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INTRODUCTION

The protein aggregation properties of α-synuclein (α-syn) and mitochondrial dysfunction are
believed to be central to Parkinson’s disease pathophysiology, however unifying mechanisms
driving pathology remain uncertain. This paper proposes mitochondria-derived increased
intralysosomal oxidative stress shifts cathepsin cleavage patterns to favor truncated forms of α-syn
that increase its propensity to aggregate. Ultimately the shift toward intralysosomal aggregation
leads to pores that destabilize lysosomal membranes and bring about cell death. The hypothesis
is built on α-syn’s protein structure, cathepsin cleavage profiles, aggregation properties, and
processing by chaperone-mediated autophagy. This paper is not a comprehensive explanation of all
α-syn biology, but rather the author’s opinion on some of the most salient and important biology
that’s relevant to disease. In addition, this paper aims to help seed a grand unifying theory that
bridges leading proposed mechanisms for Parkinson’s disease (PD) pathogenesis.

BACKGROUND ON α-SYN

Structure
The 140 amino acids of the α-syn protein generate 3 distinct domains (Figure 1A). Residues 1–
60 create an amphipathic N-terminal domain with abundant lysines and a histidine collectively
resulting in a relative positive charge for this region (1). Curiously all known disease-causing
point mutations cluster within the N-terminal region. Central residues 61–95 form a hydrophobic
domainwith affinity formembranes with increased curvature and anionic phospholipids (2–4). The
final residues 96–140 create an acidic C-terminal region with several truncation sites (5, 6). Removal
of negative charges with C-terminal truncation increases aggregation propensity (7) and affinity for
dipolar lipids (2). As will be discussed further, this dynamic would allow α-syn to aggregate and
assemble pores within membranes.

Chaperone-Mediated Autophagy
Receptor-mediated lysosomal import of individual proteins containing selective targeting
sequences, including α-syn, describes chaperone-mediated autophagy (CMA) (8). The function
ascribed to CMA is to eliminate targeted proteins from the cytosol as a means of regulating
expression levels. Additionally, CMA likely functions as a protective mechanism for cellular quality
control (9).

Oxidative stress increases CMA activity by multiple mechanisms including upregulation
of essential import components (10). Mitochondria are the major intracellular producers
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FIGURE 1 | Intralysosomal oxidative stress alters cathepsin metabolism of α-syn. (A) Schematic of the α-syn protein highlighting differential cathepsin cleavage sites.

(B) Mitochondrial damage simultaneously leads to increased levels of intralysosomal mitochondria and α-syn. (C) α-syn is imported across the lysosomal membrane

via chaperone-mediated autophagy through the LAMP2A receptor. Within the lysosome, α-syn is truncated through removal of the C-terminal by cathepsin D (free

solution pathway). Alternatively α-syn is more completely degraded by lipid-associated cathepsin D or cathepsins B and L. (D) Oxidative stress increases lysosomal

import of α-syn by upregulation of chaperone-mediated autophagy. Cathepsins B and L are inactivated by reactive oxidative species, whereas cathepsin D processing

(both lipid-associated and free solution) remains unaffected.

of reactive oxidative species (ROS) and production
increases when they become damaged. Therefore, elevated
levels of oxidative stress from damaged mitochondria

Abbreviations: α-syn, alpha synuclein; ROS, Reactive oxidative species; PD,

Parkinson’s disease; CMA, Chaperone mediated autophagy.

would be expected to upregulate CMA and thereby increase
α-syn within the lysosomal system. Damaged mitochondria
pose a major internal threat to the cell and are also
cleared via lysosomes through the process of mitophagy.
Ultimately elevated lysosomal concentrations of α-syn likely
coincide with increased autophagic delivery of damaged
mitochondria (Figure 1B).
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INCREASED INTRALYSOSOMAL
OXIDATIVE STRESS ALTERS CATHEPSIN
CLEAVAGE OF α-SYN

Delivery of damagedmitochondria would be expected to increase
levels of reactive oxidative species within the lysosomal lumen. A
mechanism is outlined below in which intralysosomal oxidative
stress alters cathepsin-mediated processing of α-syn thereby
promoting aggregation and ultimately pore formation (11, 12).
A protective countermeasure is additionally outlined which may
serve to prevent aggregated α-syn pores from permeabilizing the
lysosomal membrane.

Cathepsin Cleavage of α-Syn:
Baseline Balance
McGlincy and colleagues identified differences in α-syn cleavage
sites by cathepsins B, L, and D in free solution and in
combination with phospholipids (Figure 1C) (13). In free
solution, cathepsins B and L cleave throughout the length of
α-syn but primarily within the N-terminus and hydrophobic
regions. In contrast, cathepsin D in free solution cleaves almost
exclusively in the C-terminus. By removing the negatively
charged C-terminus, the truncated α-syn molecule increases
oligomerization (7) and ultimately the downstream potential for
pore formation.

Cathepsins B and L oppose oligomerization by virtue of
cleavage sites within the N-terminal and hydrophobic regions.
Targeting these regions prevents oligomerization by reducing
intermolecular α-syn interactions. Moreover, cathepsin L is
unique in its capacity to degrade the most stable (fibrillar) form
of oligomers (13). In this baseline scenario antagonistic forces are
counterbalanced, as cathepsin D promotes oligomerization and
downstream pore formation whilst cathepsins B and L hinder the
process (Figure 1C).

Intralysosomal Oxidative Stress Increases
α-Syn Oligomerization
Tipping the enzymatic balance toward cathepsin D activity and
away from cathepsins B and L would promote α-syn aggregation
and pore formation. Cathepsins B and L, but not cathepsin
D, are susceptible to inactivation by oxidation from reactive
carbonyls (Figure 1D) (14, 15). This effect is due to oxidation of
cysteine residues within cathepsin B and L catalytic sites. Thus, a
lysosomal lumen high in oxidants would shift toward cathepsin
D processing of α-syn and as a consequence higher likelihood of
downstream aggregation.

Preventing Lysosomal Permeabilization by
α-Syn Aggregates
The regional selectivity for cleavage between the cathepsins
outlined thus far is contingent on being in free solution, which
mimics the lysosomal lumen. However, cathepsin D activity
is intriguingly altered when in association with membranes.
In the presence of phospholipids the activity of cathepsin
D broadens beyond the C-terminus to encompass the N-
terminal and hydrophobic regions of α-syn (Figure 1) (13).

While cathepsin D promotes oligomerization in free solution,
as oligomers develop into membrane-associated pores cathepsin
D can put a brake on the process. Altered activity of cathepsin
D provides a critical limitation on oligomer propagation, given
that baseline anti-oligomerization factors (cathepsins B and
L) are inactivated by exposure to oxidized material. This
regulatory mechanism is critical because pores within lysosomal
membranes leads subsequent disastrous permeabilization if
unchecked (16).

Advanced age is a well-known significant risk factor
for PD. Moreover, all neuronal subtypes displaying α-syn
pathology are unified in their abundance of lipofuscin or
other oxidized lysosomal age pigments (17). It is highly
probable that over time and in conditions of elevated
or defective mitochondrial turnover that the capacity of
lysosomal processing is exceeded and subsequent pathological
cascades ensue.

CONCLUSIONS AND FUTURE
DIRECTIONS

This paper proposes a simple mechanism for altered α-
syn metabolism based on levels of intralysosomal oxidative
stress. Mitchondria are the most significant source of ROS
within cells and lysosomes are the ultimate mediators of
mitochondrial degradation. The major determinant modulating
the mechanistic pathway outlined here would likely be
the efficiency and rate mitochondrial degradation for a
given cell.

Excessive production and inability to inactivate pores could
lead to disease from several pathways. Mutations or oxidative
modification of target sequences could render α-syn a sub-
optimal substrate for cathepsins. Impaired lysosomal capacity
(18) through mutations or aging could also prevent deactivation
of α-syn pores. If not inactivated, pores could promote cell
death by inserting within lysosomal membranes and allowing
cytoplasmic release of cathepsins. Beyond damaging individual
neurons, transcellular transmission of pores is plausible as
chemical blockage of lysosomal function promotes exocytosis of
α-syn oligomers (19).

The two most prominent proposed mechanisms of PD
pathogenesis are centered on α-syn oligomerization and
mitochondrial dysfunction. Recently autophagosomal and
lysosomal dysfunction have also gained traction. So far a grand
unifying theory for these mechanisms has remained elusive. This
paper proposes a novel mechanism connecting α-syn aggregation
with mitochondrial autophagy that bridges the current theories
of PD pathogensis. The multivariable mechanisms outlined
here represent exciting opportunities for future discovery and
drug intervention.
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