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MicroRNAs are small non-coding nucleic acids that are responsible for regulating the

gene expression by binding to the coding region and 3’ and 5’ un-translated region of

target messenger RNA. Approximately 70% of known microRNAs are expressed in the

brain and increasing evidences demonstrate the possible involvement of microRNAs in

Alzheimer’s disease (AD) according to the statistics. The characteristic symptoms of AD

are the progressive loss of memory and cognitive functions due to the deposition of

amyloid β (Aβ) peptide, intracellular aggregation of hyperphosphorylated Tau protein, the

loss of synapses, and neuroinflammation, as well as dysfunctional autophagy. Therefore,

microRNA-mediated regulation for above-mentioned changes may be the potential

therapeutic strategies for AD. In this review, the role of specific microRNAs involved

in AD and corresponding applications are systematically discussed, including positive

effects associated with the reduction of Aβ or Tau protein, the protection of synapses, the

inhibition of neuroinflammation, the mitigation of aging, and the induction of autophagy in

AD. It will be beneficial to develop effective targets for establishing a cross link between

pharmacological intervention and AD in the near future.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of late-life dementia, with the characteristics
of memory loss, impaired cognitive function, and various neuropsychiatric disturbances. The
pathological changes in AD include the deposition of amyloid β (Aβ) peptide as senile plaques
(SPs), the aggregation of hyperphosphorylated Tau protein as neurofibrillary tangles (NFTs), and
neurodegeneration. With the acceleration of an aging society, the more and more elderly will be
suffered from AD in the future. Although the underlying molecular mechanisms of AD are still
unknown, the growing evidence indicates that the deposition of Aβ, the abnormal aggregation of
Tau protein, and neuroinflammation play major roles in the pathogenesis of AD.

MicroRNAs with the length of 18–25 nucleotides, as the post-transcriptional regulators of gene
expression, usually down-regulate the expression of mRNA and protein upon targeting specific
mRNAs by binding to (3′-UTR) of the targets. It has been estimated that about 60% of human
genes are regulated by microRNAs (1–3), suggesting that these microRNAs play critical roles in a
series of biological processes. Data from literature have shown that microRNAs are widely found in
the nervous system, some microRNAs exhibit the abundant expression in the brain and participate
in neuronal development, synaptic plasticity, neuronal differentiation, and the pathogenesis of
neurodegenerative disorders (4). Meanwhile, the expression of some microRNAs is dynamically
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regulated during the process of brain development, neuronal
maturation and neurogenesis (5). Therefore, the slight aberration
in the expression and activity of microRNAs may be detrimental
to brain functions (6–8).

Although pathological features of AD are very well-
documented; unfortunately, the available treatments cannot
terminate disease progression, but can slow down it. Recently,
growing evidence has demonstrated that the dysfunction of
microRNAs within neurons and the altered expression of
microRNAs are highly associated with the pathogenesis of
neurodegenerative diseases (9–12). Thus, the regulation of
microRNAs by exogenous interventions will provide a new
perspective to explore the pathogenesis and neuropathology
of AD.

microRNAs INVOLVEMENT IN AD

Aβ Regulation Mediated by microRNAs
in AD
Excessive accumulation of Aβmay induce significant cytotoxicity
in neurons, and is a key pathogenic factor of AD. Increasing
evidence suggests that microRNAs can affect Aβ production.
Several studies have used profiling strategies to identify the dys-
regulation of microRNAs in AD. Some dys-regulatedmicroRNAs
involved in the regulation of Aβ deposition have been reported in
human brain, mouse models, and cell lines with AD (9, 13). Aβ

peptide is produced from amyloid precursor protein (APP) after
cleaved by beta-site APP cleaving enzyme 1 (BACE1). Moreover,
presenilin 1 (PS1) mutation with the function to produce Aβ

from its precursor beta APP can enhance p53 activity in human
embryonic kidney (HEK)-293 cells and p53 expression in familial
AD (FAD)-affected brains (14). Some specific microRNAs have
been reported to be either up-regulated or down-regulated in AD.
For example, miR-9, miR-29, miR-29a/b-1, miR-124, miR-101,
miR-107, miR-298, and miR-328 contribute to the increase of
Aβ production, all of them can exhibit the reduced expression in
patients or model animals with AD by regulating the expression
of BACE1 and/or APP (15–18). Data from clinical studies
have demonstrated that miR-29a/101 in peripheral whole blood
from AD patients is markedly down-regulated (19). Certain
microRNAs also participate in physiological regulation of APP
levels. For example, the overexpression of miR-106a and miR-
520c can result in the significant reduction of APP level in
HEK-293 cells (20). Moreover, one study has demonstrated that
the reduced expression of miR-16 can potentially cause the
accumulation of APP protein in the embryo of spontaneous
senescence-acceleratedmouse P8 (SAMP8)model mice with AD;
in contrast, the overexpression of miR-16 also can cause the
decreased expression of APP protein in vitro and in vivo (17).
Thus, the exogenous overexpression of these microRNAs may
play a critical role in the generation of Aβ. The overexpression
of miR-29 in humans and transgenic mice can cause the decrease
of endogenous BACE1 and the increase of Aβ production (9).
Meanwhile, the decreased expression of miR-17, miR-101 and
miR-16 is accompanied with high APP level (21), suggesting
that the overexpression of miR-17, miR-101 and miR-16
suppresses APP. Another class of microRNAs down-regulated

in 12-month-old SAMP8 mice is miR-195 when compared
with SAMR1 mice (22). The overexpression of miR-195 in
N2a/APP695 cells presents the decreased Aβ level, while the
inhibition of miR-195 leads to the increase of Aβ. The reduced
expression of these microRNAs may result in the elevated
expression and function of BACE1, thus causing aberrant Aβ

production as the characteristics of the brains from humans and
mice with AD. In addition, overexpressed miR-186 in neuronal
cells can result in reduced Aβ level by suppressing BACE1
expression; however, the down-regulated endogenous miR-186
can cause the increased BACE1 level (23). These findings provide
the molecular mechanisms associated with BACE1, APP and Aβ

deregulation in AD and new perspectives for the etiology of
this disease. However, it remains unclear whether the reduced
microRNAs play a primary role in the induction of AD. Besides,
other microRNAs increase Aβ levels; for example, miR-128 is
involved in the development and progression of AD. The levels
of miR-128 and Aβ are significantly increased in the cerebral
cortex of 3xTg-AD mice when compared with wild type mice;
in contrast, miR-128 knockout mice reveal the improvement
of cognitive capacity when compared with 3xTg-AD mice. In
another study (24), the inhibition of miR-126 has been found to
be neuroprotective against Aβ42 toxicity, suggesting that both
miR-128 and miR-126 may be the important mechanistic link
with AD progression (25).

The microRNA-Medicated
Hyperphosphorylation of Tau Protein in AD
In addition to Aβ, the accumulation of intracellular insoluble
hyperphosphorylated Tau protein is another pathological feature
in AD. The detrimental effects of altered microRNAs in AD
neurons may not be restricted to Aβ production and deposition.
MicroRNA is also closely related to the phosphorylation and
pathological aggregation of Tau protein. For example, miR-132
has a strong regulatory effect on the central nervous system.
According to the studies on miR-132/-212 double knockout
mouse model, double knockout mice exhibit significant cognitive
deficits in recognition, new object recognition and spatial
memory (26). In addition, miR-132/-212 has been reported as
the down-regulation in the frontal cortex of the AD subjects
with mild cognitive decline (27), thus confirming that miR-132/-
212 plays a critical regulatory role in cognitive capacity. On the
other hand, miR-101b mimic can rescue Tau pathology, dendritic
abnormality, and memory deficits in AD mice (28). MiR-137
level has been shown to be a regulator of neuronal development
and cognitive function; and clinically to be decreased in the
serum of patients with AD so that it could be used as a marker
for early diagnosis (29). Similarly, the level of miR-137 also
exhibits a decrease in APP/PS1 transgenic mice; however, miR-
137 mimics can inhibit p-Tau (Ser202, Ser396, and Ser404)
induced by Aβ1-42 in SH-SY5Y cells. In addition, miR-15a,
as one of the members in miR-15 family, is frequently down-
regulated in AD (30). Moreover, miR-15a can target extracellular
signal-regulated kinase 1 (ERK1) for the involvement of Tau
hyperphosphorylation (9). The decreased miR-15 can participate
neuronal Tau hyperphosphorylation. Data from clinical trials
indicate that miR-106b is down-regulated in sporadic AD
patients and SH-SY5Y cells (31), and can inhibit Aβ42-induced
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Tau phosphorylation at the site of Tyr18. Similarly, the expression
of miR-512 from Tau protein-rich brains of the patients with
advanced AD is significantly reduced, indicating that miR-512
can negatively regulate Tau protein through targeting Fas-related
death domain protein (32). Furthermore, miR-153 from the
frontal cortex of AD patients is reduced when compared with
age-matched control (33). Of course, there are some abnormally
elevated microRNAs involved in the hyperphosphorylation of
Tau protein, and miR-125b is markedly elevated in animal
models with AD. In C57BL/6 wild-type mice, the injection with
miR-125b can cause increased phosphorylation of Tau protein
and impaired learning and memory capacity (34). Similarly,
in primary hippocampal neurons, the overexpression of miR-
125b can lead to Tau hyperphosphorylation, affect synaptic
morphology, and accelerate apoptosis (34, 35). Conversely,
the suppression of miR-125b in primary neurons can reduce
Tau phosphorylation and kinase expression/activity. There is
inconsistent with the protective role of miR-125b in AD. In IL-
1β-induced primary co-culture of human neuronal-glial cells,
miR-146a is significantly up-regulated. The expression of miR-
146a correlated with senile plaque density and synaptic pathology
in the Tg2576 and 5xFAD TG mouse models (36). In China,
based on the study involved in 52 patients with mild and
moderate AD, the treatment with modified Shuyu Pill could
effectively improve the cognitive function of the patients with
mild and moderate AD and the underlying mechanism may be
related to inhibiting the expressions of IL-1β/NF-κB/miR-146a in
peripheral blood (37). In addition, the up-regulation of miR-26b
in temporal cortex of the AD models from the early prodromal
stage, and the elevated level of miR-26b in postmitotic rodent
and human neurons can contribute to the phosphorylation of
Tau and apoptotic cell death (38). Another study has shown
that compared with the normal elderly group, miR-34a in blood
mononuclear cells of AD patients is significantly down-regulated
for regulating the phosphorylation of Tau (39), suggesting that
miR-34a could be used as a non-invasive biomarker for AD.
Similarly, the co-aggregation of Tau could be associated with
specificmutations of PSEN1 and/or PSEN2 genes in sporadic and
dominantly inherited AD (40).

microRNA-Mediated Synaptic Dysfunction
in AD
The alteration in synaptic plasticity is one of the important
features for patients with AD. The genome-wide transcriptome
studies indicate that many key genes for synapse activity are
down-regulated in AD (41). The recovery of cognitive function
can be achieved by restoring the reduced microRNAs acting
at the synaptic level. The abnormal down-regulation of miR-
188-5p is reported in the cerebral cortices and hippocampus
of AD patients when compared with age-matched control
subjects (42). Dendritic spine and synapse loss are well-
documented in AD. However, the overexpression of miR-188-
5p alleviates the decrease in dendritic spine density in rat
primary hippocampal neuron cultures with the exposure of
Aβ. Long-term potentiation (LTP) is believed to be a synaptic
mechanism underlying the storage of long-term memory in the

brain. The replenishment of miR-188-5p can improve behavioral
outcomes and enhance synaptic activity, importantly, and restore
cognitive function in AD mouse models such as 5XFAD mice
(42, 43). However, some microRNAs are abnormally elevated in
AD models and could have negative effects on neurons. Thus,
they could need to be down-regulated by exogenous means. In
the study of AD patients, miR-34a/p73 expression is found to be
remarkably increased in hippocampal tissues, which participates
in modulating synaptic activity by lessening synaptotagmin-
1 expression (44). Through microRNA microarray screening
analysis, the significant up-regulation of miR-30b in the brain
of AD patients and transgenic mice is observed (45). The
overexpression of miR-30b in hippocampal tissues can jeopardize
synaptic structure and function of hippocampal neurons; in
turn, can cause the deficits in cognitive function in normal
wild type animals. In contrast, the knockdown of miR-30b in
transgenic mice prevents synaptic and cognitive decline. These
findings suggest that memory deficits in AD may be caused
by microRNA alterations. Additionally, the up-regulation of
miR-181 and SIRT1 and the decreased c-Fos protein level are
observed in the dorsal and ventral hippocampal tissues of 3xTg-
AD mice. SIRT1 and c-Fos transcription factor are involved
in memory consolidation as the potential targets of miR-181
(46). Another study has reported that Aβ induces the up-
regulation of miR-124 in the brain of Tg2576 mice (47). PTPN1
has been implicated in the formation of hippocampal synapses
and learning capacity. Importantly, miR-124 directly targets the
3′-UTR of PTPN1 to suppress its translation, thus disrupting
synaptic transmission, plasticity and memory. Consistent with
these findings, the up-regulation of miR-574 in APP/PSEN1mice
has been reported and miR-574-5p can influence the expression
of neuritin (NRN1) involved in synaptic plasticity (48). The
results from HT22 hippocampal neuronal cells have shown
that miR-574 inhibitors significantly promote NRN1 expression.
Additionally, the treatment with Aβ42 can cause the increase
of miR-142-5p in SH-SY5Y neuronal cells. In contrast, the
inhibition of miR-142-5p can rescue Aβ42-mediated synaptic
dysfunction (49). These findings suggest that the reversal of dys-
regulatedmiR-30b, miR-124, miR-574-5p, andmiR-142-5p in the
brain may prevent or slow cognitive decline in AD. BDNF as a
neurotrophic factor plays a pivotal role in synaptic plasticity and
cognition. Previous studies have demonstrated that a reduction
in BDNF within the prefrontal cortex and hippocampus is
highly related to cognitive deficits in animal models with AD
(50, 51). Recent study has demonstrated that miR-10a is also
a negative regulator in synapse remodeling as a result of the
reduction in BDNF-TrkB signals in AD rats. Similarly, the up-
regulation of miR-206 in hippocampal tissue, cerebrospinal fluid,
and plasma of APP/PSEN1 transgenic mice is also observed, and
the alteration of miR-206 contributes to the pathology of AD
through down-regulating BDNF (52).

The Modulation Role of Neuroinflammation
in AD
Neuroinflammation in brain tissues of AD models is primarily
mediated by microglia and astrocytes. It is a high risk of AD and
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involved in the pathological process of AD. This is substantiated
by increased levels of pro-inflammatory cytokines including
TNF-α and/or IL-6 in serum and brain tissue of AD patients
when compared with the controls (53, 54). Another evidence
comes from the presence of microglial cells surrounding amyloid
plaques in AD cerebral cortex, the presence of Aβ deposition in
T-cells can activate microglia and reactive astrocytes in the brains
of AD patients (55). Moreover, the up-regulation of APP is also
associated with neuroinflammation. Inflammatory responses are
strongly associated with the altered expression of microRNAs in
the AD brain. In order to elucidate whichmicroRNA is important
in the production of pro-inflammatory cytokines and proteolytic
enzymes in AD, mRNA targets and specific roles in brain need to
be identified and established.

Several research groups have investigated the effects of
microRNAs on LPS-induced neuroinflammation and Toll-like
receptor 4 (TLR4)-mediated inflammation. The miR-132 is
involved in multiple physiological and pathological mechanisms,
such as neuronal cell development (56), synaptic plasticity
(57, 58) and inflammation (59, 60). Recent studies indicate
that miR-132 participates in the regulation of inflammation
and is a negative regulator of the inflammatory response in
PC12 (61). Interestingly, resveratrol treatment could ameliorate
inflammatory response in PC-12 cells via up-regulating miR-
132. Moreover, based on this report, IL-1β, IL-6, and TNF-α
are proposed as the targets of miR-132. Similarly, miR-132 is
down-regulated in LPS-induced inflammatory injury in neuron
HT-22 cells and the overexpression of miR-132 attenuates the
inflammatory response (62). TNF receptor associated factor
6 (TRAF6) linked to promote inflammation may be a direct
target of miR-132. In addition, miR-206 can enhance LPS-
induced inflammation and promote the release of Aβ in
microglia by binding to the 3’-UTR of insulin-like growth
factor 1 (IGF-1) so that IGF-1 exposure can mitigate miR-206-
induced inflammation in microglia, indicating that the miR-
206/IGF-1 signaling pathway may be associated with microglial
inflammation in AD (63).

Persistent microglial activation is able to initiate inflammatory
activity, results in neuronal damage and eventually causes
AD. MiR-155 is one of the most well-studied microRNAs in
AD-related neuroinflammatory events. In 3xTg AD animal
model, there is a high expression level of miR-155. The up-
regulation of miR-155 is simultaneously accompanied with an
enhanced activation of microglia and astrocytes, thus triggering
the production of inflammatory mediators. Moreover, miR-155
can also contribute to the regulation of AD through activating
different T cell functions during inflammation (64). Clinical
data from human AD brains indicate that miR-125b and miR-
146 levels are elevated to aggravate neuroinflammation and
reduce complement factor H, which is associated with the
neuronal release of mR-146a and miR-155 and inflammatory
spreading in the AD brain (65, 66). During investigating
the significance of microRNA release in the AD brain, let-
7 family has also gained extensive attention. Let-7 has been
reported to be critical for maintaining microglial function in
inflammation-mediated injury (67). In the studies on let-7a in
LPS-treated microglial BV2 cells, let-7a level is found to be

remarkably decreased; however, let-7a overexpression can reduce
the production of inducible nitric oxide synthase (iNOS) and
IL-6, while promoting anti-inflammatory genes at the same
time in microglia (68). Consistent with this finding, let-7a can
strongly inhibit the expression of inflammatory cytokines by
controlling the activation of apoptosis signal-regulating kinase 1
(ASK1), thus activating anti-inflammatory cytokines such as IL-
10 and Mycs in microglia (69). Meanwhile, let-7 could act as a
regulator of microglial function during inflammation and be a
novel target for enhancing the beneficial function of microglia in
CNS disorders. In addition, the released let-7b activates the Toll-
like receptor 7, thus resulting in neuronal degeneration. Besides,
miR-32-5p knockdown also can ameliorate the production of
inflammatory cytokines in LPS-treated microglia and dual-
specificity phosphatase 5 (Dusp5) is a direct target of miR-
32 (70). Similar with this, miR-204 inhibition could repress
inflammation process in LPS-induced mouse microglial cell lines
(N9 and BV2) via regulating Sirt1 level (71). One of previous
studies has found that the loss of miR-29a disrupts the activity
of neuronal navigator 3 that is involved in guidance, and is
enriched in degenerating pyramidal neurons in AD (72). Thus,
above microRNAs may provide potential therapeutic strategies
for neuroinflammation. The pharmacological modulation of
microRNAs in anti-inflammatory response can be achieved.
For example, klotho at different concentrations (0.5, 1 and
2 nM) or linagliptin (50µM) can inhibit the expression of TNF-
α and then alleviate the inflammation in human peripheral
blood mononuclear cells (PBMCs) of AD patients, probably by
suppressing inflammatory cytokines and up-regulating miR-29a
(73). Therefore, microRNAs may have the therapeutic potential
of AD through attenuating neuroinflammation.

microRNA-Mediated Aging in AD
Aging is accompanied with behavioral impairments at different
degrees, including impaired learning and memory capacity.
Increasing evidence suggests that numerous microRNAs are
largely implicated in aging and cellular changes associated
with aging. Thus, it is very important to evaluate microRNAs
that affect these aging events in order to determine the roles
of microRNAs in aging. Previous studies have demonstrated
that the majority of microRNAs such as miR-151a-3p, miR-
181a-5p, miR-1248, miR-103, miR-107, miR-128, miR-130a,
miR-155, miR-24, miR-221, miR-496, and miR-1538 in serum
of human are down-regulated as the extension of age (74).
Interestingly, miR-1248 and miR-181a are negatively associated
with the expression of IL-6 and TNF-α and positively correlated
with anti-inflammatory cytokines including TGF-β and IL-10,
suggesting that circulating microRNAs could be the biological
markers of aging. Data from peripheral blood of AD subjects
have demonstrated that miR-34a expression is remarkably up-
regulated when compared to normal elderly controls (39, 75).
In addition, compared with age-matched healthy control, the
increased expression of miR-34a in the brain is closely associated
with the severity of AD (76). Also, human and mouse SIRT1
mRNA are the targets of miR-34a, so that miR-34a expression
is closely related with human longevity (77). Our research
team has also found that swimming intervention with a period
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of 8 weeks can attenuate brain aging in D-galactose-induced
AD rats. Mechanically, swimming training down-regulates miR-
34a expression in AD rats, which is also confirmed by miR-
34a inhibitor in SH-SY5Y cells (78). In normally aged mice,
resveratrol treatment can improve learning andmemory capacity
through down-regulating miR-124/-134, in turn, activating
CREB-BDNF signal pathway, which suggests that a resveratrol-
rich diet may be beneficial for preserving cognitive function in
aged individuals (79). Up to date, the contribution of microRNAs
to age and/or senescence-related changes in gene expression
is not completely clear. For example, miR-17, miR-19b, miR-
20a, and miR-106a are significantly down-regulated in various
human aging model systems (80). Meanwhile, the decrease in
thesemicroRNAs is correlated with the increased transcript levels
of CDK inhibitor p21/CDKN1A. Similar to this, a series of
microRNAs such as miR-9, miR-19a, miR-135a, miR-15b, miR-
16, miR-214, and miR-141 are reported to be associated with
aging (81, 82). These findings indicate that microRNAs can be
the novel markers of cell aging in humans.

Dysfunctional Autophagy and
Autolysosomal Proteolysis Mediated by
microRNAs in AD
Autophagy involved in the degradation of long-lived proteins,
cytosolic components, or damaged organelles is essential for
the survival of mature neurons (83–85). Multiple studies
have demonstrated that the induction of autophagy plays a
neuroprotective role; on the contrary, deficient autophagy or
impaired autophagic flux can result in neurological damage
in most neurological disorders (86–88). The regulation of
Aβ and Tau is critically affected by autophagy. For example,
phosphorylated Tau in neurons is mainly removed by normal
autophagy, and autophagy activation or enhancement can
effectively promote the clearance of Tau (89). In addition,
loss-of-function mutations in several genes with autophagy-
related function such as Becn1/VPS30/ATG6 (90), Atg7 (91), and
Atg5 (92) can result in dysfunctional autophagy and increased
accumulation of disordered and aggregated proteins such as Aβ

and Tau in AD, indicating that autophagy failure has become an
important therapeutic target for AD and regulating autophagy
by exogenous means may become a new strategy for AD
treatment. Beclin1 plays a significant role in autophagy. The
studies from cultured neurons and transgenic mice have verified
that the deficiency of Beclin1 can provoke the deposition of Aβ;
however, Beclin1 overexpression can mitigate the accumulation
of Aβ (93). Moreover, the induction of autophagy via the
administration of a lentiviral vector expressing Beclin1 can
decrease both intracellular and extracellular Aβ pathology in
APP transgenic mice (90). Rapamycin, as an autophagy inducer,
can attenuate Aβ accumulation and inhibit Tau phosphorylation
in AD mouse models (94). Similarly, autophagy-related genes
including LC3-II/LC3-I, Beclin1, Atg7, and autophagic influx
are markedly decreased in D-galactose-induced AD rat models
when compared with the control; however, 8-week swimming
training (autophagy mimics) alleviates cognitive function defects
via restoring autophagy in an AD rat model (78). Above

findings reveal the reasonable proposition that the induction of
autophagy has potential therapeutic benefits in AD. However,
considering the functional status of autophagy in AD is
context-dependent and complex, controversial data about the
applicability of inducing autophagy as a general treatment
strategy for AD are also exist. For example, autophagy inhibition
has been reported to mitigate Aβ42-induced cell death (95,
96), thus, it appears that the time of intervention for inducing
autophagy during the progression of these neurodegenerative
diseases should be considered during implementing autophagy
induction as a therapeutic approach. As illustrated from one
of previous studies, increasing induction of autophagy prior
to the development of AD-like pathology in 3×Tg-AD mice
can reduce the levels of soluble Aβ, Tau and amyloid plaques,
whereas the induction after the formation of mature plaques
and tangles has no effect on AD-like pathology or cognitive
deficits (97).

In addition to the defects of autophagy at the early
stages, autolysosomal proteolysis is significantly impaired in
AD and its defect is one of the key pathogenic factors in
AD (98, 99); thus, selectively enhancing lysosomal activity by
genetic ablation of cystatin B to enhance the clearance of
autophagic substrates and ameliorate amyloid pathology and
memory deficits in TgCRND8 AD mouse models (100). The
recovery of autophagic flux is crucial for reversing spatial
learning and cognitive deficit. It has been reported that
autophagic flux of AD patients is impaired, and autophagic
sequestration is stimulated in AD patients at the early
stage, while lysosomal clearance is progressively declined and
autophagic flux is gradually hindered due to the lack of the
substrate clearance (101). Similarly, increased autophagic flux
with daily intra-peritoneal injection of pimozide in AD mice
decreases the aggregation of Tau through themTOR-independent
AMPK-ULK1 axis (102). Additionally, the treatment with
rapamycin and an anti-epileptic drug carbamazepine can
alleviate cognitive impairment and Aβ neuropathology in
APP/PS1 transgenic mouse model through restoring normal
autophagy (103). These observations support the disruption
of substrate proteolysis within autolysosomes as the principal
mechanism of dysfunctional autophagy in AD.

In recent years, accumulating evidence suggests that
microRNAs play an important role for the regulation of
autophagy in brain tissue of AD patients. In addition to the
correlation with aging, miR-34 is also linked to autophagy
and longevity in several species. The decreased miR-34 level is
detected in long-lived dietary-restricted mice. In human cells,
miR-34 can target Bcl-2, thereby directly inhibiting autophagy-
related BECN1/VPS30 complex (104). According to the reports
(105), miR-214-3p is also down-regulated in hippocampal
neurons of SAMP8 mice and cerebrospinal fluid from sporadic
Alzheimer’s disease. The treatment with miR-214-3p for SAMP8
mice improves behavioral performance and attenuates neuronal
apoptosis. Another study (106) has also demonstrated that
miR-214-3 is down-regulated in patients and model animals
with AD. It negatively regulates autophagy, thus exerting its
neuroprotective effects and Atg12 is a direct target of miR-214-3p
in neurons. MiR-299-5p is also a potent autophagy regulator,
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FIGURE 1 | Specific microRNAs involved in the development of AD for regulating Aβ deposition, Tau hyperphosphorylation, synaptic dysfunction, neuroinflammation,

and autophagic dysfunction. Meanwhile, microRNAs can be considered as the preventive and therapeutic targets to develop novel and effective intervention

strategies for AD.

and the decreased level of miR-299-5p is also reported in

hippocampal tissue of APPswe/PS1dE9 mice and cerebrospinal

fluid of AD patients. Strikingly, the overexpression of miR-
299-5p promotes cognitive impairment of APPswe/PS1dE9

mice via modulating autophagy and apoptosis by targeting

Atg5 (107). Similarly, miR-376a, miR-376b, and miR-181a can

prevent starvation-induced autophagy in human cell lines by

blocking the expression of Beclin1, Atg4c, or Atg5 (108). In
addition, the expression of miR-132/212 in AD brain is also
observable, and miR-132/212 is down-regulated in AD (109).
Mechanistically, Atg9a and Atg5-12 are its targets. Besides,
recent studies have found that autophagy is also regulated by
miR-30d and miR-101 through inhibiting Beclin1 and Atg4d
expression, which may be a new mechanism for AD (110, 111).
The induction of autophagy by pharmacological administration

such as resveratrol, osthole and ampelopsin has been proved
to effectively reduce neuronal aggregates and alleviate the

progression of neurological symptoms in several mouse models

with AD through activating microRNA-mediated autophagy
(112, 113).

REMARKS AND FUTURE DIRECTIONS

The deposition of Aβ, intracellular aggregation of
hyperphosphorylated Tau protein, the loss of synapses,
neuroinflamamiton and autophagic dysfunction, as well as
aging reveal the critical roles in the pathogenesis of AD,
which is associated with the dysfunctional regulation of a
series of microRNAs (Figure 1). Given the large number of
microRNAs involved in AD, the analysis of microRNAs in body
fluids is a relatively simple procedure when compared with
structural magnetic resonance imaging (MRI) and molecular
neuroimaging ith positron emission tomography (PET),
and microRNAs appear to be promising. A more complete
understanding of the regulatory roles of specific microRNAs in
AD will be helpful for the development of therapeutic strategies.
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Therefore, microRNAs as diagnostic and therapeutic agents in
AD should be extensively explored and applied in the future.
However, possible limitations of microRNAs including the
induction of autophagy at suitable stages need to be further
explored and clarified.
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