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Purpose: Homodyne filtering is a standard preprocessing step in the estimation
of SWI. Unfortunately, SWI is not quantitative, and QSM cannot be accurately
estimated from filtered phase images. Compared with gradient-echo sequences
suitable for computing QSM, SWI is more readily available and is often the
only susceptibility-sensitive sequence acquired in the clinical setting. In this
project, we aimed to quantify susceptibility from the homodyne-filtered phase
(HFP), acquired for computing susceptibility-weighted images, using convolu-
tional neural networks to solve the compounded problem of (1) computing the
solution to the inverse dipole problem, and (2) compensating for the effects of
the homodyne filtering.
Methods: Two convolutional neural networks, the U-Net and a modified QSM-
GAN architecture (HFP-QSMGAN), were trained to predict QSM maps at differ-
ent TEs from HFP images. The QSM maps were quantified from a gradient-echo
sequence acquired in the same individuals using total generalized variation
(TGV)-QSM. The QSM maps estimated directly from the HFP were also included
for comparison. Voxel-wise predictions and, importantly, regional predictions of
susceptibility with adjustment to a reference region, were compared.
Results: Our results indicate that the U-Net model provides more accu-
rate voxel-wise predictions of susceptibility compared with HFP-QSMGAN
and HFP-QSM. However, regional estimates of susceptibility predicted by
HFP-QSMGAN are more strongly correlated with the values from TGV–QSM
compared with those of U-Net and HFP-QSM.
Conclusion: Accurate prediction of susceptibility can be achieved from filtered
SWI phase using convolutional neural networks.
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1 INTRODUCTION

Quantitative susceptibility mapping is a recent MRI tech-
nique that has enabled the in vivo quantification of tis-
sue magnetic susceptibility.1 The main strength of QSM

compared with other susceptibility-sensitive MRI tech-
niques is that it disentangles the local magnetic field
from the nonlocal contributions in gradient-echo (GRE)
phase images by solving a complex field-to-source ill-posed
inverse problem.2 Due to the strong paramagnetic effect of
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iron, QSM has been used widely to explore pathophysiol-
ogy associated with iron levels within the in vivo human
brain, especially in multiple sclerosis3 and neurodegener-
ative diseases.4

Susceptibility-weighted imaging is a MRI technique
in which the GRE phase is used to enhance the signal
from GRE magnitude images.5 Typically, the phase image
is high-pass-filtered using a homodyne filter to remove
unwanted phase artifacts and multiplied multiple times
with the magnitude image to get the SWI. Although SWI
is not a quantitative MRI technique, it is more widely
adopted compared with QSM, especially in the clinical
setting. As such, many clinical studies or routine exami-
nations performed in the last decade have acquired SWI
sequences. Depending on the manufacturer of the MRI
system, by default, only the homodyne-filtered phase
(HFP) of the GRE sequence is stored when acquiring SWI,
and, unfortunately, this phase information is not suitable
for computing QSM. In older or special clinical data sets
(eg, targeting a rare disease or a patient group challenging
to scan with MRI), in which only the HFP images are avail-
able, the impossibility of computing accurate susceptibility
values is truly a missed opportunity.

In this study we addressed the problem of estimat-
ing QSM directly from HFP images. To do this, we must
solve the compounded problem of (1) computing the solu-
tion to the inverse dipole problem, and (2) compensating
for the effects of the homodyne filtering. Furthermore,
we investigate the possibility of predicting QSM at tar-
get TEs using a HFP image acquired at a different TE.
Importantly, as measures of regional susceptibility are gen-
erally the desired endpoint of QSM analyses, our evalua-
tion is focused toward achieving valid regional measures
of susceptibility, including proper adjustment with a refer-
ence region. Furthermore, to increase reproducibility, all
regions of interests are defined using a fully automatized
procedure.

2 METHODS

2.1 Data set

A cohort of 13 individuals (age [years] (mean, SD) = 70.7
(7.9); sex [male/female] = 11/2) having both SWI and
GRE scans available was retrospectively identified from a
database at the Medical University of Innsbruck. These
individuals suffered from rapid eye movement sleep
behavior disorder. Regional susceptibility values in rapid
eye movement sleep behavior disorder have been shown
to be either in the normal range or higher,6 thus provid-
ing a wider range of intensities for training. We note that
this particular data set was not selected for reasons related

rapid eye movement sleep behavior disorder, but repre-
sents a true scenario in which only a limited data set with
both SW images and multi-echo GRE are available, and
without the possibility of acquiring more samples. The
data was originally acquired as part of a study on Restless
Legs Syndrome, which was approved by the local ethi-
cal board of the Medical University of Innsbruck (number
AM3512 273/4.8 320/5.7 [3111a]).

2.2 Magnetic resonance imaging data
acquisition

The MRI measurements were performed on a 3T whole-
body MR scanner (Magnetom Verio; Siemens). All partic-
ipants underwent the same MRI protocol, including the
following sequences: a coronal 3D T1-weighted MPRAGE
sequence (TR = 1800 ms; TE = 2.19 ms; TI = 900 ms;
flip angle [FA] = 9◦; matrix = 416× 160× 512; voxel
size = 0.43 × 1.2 × 0.43 mm; bandwidth = 199 Hz/pixel),
a transversal 3D single-echo GRE sequence with inline
SWI computation (TR = 35 ms; TE = 20 ms; FA = 15◦;
matrix = 260× 320× 64; voxel size = 0.69 × 0.69 × 2.4 mm;
bandwidth = 120 Hz/pixel; GRAPPA factor = 2), a
transversal 3D multi-echo GRE sequence (TR = 35 ms;
TE = 4.92, 9.84, 14.7, 19.6, 24.6 and 29.5 ms; FA =15◦;
matrix = 208× 256× 72; voxel size = 0.9 × 0.9 × 2 mm;
bandwidth = 190 Hz/pixel), and a diffusion-weighted
sequence with 20 directions and one B0 image (TR =
6300 ms; TE = 95 ms; FA = 90◦; matrix = 256× 256× 45;
voxel size = 0.9 × 0.9 × 3.3 mm; bandwidth = 1502 Hz/
pixel; GRAPPA factor= 2). Only HFP and SW images were
stored for the single-echo GRE sequence.

2.3 Predictive models

The model architecture and training procedure adopted
in this work was largely derived from the QSMGAN
approach proposed by Chen et al7; we denote our model as
HFP-QSMGAN to distinguish it from the original imple-
mentation. The models were implemented in PyTorch
v1.7.0.8 Implementation details for the generator and dis-
criminator of the generative adversarial network (GAN) of
HFP-QSMGAN are presented in Figure 1.

The generator (Figure 1A) is based on 3D imple-
mentation of the widely popular U-Net architecture.9,10

Importantly, we improved on the previous implementa-
tion7 by replacing the transposed convolution layers by
trilinear up-sampling layers to correct for the well-known
problem of checkerboard artifacts.11 To reduce edge arti-
facts between patches, the model uses large input patches
and crops the output of the last layer in the network, thus
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F I G U R E 1 Overview of the homodyne-filtered phase (HFP) QSM generative adversarial network (GAN) model (HFP-QSMGAN). A,
Convolutional neural network (CNN) model (U-Net) used as image generator. B, The CNN model used as discriminator. C, Overview of the
GAN framework

resulting in an increased receptive field for the final patch.
We explored different input patch and cropping sizes by
gradually increasing patch size and reducing cropped size,
and empirically determined that an input patch of size
96× 96× 96 and cropping size of 32× 32× 32 produced
minimal edge artifacts. When used on its own (ie, without
adversarial training), we refer to this model as U-Net. A
content loss (ie, L1 error) was used to train the U-Net.

For the discriminator, we adopted the same architec-
ture as proposed by Chen et al7 but adapted it to the size of
the generator output (Figure 1B). To stabilize the training
of the discriminator and reduce training time, a relativis-
tic GAN12 was used instead of the Wasserstein GAN with
the gradient penalty13 proposed by Chen et al.7 In relativis-
tic GAN, the adversarial discriminator and generator loss
functions are defined as
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where xr and xf are real and fake (ie, generated) QSM
images; D is the discriminator; and G is the generator. The
full generator loss LG is therefore defined as

LG
(

xr, xf
)
= ‖‖xr − xf‖‖1 + 𝜆 ⋅ LRSGAN

G
(

xr, xf
)

where 𝜆 = 0.01. Optimization of the discriminator and
generator is performed in alternance at each minibatch
update. (See Figure 1C for an overview of the GAN frame-
work.)

2.4 Training and evaluation

Input HFP images were resampled to an isotropic res-
olution (0.69 mm3). Corresponding output QSM images
were estimated from the phase image of the fourth, fifth,
and sixth echoes of the GRE sequence (TE4 = 19.6 ms,
TE5 = 24.6 ms, and TE6 = 29.5 ms) using total gener-
alized variation (TGV)–QSM14; TE after TGV-QSM (eg,
TGV-QSM TE4) indicates that the echo of the multi-echo
GRE sequence was used by TGV-QSM. These images were
then scaled (x̂ = tanh(10x)) and aligned with the corre-
sponding magnitude images using Advanced Normaliza-
tion Tools (rigid registration, cubic interpolation). In total,
six different convolutional neural network (CNN) models
were trained (both U-Net and HFP-QSMGAN for predict-
ing TGV-QSM at each of the TEs). The TE after a model
name (eg, U-Net TE4) thus denotes which TGV-QSM
maps the model was trained to predict. For comparative
purposes, QSM maps were also estimated directly from
the HFP using TGV-QSM; these maps are referred to as
HFP-QSM.
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F I G U R E 2 Example susceptibility
maps (top) obtained for total generalized
variation (TGV)–QSM (TE4 = 19.6 ms),
HFP-QSM, U-Net and HFP-QSMGAN, and
the corresponding difference maps with the
TGV-QSM image (bottom)

The models were evaluated using a 5-fold
cross-validation; in every fold, there were 10–11 samples
available for training and 2–3 samples for testing. For
each fold, the models were trained for 50 epochs using the
Adam optimizer (β1 = 0.5, β2 = 0.999) with an initial learn-
ing rate of 1e-5 and a batch size of 8. At each epoch, images
were augmented (random affine, rotations, zooms, shears,
elastic deformation, and left/right flip) and divided into
nonoverlapping patches (except on the edges for complete
image cover). Training each model took approximately
24 h using a NVIDIA TITAN V GPU.

2.5 Reference region

Regional QSM values were referenced to values from
the posterior limb of the internal capsule (PLIC), which
was previously shown to be suitable reference region for
QSM.15 To align the PLIC labels from the JHU white
matter atlas16 with the SWI (isotropic) space, the fol-
lowing strategy was adopted. First, fractional anisotropy
maps were computed from the DWI data; preprocessing
included MRtrix3’s (v3.0.0)17 denoising, unringing, and
correction for eddy current and motion using FSL’s eddy.18

Then transformation from atlas space to SWI space was
estimated by first aligning the corresponding atlas frac-
tional anisotropy image to subject fractional anisotropy
image (SyN registration) and B0 image from the DWI data
to the SW magnitude image (rigid registration). The PLIC
label from the JHU atlas was then mapped to the SWI
space (nearest-neighbor interpolation) and eroded (1 voxel
radius) to avoid any accidental overlap with the pallidum.
This procedure was also used to obtain PLIC labels in the
RLS data set.

2.6 Statistical analysis

All statistical analyses were performed in R v4.1 (R Foun-
dation for Statistical Computing).19 For evaluation pur-
poses, only the QSM images predicted using the test
data across all folds of the cross-validation were used.
The L1 errors across the susceptibility maps obtained
for U-Net and HFP-QSMGAN at different TEs as well
as from HFP-QSM were compared using two-sided
Wilcoxon signed-rank tests. Regional estimates of sus-
ceptibility were compared with the values obtained with
TGV-QSM using Pearson’s correlation coefficients (ρ).
p-Values smaller than 0.05 were considered significant.
Additionally, regional susceptibility values obtained with
the CNN models were compared to those obtained with
TGV-QSM using generalized least squares (GLS) models
with individual variance estimation per regions using R’s
nlme package (v3.1–152).20 The GLS models were fitted for
the U-Net and HFP-QSMGAN values obtained at the three
TEs, and the models were compared on the basis of the
Akaike information criterion (AIC), Bayesian information
criterion (BIC), and log likelihood (LL).

3 RESULTS

Examples of susceptibility maps obtained with TGV-QSM,
HFP-QSM, U-Net, HFP-QSMGAN, as well as the corre-
sponding difference maps with TGV-QSM, are presented
in Figure 2 for TE4 = 19.6 ms and Supporting Information
Figures S1 and S2 for TE5 = 24.6 ms and TE6 = 29.5 ms.
The HFP-QSM map is clearly different from the TGV-QSM
map. The maps predicted by U-Net and HFP-QSMGAN
were more similar to the TGV-QSM map, but the U-Net
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F I G U R E 3 Example correlations between the estimates of regional susceptibility from TGV-QSM and the cross-validated values
obtained from the HFP-QSMGAN model at TE4. The dashed lines indicate identity. Abbreviations: CAU, caudate; DEN, dentate nuclei; PAL,
pallidum; PUT, putamen; RN, red nuclei; SN, substantia nigra; STN, subthalamic nuclei; THA, thalamus

(A)

(B)

F I G U R E 4 A, Pearson’s correlation coefficient. B, Akaike information criterion (AIC), Bayesian information criterion (BIC), and log
likelihood (LL). C, Average L1 errors for the different models. Abbreviation: a.u., arbitrary unit

map was smoother compared with that of HFP-QSMGAN.
These observations are reflected in the difference map,
where structured residuals can be seen (eg, caudate, puta-
men pallidum) for the HFP-QSM map, whereas the differ-
ence maps for U-Net and HFP-QSMGAN appear random
and unstructured.

Figure 3 presents the correlations between regional
values for TGV-QSM maps and predicted values obtained
with the HFP-QSMGAN TE4 model. A detailed com-
parison between the results of TGV-QSM, U-Net,
HFP-QSMGAN, and HFP-QSM is presented in Figure 4A
and Supporting Information Table S1. For only a few
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brain regions, HFP-QSM values were significantly cor-
related with those of TGV-QSM, whereas U-Net and
HFP-QSMGAN were significantly correlated across
almost all regions aside from the thalamus.

GLS models were estimated, and the evaluation met-
rics AIC, BIC, and LL are presented in Figure 4B and
Supporting Information Table S1. Lower AIC and BIC,
and larger LL, correspond to better model fit. Across all
echoes and metrics, the models ranked from worst to
best were HFP-QSM, U-Net, and HFP-QSMGAN. Perfor-
mances were also always superior for the later TE (ie,
results for TE5 were better than for TE4, and results for
TE6 were better than for TE5).

For completeness, the average L1 errors (content
loss) obtained for each susceptibility map compared with
TGV-QSM are presented in Figure 4C. Across all TEs, the
U-Net achieved significantly lower (p < 0.001) L1 errors
compared with HFP-QSMGAN and HFP-QSM, and the
L1 errors for HFP-QSMGAN were significantly lower than
that of HFP-QSM.

4 DISCUSSION

Accurate quantification of susceptibility from SW phase
images is severely impaired by homodyne filtering, which
is required for SWI. In the current data set, regional QSM
values quantified directly from HFP (HFP-QSM) were gen-
erally not correlated with values quantified from unfiltered
phase images acquired using multi-echo GRE sequences
(ie, TGV-QSM). It was also apparent that QSM images
generated from HFP images have a contrast that differs
drastically from the QSM maps quantified from unfil-
tered multi-echo GRE phase (Figure 2). In this work we
have demonstrated that regional susceptibility—which is
significantly correlated with a target susceptibility (ie,
TGV-QSM)—can be achieved from HFP images using
CNNs. It is important to note that this is not a generic
method, and that the models are specifically tuned to
reconstruct images from the predefined sequence and
scanner available to train the models. Domain shift (ie, the
generalization of an algorithm to an input with a different
distribution) is an important, unresolved issue in medi-
cal image analysis,21 and it is bound to impact any task in
which accuracy is heavily dependent on the distribution of
the input, as is the case here. However, we have shown that
even with a limited data set containing both unfiltered and
HFP images, satisfying results can be achieved.

Other studies conducted in parallel to this work have
also attempted to recover unfiltered phase images22 or
predict QSM23 from HFP images using CNNs. These stud-
ies have shown that reasonable voxel-wise prediction was
possible. In this work, we have rather concentrated on

validating the regional quantification of susceptibility,
including adjustment to a reference region, using a GAN
model. It is well known that GAN models generate sharper
images compared to CNNs without adversarial training,
thus making them highly suitable for applications such
as superresolution and deblurring.24 This effect is clearly
apparent in Figure 2 when comparing results from the
U-Net and HFP-QSMGAN models, with the images gener-
ated with HFP-QSMGAN being more detailed and sharper.
It is therefore interesting to note that the U-Net achieved
lower voxel-wise L1 error compared with HFP-QSMGAN.
These results are in contrast with the initial report using
QSMGAN7 and may be related to the recovery of the
homodyne filtering process. Nonetheless, the fit of the
GLS models assessed with AIC, BIC, and LL all indicate
that HFP-QSMGAN is more accurate for the estimation
of regional values with proper adjustment to a reference
region, thus making it the preferred choice for predicting
regional susceptibility values. Furthermore, we note that
the intended goal of the models was to quantify regional
susceptibility, and that L1 error does not represent an
appropriate measure to assess this aim.

The question of which TE is most appropriate for
assessing QSM that is most sensitive to brain iron is
still not fully resolved. It was shown that the associa-
tion between susceptibility and TE varies across deep
gray-matter regions and may reflect different tissue prop-
erties.25 We have demonstrated that CNNs can provide
regional susceptibility estimates that are significantly cor-
related to the values corresponding to a different TE than
the one at which the input was acquired. Beyond the cur-
rent application in which QSM at a target TE is predicted
from SWI phase at a different TE, this method could sim-
ilarly be used to estimate QSM maps at a given TE based
on the availability of GRE phase images at another TE.
However, the proposed approach to generate QSM from
HFP images is limited to a regional analysis of susceptibil-
ity values in gray-matter structures. Gradient-echo phase
images, and thus QSM, are known to be sensitive to the
anisotropic microstructure in white matter.26 In particu-
lar, the orientation of myelinated fibers with respect to the
main magnetic field of the scanner induces a frequency
shift.27 Furthermore, the fiber orientation has an impact
on the TE-dependent evaluation of the phase signal.28

Thus, for analyzing susceptibility values in white-matter
regions based on QSM retrieved from HFP images, the
source and target TE should be matched as closely as
possible.

A major limitation of the approach presented here is
the necessity of having both the source HFP image and tar-
get GRE data acquired in the same individuals for training
the models. These data may be unavailable or limited in
sample size, as was the case here. Furthermore, we note
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that some of the structural differences observed in Figure 2
may partly be attributed to the fact that separate acquisi-
tions were used to generate the susceptibility maps. Small
sample size can be partially mitigated with proper data
augmentation, which is a necessary step in almost all neu-
roimaging application of CNNs, but it would nonetheless
hinder the generalizability of the models. Nevertheless,
our results would suggest that the inference of susceptibil-
ity values from CNN models trained with limited sample
size is superior for estimating susceptibility values directly
from HFP images.

5 CONCLUSION

We can show that for a regional susceptibility analysis,
QSM can be retrieved from HFP images acquired with
standard sequences for SWI.
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Figure S1 Example susceptibility maps (top) obtained
for TGV-QSM (TE 5= 24.6 ms), HFP-QSM, U-Net and
HFP-QSMGAN, and the corresponding difference maps
with the TGV-QSM image (bottom). TE: echo time.

Figure S2 Example susceptibility maps (top) obtained
for TGV-QSM (TE 6= 29.5 ms), HFP-QSM, U-Net and
HFP-QSMGAN, and the corresponding difference maps
with the TGV-QSM image (bottom). TE: echo time.
Table S1 Pearson’s correlation coefficient (ρ, p-value)
between regional susceptibility estimates obtained with
TGV-QSM at different echo times as reference and
HFP-QSM, U-Net, and HFP-QSMGAN. GRE-TE: echo
time of the gradient echo sequence used for compari-
son, CAU: caudate, DEN: dendate nucleus, PAL: pallidum,
PUT: putamen, RN: red nucleus, SN: substantia nigra,
STN: subthalamic nucleus, THAL: thalamus.
Table S2 Evaluation metrics Akaike Information Crite-
rion (AIC), Bayesian Information Criterion (BIC), and Log
Likelihood (LL) of the different model fits.
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