining mNGS and culture or Xpert improved Sen to72.2% (26/36,
54.6–85.2%), higher than only mNGS (66.7%, 24/36, 48.9–80.9%), showing
the potential for clinical application in TB.
• For MTB pulmonary samples mNGS: Sen: 82.4% (14/17, 55.8–95.3%);
Spe: 100% (20/20, 80.0–100.0%); PPV: 100% (14/14, 73.2–100.0%); NPV:
87.0% (20/23, 65.3–96.6%); Youden index: 82.4%;
• For MTB extrapulmonary samples mNGS: Sen: 47.4% (9/19, 25.2–70.5%);
Spe: 92.9% (13/14, 64.2–99.6%); PPV: 90.0% (9/10, 54.1–99.5%); NPV:
56.5% (13/23, 34.9–76.1%); Youden index: 40.3%.

Jin et al. (30) • Type: B.
• Sample: all samples (n = 820)
Pulmonary samples (n = 477)
Extrapulmonary samples (n = 343)
Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 76)
• Total TB diagnoses (n = 125)
Pathogenic TB diagnoses (n = 64)
Clinical TB diagnoses (n = 61)
Diagnosis basis: culture, Xpert, PCR, clinical criteria

• mNGS may be a promising technology for sputum-negative PTB and
tuberculous serous effusion.
• For MTB mNGS: Sen: 49.6% (62/125, 40.6–58.6%), Spe: 98.3% (683/695,
96.9–99.1%);
• For MTB pulmonary samples mNGS: Sen: 58.5% (31/53, 44.2–71.6%);
Spe: 98.3% (417/424, 96.5–99.3%);
• For MTB extrapulmonary samples mNGS: Sen: 43.1% (31/72,
31.6–55.2%), Spe: 98.2% (266/271, 95.5–99.3%).

(Continued)
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TABLE 2 | (Continued)

References Research type and sample size Research conclusions and results

Shi et al. (61) • Type: B
• Sample: BALF (n = 110)
• Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 24)
• Total TB diagnoses (n = 48)
Pathogenic TB diagnoses (n = 32)
Clinical TB diagnoses (n = 16)
Diagnosis basis: culture, AFS, Xpert, clinical criteria

• mNGS identified 67.23% infection cases within 3 days, while the
conventional methods identified 49.58% infection cases for over 90 days.
• For MTB BALF mNGS: Sen: 47.92% (23/48, 33.5–62.6%), similar to that of
Xpert (45.83%, 22/48) and culture (46.81%, 22/47), but much higher than
that of AFS (29.17%, 14/48); Spe: 98.39% (61/62, 90.2–99.9%).

Sun et al. (71) • Type: B
• Sample: smear-negative extrapulmonary samples (n = 208)
• Pre-ATT samples (n = 129)
• TB mNGS positive (n = 101)
• Total TB diagnoses (n = 180)
Clinical TB diagnoses (n = 180)
Diagnosis basis: clinical criteria

• mNGS is superior for TB on smear-negative extrapulmonary specimens and
could identify all possible pathogens within 48 h; mNGS positive rate was
highest for TBM (84.44%, 38/45).
• For MTB smear-negative extrapulmonary samples mNGS: Sen: 56.11%
(101/180, 48.53–63.43%), Spe: 100% (28/28, 84.98–100.00%); PPV: 100%
(101/101, 95.43–100.00%); NPV: 26.17% (28/107, 18.36–35.71%).

Liu et al. (72) • Type: A
• Sample: BALF (n = 322)
• Pre-ATT TB samples (n = 142)
Post-ATT TB samples (n = 69)
• MTBC mNGS positive (n = 118)
• Total TB diagnosis (n = 211)
Diagnosis basis: culture, AFS, Xpert, clinical criteria

• Positive MTBC detection by mNGS was affected by Vitamin D, TB initial
treatment/retreatment, erythrocyte sedimentation rate and cavity in chest
imaging, but not by prior ATT within 3 months.
• For MTBC pre-ATT BALF mNGS: Sen: 59.9% (85/142); while for MTBC
post-ATT BALF mNGS: Sen 47.8% (33/69).

Lin et al. (103) • Type: A + B
• Sample: CSF (n = 50)
• Pre-ATT samples (not mentioned)
• MTBC mNGS positive (n = 20)
• Total TB diagnosis (n = 34)
Pathogenic TB diagnoses (n = 22)
Clinical TB diagnoses (n = 12)
Diagnosis basis: culture, AFS, Xpert, clinical criteria

• mNGS could rapidly detect MTBC in CSF, which could be used as an early
diagnosis index of TBM. mNGS combined with MTB culture could increase
the detection rate.
• For MTB CSF mNGS: Sen: 58.8% (20/34), Spe: 100.0% (16/16).

Zhu et al. (104) • Type: B
• Sample: BALF (n = 78)
• Lung tissue (n = 29)
• Pre-ATT samples (not mentioned)
• TB mNGS positive (n = 43)
• Total TB diagnosis (n = 46)

• mNGS offers improved detection of MTB in BALF or lung tissue biopsy
samples in sputum-scarce or smear-negative cases.
• For MTB BALF mNGS: Sen: 90.63% (29/32, 73.83–97.55%), Spe: 97.83%
(45/46, 87.03–99.89%), PPV: 96.67% (29/30, 80.95–99.83%); NPV: 93.75%
(45/48, 81.80–98.37%);
• For MTB lung tissue mNGS: Sen: 85.71% (12/14, 56.15–97.49%); Spe:
93.33% (14/15, 66.03–99.65%), PPV: 92.31% (12/13, 62.09–99.60%), NPV:
87.50% (14/16, 60.41–97.80%).

*Given the different focuses in different researches, the inclusive criteria varied. We classified the published mNGS literature into three types according to research focus
and inclusive criteria: Type A (specific sample type was included, such as lung tissue, BALF, or CSF), Type B (specific pathogen was included, such as MTB), and Type C
(comprehensive studies that enrolled all samples or patients in the research organizations). This review only includes the parts related to MTB infection.
$ It clearly defined the control groups: positive controls (bacterial/cryptococcal meningitis or viral meningoencephalitis) and negative control (auto-immune encephalitis).
Although there was no specific definition in other studies, similar study designs were carried. Therefore, control was not mentioned in this review.

identifying specific species in the MTB complex (MTBC), and
it overcomes the difficulty in distinguishing between MTB and
non-tuberculous Mycobacteria (NTM). Also, Mycobacterium
bovis (58), Mycobacterium abscessus (59), and Mycobacterium
kansasii (60) have been reported to be detected via mNGS.

Co-infection and Comorbidity Detection
The mNGS overwhelms other pathogen detections in
indicating co-infection. Given the strategy of casting a wide
net, comprehensive detection and analysis can broaden the
spectrum to bacteria, fungi, and viruses (51, 61, 62). Cell-free
DNA sequencing was universally used in clinical trials and
scientific studies for convenient transportation and stable
performance (the data mentioned in this study were all generated
from DNA sequencing). Although RNA sequencing was limited
for being easily degradable and unstable (63), the combination
of RNA sequencing is more complete and convincing for
comprehensive diagnosis, which can get rid of missed diagnosis
of RNA virus infection.

It is also promising that mNGS pipeline modification shows
the potential to suggest underlying comorbidity. Predefining
neural networks of chromosomal deletions or duplications,
applying human reads generated from mNGS to map the
reference human database, the Illumina platform assisted in
diagnosing 36 cancer patients, of whom half had abnormal
imaging findings (64). It takes full advantage of a large number
of human host sequences and provides a new thread for
mNGS application.

Drug Resistance Detection
The emergence and prevalence of drug-resistant MTB strains is
a major public health challenge. MDR-TB has recently grown
at a rate of more than 20% a year (65). With the increasing
proportion of MDR-TB strains against first-line TB drugs (RIF,
INH, ethambutol, and pyrazinamide), there is a growing need
for second-line drugs (fluoroquinolones and aminoglycosides)
(66). It is calling for a test that is able to detect more mutations,
especially for filling the vacancy of second-line drugs.
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FIGURE 1 | (A) Sample selection and collection. Infectious fluids and tissues can be taken under the evaluation of clinicians. (B–D) Experimental procedures (wet
lab) of mNGS, mainly including sample processing and DNA/RNA extraction, DNA libraries construction, and sequencing. (E) Bioinformatic analysis (dry lab) of
mNGS. With the analysis pipeline modification, it is promising to determine tuberculosis, co-infection, comorbidity, and antibiotics resistance simultaneously. (F)
Clinical decision. After obtaining the report, clinical assessment and treatment adjustment can be made promptly.

After targeted selection and preparation of antimicrobial
resistance (AMR) genes, multiple drug resistance information
can be reported through one detection (67). Currently,
researchers are exploring and optimizing multiple platforms
to support the rapid clinical decision-making toward MTB
infection, and good results have been obtained on MiSeq, iSeq100
(67), and MinION (43, 44).

PRACTICAL CONSIDERATIONS AND
CORRESPONDING SOLUTIONS

Improve Positive Rate
The MTB is an intracellular mycobacterial pathogen (68), and
the cell wall is composed of high lipid content, especially a
large amount of mycolic acid surrounding the outside of the
peptidoglycan layer. They are the barriers blocking nucleic acid
release (32). In addition, MTB has a long growth circle and
paucibacillary pathogenicity (69), and there is a low bacterial load
in non-abscess samples.

According to clinical symptoms and preliminary judgment,
selecting appropriate samples is conducive to satisfactory results.
Results generated from sterile body fluids (CSF, blood, and joint
fluid) are more reliable for simple composition (32), while other
samples (BALF and sputum) tend to have a more complicated
composition of microorganisms but higher sensitivity and
positive rate (30, 70). Also, the antituberculosis treatment (ATT)

before sampling has an impact on the positive rate of MTB, and
timely sampling is vital (50, 71, 72).

Optimization of the testing process helps to improve the
positive rate. Enhanced preprocessing methods such as boiling
and bead bashing may benefit nucleic acid extraction (73,
74). Enrichment strategies such as Finding Low Abundance
Sequences by Hybridization (FLASH) (75) increase the sequences
significantly. As for analyzing and interpreting, many researchers
advised and used genus-specific read numbers ≥ 1 as the
reporting threshold for MTB (76, 77). In addition, targeted NGS
is a complementary method, and it enriches specific nucleic acids
to get a greater depth of reads from a complex sample (78).

Avoid Contamination
Amplification can amplify a low amount of contaminants over
and over to detectable sequences (79), resulting in promiscuous
reports. When sampling from the open airway or invasive
operation, it is difficult to avoid contamination from respiratory
preexist bacteria [Streptococcus pneumoniae, Haemophilus
influenzae, Moraxella catarrhalis (80), and Staphylococcus
aureus (81)], oral symbiotic microorganisms [Streptococcus
(82) and Candida albicans (83)], and skin colonization colonies
[Cutibacterium acnes (84) and Moraxella osloensis (85)]. Reagent
and laboratory contamination are also notable. Excessive
amplification of contaminated microorganisms will lead to
false-positive results of contaminated microorganisms and also
reduce the detection sensitivity of the pathogens. Therefore, the
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prejob training of sampling staff is needed to cut down the risk
of sampling contamination. Blank controls and positive controls
should be conducted to reveal the possible contaminating
microorganisms (86).

Although the occurrence of MTB is relatively specific (53), it
should be aware of false-positive results caused by contamination
or cross-contamination. One MTB-positive mNGS report was
later rejected by negative targeted PCR in residual samples, which
was considered contamination during the mNGS procedures
(61). It is also necessary to pay attention to the cross-
contamination of samples from the same batch: if multiple
samples in one run show low sequences of MTB, with one
panel obtaining high sequences, the possibility of getting false-
positive results should be alarmed. In one research, MTBC
sequences were detected in 12/695 (1.5%) non-TB cases, while
it is hard to interpret whether there is strong positive pollution
in the same batch (30). Under this circumstance, it is of great
importance to strictly implement quality control and promptly
conduct clinical communication to decide whether to resample,
re-sequence, or reanalyze.

Interpret the Report
Being comprehensive also means it is hard to figure out the
dominant pathogenic microbe. There is usually more than one
suspected pathogen mentioned in one mNGS report. Therefore,
how to determine the actual pathogenic microorganisms will
be a big problem. First, the sequences are enriched in vitro,
complex interactions of MTB and tissues enable the results
to quantify the in vivo pathogenicity (87). Second, due to
differences in extraction methods and gene stability, the sequence
numbers of bacteria, fungi, and viruses in one report are not
comparable. Third, common background microorganisms may
also be the critical co-infectious opportunistic pathogens. In
addition, negative results generated from low bacteria abundance
samples are also worth noting, such as samples taken after ATT.

Therefore, raw data need to be carefully analyzed and
evaluated under the codetermination of experimenters, analysts,
clinicians, and, if necessary, the involvement of epidemiologists
(88). In the case of a 77-year-old male patient with OAT, multiple
suspect microorganisms were detected (53). After excluding
laboratory contamination and virus with less clinical significance
[Torque teno virus (TTV)] (89), the final diagnosis was confirmed
as MTB infection.

Optimize Cost Performance
Although mNGS has high sensitivity and specificity, compared
with the mean cost of smear microscopy (US$13.31) and Xpert
(US$17.37) (90), it has no advantage in cost and price. Given
both test results and practical considerations [especially medical
costs (91)], mNGS seems to be overqualified under ordinary
circumstances. Sequencing results depend on the concentration
of the sequences in the sample, so the cost and analysis time
increase with increasing sequencing depth. After eliminating
human host sequences, which make up almost 99% of the total
sequence amount, less than 1% of the remaining sequences can
be used for mNGS. Especially for low bacteria load in chronic
extrapulmonary TB, the required cost and time for sequencing

and analyzing were far beyond what many hospitals could
bear (53).

On most occasions, mNGS is just a supplement to the routine
tests and a vital research tool but not a conventional option.
When the patient was exposed to MTB definitely and had typical
symptoms, routine detections are preferred. mNGS may show
better cost performance in the following circumstances: (1) the
patient has unexplained manifestations beyond traditional assays
or untypical symptoms such as fever, dyspnea, and elevated
inflammatory markers (7); (2) the patient is strongly suspected
of multi-pathogen infection; (3) the patient is in a critical
condition, and the timely and comprehensive detection results
are greatly needed.

Expand Usage in Drug Resistance
Detection
Although mNGS generates a considerable amount of data, it is
limited in AMR gene detection in the current stage.

First, limitation owes to an inherent flaw of mNGS: short
reads offered by Illumina are substantially not longer than
300 bp, tending to be shorter than the length of most mobile
genetic elements; while Nanopore sequencers, which are the long-
read sequencing approach, offer higher single-read error rates
(92). Although researchers have proposed and verified that data
integration and assembly can help to obtain drug resistance
results (76, 93), it has not been widely used in clinical laboratories
for complex data processing. Second, although mNGS shows
potential in matching with multiple known drug resistance sites,
new sites of drug resistance against second-line antituberculosis
drugs still depend on further studies. To refine and expand
the mutation catalog, scientists are carrying on studies of the
relationship between phenotypic expression and genetic markers
(2). Simultaneously, there are only a few specific sequences that
can be detected, with fewer than 5 reads in half of the TB cases
(30). It is also due to the low readings that drug resistance tests are
not available on most occasions (94). Therefore, the detection of
low abundance is a central challenge in clinical diagnostics (75).
Enrichment strategies and target NGS are expected to improve
the detection of AMR genes in addition to MTB detection.
FLASH-NGS has enriched targeted sequences by > 100,000-fold
and benefited detecting AMR genes of S. aureus and Plasmodium
falciparum (75).

CONCLUSION

The appearance of mNGS broadens our horizons, changing the
hypothesis and validation process from “one-to-one” to “dozens-
to-dozens”. Diagnostic mNGS is inclined to play an increasingly
important role in the next decade (95). It provides a new method
to distinguish between MTB and NTM, suggesting underlying
co-infection or neoplastic disease. It also shows the potential
of detecting AMR genes to guide clinical treatment. While
considering the cost, it is deprecated to use for patients with mild
or typical manifestations, for whom traditional targeted detection
methods (Xpert) are more economical.
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As the heat of the new technology is wearing off, practical
problems are emerging: Will better detection reward a better
outcome? Retrospective comparative studies have confirmed
its effectiveness in diagnosis, but prospective clinical trials are
lacking in knowing practical effects in the real world. We are
looking forward to more high-quality studies to improve cost
performance and standardize clinical application.
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