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Flow estimation solely from image 
data through persistent homology 
analysis
Anna Suzuki1*, Miyuki Miyazawa1, James M. Minto2, Takeshi Tsuji3,4, Ippei Obayashi5, 
Yasuaki Hiraoka6 & Takatoshi Ito1

Topological data analysis is an emerging concept of data analysis for characterizing shapes. A state-
of-the-art tool in topological data analysis is persistent homology, which is expected to summarize 
quantified topological and geometric features. Although persistent homology is useful for revealing 
the topological and geometric information, it is difficult to interpret the parameters of persistent 
homology themselves and difficult to directly relate the parameters to physical properties. In this 
study, we focus on connectivity and apertures of flow channels detected from persistent homology 
analysis. We propose a method to estimate permeability in fracture networks from parameters of 
persistent homology. Synthetic 3D fracture network patterns and their direct flow simulations are 
used for the validation. The results suggest that the persistent homology can estimate fluid flow in 
fracture network based on the image data. This method can easily derive the flow phenomena based 
on the information of the structure.

Fluid flow processes are ubiquitous in the world, and most are governed by the geometry and nature of the sur-
rounding structures. In particular, recent miniaturization of artificial devices has led to the need for understand-
ing and controlling flow in finer structures. It is also attracting attention to understand flow behaviors in complex 
fracture networks in developments of natural resources, as in the case of shale gas and geothermal developments.

It has been a long-term scientific challenge to predict flow behavior of porous media from structural prop-
erties. Permeability is a key parameter for examining flow phenomena in porous media1. Permeability cannot 
be determined only from structure data, and needs to be obtained from laboratory experiments or numerical 
fluid flow simulations. In contrast, porosity is a parameter that is often used to characterize the structures. The 
porosity–permeability correlation has been studied extensively in the literature to estimate permeability using 
porosity (so-called Kozeny–Carman equation)2,3. This Kozeny–Carman equation provides a relationship between 
structure and flow. However, no matter how many voids there are, if they are not connected, water cannot flow. 
Therefore, the Kozeny–Carman equation does not always work. The correlation has been modified to represent 
real phenomena by adding parameters such as fractal dimension, and tortuosity2. These additional parameters 
can only be determined by fitting, which is not the best way to go about flow prediction based on structural 
information.

Let us also consider flow in a channel from an inlet to an outlet. The Hagen–Poiseuille equation is a physical 
law that describe a steady laminar flow of a viscous, incompressible, and Newtonian fluid through a circular tube 
of constant radius, r. This is an exact solution for the flow, can be derived from the (Navier–) Stokes equations, 
and is another way of expressing the relationship between structure and flow. Using Darcy’s law, a representative 
permeability, KHP [m2], for the capillary can be calculated depending only on the radius:

Similarly, for flow in a fracture bounded by two smooth, parallel walls, the permeability, KCL [m2], can be 
calculated depending only on the aperture, h [m]:

(1)KHP =

r2
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Since the flow rate is proportional to the cube of the fracture aperture, this relationship between flow and 
aperture is well-known as the “cubic law” 4–7.

Equations (1) and (2) are only ways to obtain a simplified analytic solution to describe the relationship 
between the flow and structures. The approaches using Eqs. (1) and (2) are another way to predict permeability 
from structural properties than the Kozeny–Carman equation.8. In natural rocks, there is not always a single 
fracture, but multiple fractures that form a network. Thus, it is necessary to understand not just an individual 
fracture, but how channels are connected from an inlet to an outlet in whole networks. There have been many 
studies focusing on networks, but most of the parameters used to describe the structure are probabilistic vari-
ables that capture individual fractures, and no suitable parameters have been found yet to evaluate the flow of 
the entire networks9.

Topology, a branch of modern mathematics, is good at roughly investigating the connectivity of shapes. 
Topology focuses on the properties (called topological properties or topological invariants) that are preserved 
when some form (shape or space) is continuously deformed (stretched or bent, but not cut or pasted). Topology 
can extract global features that are difficult to capture with machine learning and convolutional neural networks, 
so it is promising as a complementary feature to extract image information that cannot be detected with other 
methods. It can be applied to volumetric data as well, so it can pick up information that has been missed in one-
way slice-by-slice analysis common to many forms of data processing.

Several studies used topological invariants to describe pore‐scale structures in porous materials and fracture 
networks10,11. The Minkowski functionals can be interpreted as area, perimeter, or the Euler characteristic, which 
is a topological constant and were used to link to hydraulic properties12,13. Scholz et al.14 showed an empirical 
expression of permeability with the Minkowski functionals. Liu et al.15 showed the correlation of relative perme-
ability to one of the topological invariants called Euler characteristic. Armstrong et al.16 reviewed the theoretical 
basis of the Minkowski functionals and its application to characterize porous media. Counting the number of 
holes using topological invariants like they did is a clue to the shape of the object, and the "essential information" 
can be extracted well. On the other hand, topology too narrowly focuses on the essential information, it also 
discards a lot of information, such as size of the pore space. The size information, such as radii of tube or aper-
tures of fractures in Eqs. (1) and (2), must be detected to determine permeability derived analytically. Therefore, 
previous studies had to add the size information in other ways.

Homology is a standard technique for identifying a topological space. In particular, the concept of homology 
has traditionally played a role in feature extraction focusing on the existence of “holes”. Here, the “hole” structure 
can be regarded as a connected flow channels from an inlet to an outlet. It is expected that topology can be used 
to detect such connected flow channels.

By tracking the sequence of topological spaces, namely, by recording how long homological features persist, 
we can add information about the size and length of the holes. This can give us a quantitative indication of the 
size of the holes and the amount of space available, which is called persistent homology. Persistent homology is 
one of the most important tools in topological data analysis and is expected to compute geometric and topological 
features of various shapes with ease of computation17–20. Thus, this has been applied in several research fields21–25, 
and is also beginning to be used in the analysis of porous materials26–31.

At this point, in contrast to topological invariants, persistent homology can provide a lot of information that 
we might need, but it is difficult to interpret the parameters of persistent homology themselves27–30. Ushizima 
et al.26 estimates permeability of porous rocks by using Reeb graphs to represent the pore networks. They use 
persistent homology to distinguish between significant and “noisy” pore spaces, and to supplement the Reeb 
graphs. Their paper did not go into quantitative evaluation, but focused on qualitative evaluation and visualiza-
tion. As mentioned before, the “hole” structure that is characterized by topology, can be regarded as connected 
flow channels from an inlet to an outlet. The aim of our study is to detect the flow channels by persistent homol-
ogy. Suzuki et al.31 proposes a method to detect flow channels in 2D images from persistent homology through 
image processing. By using their image processing procedure, persistent homology is expected to detect such 
connected flow channels in complex fracture networks and would also provide their size information such as 
apertures to predict the permeability.

In this study, we applied persistent homology to estimate permeability in fracture networks based on image 
data. Persistent homology was used to detect the number of flow channels and their apertures in the networks. 
Synthetic fracture networks were generated, and direct flow simulation was conducted. Permeability derived 
from persistent homology and simulation results were compared. We applied the proposed method to several 
published image data and discussed the applicability of permeability estimation based on persistent homology.

Results
Detection of flow channels from persistent homology analysis.  An example of a fractured rock 
model with a flow channel connecting an inlet to an outlet is shown in Fig. 1a. The yellow area is a solid skeleton, 
while the white area is fractures forming void spaces. The connecting fractures from the top (inlet) to the bot-
tom (outlet) can be a flow channel. In persistent homology analysis, such a structure is recognized as “hole” and 
quantified as a 1-dimensional hole. Additionally, a discrete island (i.e., connected component) is quantified as 
a 0-dimensional hole, and a ball (i.e., enclosed solid voids) is quantified as a 2-dimensional hole. The numbers 
of k-dimensional holes (the dimension of the kth homology vector space) are known to the kth Betti number 
(b0, b1, and b2). This study focuses on “hole” structures penetrating from an inlet to an outlet, which can be flow 
channels hence we only analyze 1-dimensional holes in this study.

(2)KCL =

h2
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One aspect of persistent homology analysis is that independent fractures are recognized as 2-dimensional 
holes, as shown in Fig. 1b. These independent fractures would not contribute to the fluid flow. Therefore, we can 
distinguish fractures that act as flow channels and independent fractures by 1-dimensional holes and 2-dimen-
sional holes.

Much research has explored various applications of persistent homology in statistical data analysis of point 
cloud data22,33,34. Since the purpose of this study is to analyze the information of structures based on the image 
data (e.g., micro-CT images), binarized digital images were used for analysis. Jiang et al.29 applied persistent 
homology to analyzed rock pore geometries obtained from micro-CT images. The  rock pore geometries were 
first represented as sphere cloud data using a pore-network extraction method, then analyzed by calculating the 
Vietoris-Rips complex topology of the input sphere cloud data. We used an open software HomCloud (https://​
homcl​oud.​dev/) to analyze binarized 3D images, which can obtain the information of persistent homology by 
calculating the Euclidian distance of 2D or 3D black and white images32.

Figure 1c shows an example of data process in our persistent homology analysis, called filtration17. In filtra-
tion, the solid skeletons (yellow parts) are made thinner or thicker, voxel-by-voxel. In HomCloud, the white pore 
areas were labelled with positive values, while the yellow solid areas were negative, hence the filtration labelling 
is symmetrical around the pore/solid interface. The process of thinning yellow voxels adjacent to white voxels is 
regarded as − 1, while the process of thickening yellow voxels adjacent to white voxels is regarded as + 1. When 
we reduce the time, the space eventually becomes empty. The nested sequence of the topological spaces from 
the empty space to the filled space is recorded. The times when the hole appears or disappears are called “birth 
time” or “death time”, expressed as “b” or “d”, respectively.

In filtration (Fig. 1c), a part of the flow channel is closed at t = 1. This closed point is the narrowest aperture 
in the flow channel. Taking advantage of this, the length of narrowest aperture can be obtained as death time 
d multiplied by two and its resolution d. (narrowest aperture = 2 × d × d = 2 × 1 × 5 = 10). Suzuki et al.31 used the 
values of death to detect the narrowest apertures of flow paths in 2D images and classified a large number of 
fracture structures. It has been known that the narrowest width in flow channels, which is called critical pore 
radius, correlates with permeability better than other pore radii35–37. Detecting narrowest aperture by persistent 
homology can therefore be useful to estimate the permeability.

The set of pairs (bi, di) for k-dimensional holes is called kth persistence diagram, PDk. If pairs of negative b 
and positive d (b < 0 < d) are detected in PD1, the pairs suggest “hole” structures (i.e., flow channel) presenting in 
the original image. If there are multiple hole structures, multiple birth–death pairs are obtained in the b < 0 < d 
domain of PD1. Each value of d indicates each narrowest aperture of multiple fracture channels. The ability 
to link between the numbers of flow channels and its narrowest apertures is one of the strengths of persistent 
homology analysis.

Here is something to keep in mind. A 1-dimensional hole detected by persistent homology is a flow channel 
penetrating from an inlet to an outlet. At the same time, a ring-shaped, internal void-structure is also detected as 
a 1-dimensional hole. Figure 2a shows an example of a ring-shaped internal void structure. This structure does 
not connect to the outside (i.e., no flow channel). However, during filtration, the internal void space is closed 

Figure 1.   Persistent homology analysis for fracture networks by HomCloud32. (a) 3D view and (b) cross-
sectional image of fracture network with a flow channel (light blue arrow) and an isolated pore (shown as 
green). (c) Schematic of filtration process. White grids express void spaces. Blue grids are the grids that were 
removed during the current thinning iteration. Red grids are the grids that were added during the thickening 
process.

https://homcloud.dev/
https://homcloud.dev/
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at t = 1 (d = 1). If images include such hole structures, it would overestimate the number of flow channels. Now, 
let us prepare an inverted image that the yellow and white are reversed as shown in Fig. 2b. In filtration, a ring 
appears at t − 1, and the ring width is detected by the value of b (b = − 1). Therefore, we can expect to detect only 
the hole fractures that act as flow channels by subtracting the holes recognized in the inverted image from the 
holes recognized in the original image. We set the number of 1-dimensional holes (i.e., Betti number) obtained 
from the original and inverted figures to b1 and β1 , respectively. The number of flow channels can be derived as  
β1 − β1 = 1− 1 = 0 as shown in Fig. 2a and 2b.

Another example is shown in Fig. 2c. This is a ring-shaped internal void structure with two channels that are 
connected to the outside. In this case, there are two 1-dimensional holes (b1 = 2) with d = 1 and d = 2. Figure 2d 

Figure 2.   Detecting flow channels using inverted images (a) ring-shaped, internal void-structure that is not 
connected to the outside, and (b) its inverted image. (c) ring-shaped, internal void-structure with two channels 
that is connected to the outside and forms a flow channel. (d) Its inverted image. The left column shows 3D view 
of images. The center column describes processes of filtration. The right column lists Betti numbers b1. 
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is the inverted image of Fig. 2c. There are a 1-dimensional holes (b1 = 1) with d = 1. By subtracting the holes rec-
ognized in the inverted image from the holes recognized in the original image, the number of flow channels can 
be calculated as β1 − β1 = 2− 1 = 1 . At the same time, persistent homology analysis provides the narrowest 
aperture of the flow channel by d = 2. From these analyses, we estimate the number of channels and their nar-
rowest aperture by using the inverted image in this study.

Synthetic fracture network.  Synthetic fracture networks were generated by using OpenSCAD (https://​
www.​opens​cad.​org/). We distributed multiple penny-shaped fractures by controlling the apertures, radii, num-
bers, and orientations of fractures to generate a fracture network38. By hollowing out the generated fracture 
network from a rectangular block, a fractured model where the void spaces were composed of the fracture net-
work was created. This study characterizes one-dimensional flow. The top surface was an inlet, and the bottom 
surface was an outlet. The fractures were connected from the top to the bottom surfaces. The side boundaries 
were closed and impermeable.

The fractured model is shown in Fig. 3. Figure 3a and b are the outside and the inside of the model. The 
fracture orientation was either orthogonal or random. The orthogonal models distributed perpendicular or 
horizontal fractures to the flow direction (Fig. 3c), while the random models distributed fractures by random 
numbers (Fig. 3d). We prepared nine orthogonal models and seven random models. The model parameters for 
each model are listed in Table 1.

Estimation of fracture numbers and apertures by persistent homology.  3D image data of each 
fractured model (36 mm × 36 mm × 50 mm with a voxel resolution d of 0.1 mm) were binarized and analyzed by 
persistent homology using HomCloud32. The image size was 360 × 360 × 500 voxels.

The estimated narrowest fracture apertures based on the persistent homology analysis are shown in Fig. 4. 
Fracture networks (O1–O3, R1–R3) distributes a single value of fracture aperture of 0.2 mm, 0.6 mm, and 
1.0 mm, respectively. Figure 4a and b shows the results for the orthogonal and the random fracture networks, 
respectively. As mentioned before, the narrowest apertures in each flow channel were calculated as 2did in per-
sistent homology analysis. The values given in each network (0.2 mm, 0.6 mm, 1.0 mm) are compared with the 

Figure 3.   Fractured models. (a) Outside and (b) inside of model. (c) Orthogonal distribution and (d) random 
distribution of fracture networks.

https://www.openscad.org/
https://www.openscad.org/
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estimated narrowest apertures (2did). The sizes of the circles represent the number of birth–death pairs with 
di. As shown in Fig. 4, the estimated narrowest apertures are equal or relatively larger than the actual values 
given in the network. Most of results are between one or two times larger than the actual values. Since persistent 
homology estimates the aperture of flow paths, where there were multiple fractures overlapping each other, the 
aperture of the flow path would be thicker than the aperture of the fractures at these points. For this reason, the 
estimated values can be larger than the actual values given to the fracture network. On the other hand, since the 
image of the fracture network was converted to voxel data, the surface of the fracture distributed diagonally to 
the voxel may be rugged and larger than the actual fracture. This error associated with image processing can be 
resolved by increasing the resolution.

In the orthogonal network model as shown in Fig. 4a, there is a point in the 1.0 mm network where the frac-
ture aperture was calculated as 0.2 mm. This would be a result of representing the fracture surfaces as an image, 
i.e. a discretized array of voxels. The situation with such errors is expected to occur when other images are ana-
lyzed, but errors with small values of apertures do not have a large impact on the analysis, as will be shown later.

Table 1.   Fracture network parameters and results of permeability. The correlation coefficients between 
simulation results and PH estimation for orthogonal distribution and random distribution were 0.994 and 
0.992, respectively.

Model

Fracture network parameters

Simulation result
Estimation from PH 
analysisDiameter (mm) Aperture (mm)

Fracture density 
parameter Number of fractures

Orthogonal

O1 10 0.2 3000 77 1.04 × 10−10 2.47 × 10−10

O2 10 0.6 3000 77 3.03 × 10−9 3.43 × 10−9

O3 10 1.0 3000 77 1.31 × 10−8 1.55 × 10−8

O4 5 0.2–1 6100 234 1.58 × 10−10 2.68 × 10−10

O5 10 0.2–1 1720 66 4.00 × 10−10 7.18 × 10−10

O6 5 0.2–1 2020 251 3.50 × 10−10 2.70 × 10−10

O7 5 0.2–1 13,000 230 1.12 × 10−10 2.16 × 10−10

O8 5–25 0.2–1 895 73 3.15 × 10−9 2.20 × 10−9

Random

R1 10 0.2 2000 77 1.01 × 10−10 2.36 × 10−10

R2 10 0.6 2000 77 2.90 × 10−9 3.46 × 10−9

R3 10 1.0 2000 77 1.28 × 10−8 1.39 × 10−8

R4 10 0.2 1000 38 3.42 × 10−11 1.12 × 10−10

R5 10 0.2 3000 115 1.75 × 10−10 3.70 × 10−10

R6 25 1.0 280 11 5.21 × 10−9 4.03 × 10−9

R7 5 0.2 11,950 459 1.30 × 10−10 1.36 × 10−10

Figure 4.   Estimation of fracture apertures by persistent homology (PH) analysis. (a) Orthogonal fracture 
networks and (b) random fracture networks.
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Derivation of permeability.  We use Eq. (2) to derive permeability, which can be originally calculated by 
comparing the Stokes equation with the Darcy’s law. If Assuming that a fracture is a smooth and parallel plate 
with the aperture of h and that there is a uniform pressure gradient in one direction within the plane of the frac-
ture, the total volumetric flowrate in the fracture can be written as

where w is the width of the fracture, perpendicular to the flow direction. h is the aperture, and μ is the water vis-
cosity, dP/dx is the pressure gradient. Darcy’s law describes one‐dimensional fluid flow through porous media as

where A is the cross-sectional area. Comparison of Eqs. (3) and (4) shows that the permeability of the fracture 
can be identified as

If the cross-sectional areas of the inlet and outlet are assumed to be wh, Eq. (5) becomes Eq. (2). If we consider 
the case of parallel multiple channels, the permeability can be derived in the following equation

where A is the surface area of the cross section of the medium, and N is the number of flow channels. wi is the 
depth of flow channel, and hi is the aperture of the flow channel i, i = 1, …, N. There is an unknown parameter 
wi in Eq. (6). The 3D voxel data can be regarded as a series of 2D cross-sectional images. The 2D cross-sectional 
image data provides total area of pore space, Ap in each layer. If we introduce effective depth w that is the same 
for all flow channels, w can be derived by  w =

min(Ap)
∑N

i=1
hi

 where min
(

Ap

)

 is the minimum of total area of pore space 
for all layers. The number of flow channels N was estimated from the number of birth–death pairs, and the 
aperture hi was estimated as 2did in persistent homology analysis. Thus, Eq. (6) can be written as follows

As mentioned earlier, it is expected that small apertures of flow paths may be detected due to errors associated 
with the image processing. However, as shown in Eq. (7), the permeability is determined by the sum of the cube 
of the apertures, so the apertures of larger fractures will affect the calculation of the permeability. Therefore, it 
can be said that the error associated with the image processing is negligible.

Estimation of permeability from persistent homology analysis.  Before applying complex fracture 
networks, we validated Eq. (7) and our simulation with simple fracture models. Simple models with one or two 
fractures penetrating from an inlet to an outlet were used (see Fig. 5a). Apertures and number of fractures in 
each model are listed in Table 2. Direct flow simulation with the same fracture network was conducted in Open-
FOAM (https://​www.​openf​oam.​com/). We could obtain volumetric flow rate and pressure gradient between 
the inlet and the outlet to calculate equivalent permeability based on Darcy’s law. Comparison of permeability 
between flow simulation and persistent homology analysis is shown in Fig. 5b, and listed in Table 2. To quanti-
tatively validate our estimation, a Pearson correlation coefficient between the simulation results and estimation 
from persistent homology analysis was calculated. When the correlation coefficient is close to 1, we can say that 
two set of data has high positive correlation. The correlation coefficient between simulation results and PH esti-
mation for the simple parallel model was 0.9996. The persistent homology estimation is in very good agreement 
with the simulation results. The results show that for such a simple system, persistent homology can estimate the 
permeability well using Eq. (7).

Next, we applied Eq. (7) to complex fracture networks listed in Table 1. Comparison of permeability between 
flow simulation and persistent homology analysis is shown in Fig. 6. The correlation coefficients between the 
simulation results and the estimation from persistent homology for orthogonal distribution and random distri-
bution were 0.994 and 0.992, respectively. The estimated values were highly correlated to the simulation values. 
The estimation is in reasonable agreement with the simulation results.

There is a limitation of Eq. (7). Equation (7) is based on a parallel plate model, so the flow is assumed to be 
straight. If there is tortuosity in a flow channel, the flow length will be longer, and the estimated permeability 
may be larger than the true value. Figure 7 shows streamlines in model O8 colored as green. We can see that the 
streamlines are winding and flowing. Keep in mind the fact that tortuosity was not taken into account in Eq. (7).

We also applied persistent homology analysis to other cases. Mehmani and Mamdi39 conducted high-fidelity 
direct numerical simulation of the two-dimensional micromodel to develop their pore network models. We used 
their 2D image data as shown in Fig. 8a and their results from direct numerical simulation. Comparison with 
persistent homology analysis is plotted with red dots for regular pore structures and with purple dots for Berea 
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sandstone in Fig. 8c. The correlation coefficients between the simulation results and the estimation from per-
sistent homology was 0.887. There is a fair correlation between the simulation results and the estimated values. 
These results suggest that the proposed analysis can be used for two-dimensional flow.

Table 2.   Estimation for simple parallel model. The correlation coefficient between simulation results and PH 
estimation was 0.9996.

Model Aperture (mm) Number of fractures d β1 − β1 Simulation result Estimation from PH analysis

S1 1.0 1 10 1 1.80 × 10−9 1.80 × 10−9

S2 1.0 and 1.0 2 10 and 10 2 3.66 × 10−9 3.47 × 10−9

S3 0.5 1 5 1 2.39 × 10−10 2.17 × 10−10

S4 0.5 and 0.5 2 5 and 5 2 4.79 × 10−10 4.33 × 10−10

S5 0.1 1 1 1 1.95 × 10−12 1.73 × 10−12

S6 0.1 and 0.1 2 1 and 1 2 3.89 × 10−12 3.47 × 10−12

S7 0.5 and 1.0 2 5 and 10 2 2.00 × 10−9 1.95 × 10−9

Figure 6.   Estimation of permeability by persistent homology (PH) analysis for orthogonal fracture networks 
(blue) and random fracture networks (orange). The calculated permeability is listed in Table 1.

Figure 5.   Validation with simple models. (a) One or two fracture penetrating the model. The top and bottom 
are the inlet and the outlet. (b) Comparison of permeability between persistent homology (PH) analysis and 
direct simulation. The calculated permeability is listed in Table 2.
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Andrew et al.40 used X-ray microtomography to obtain four types of 3D rock image data, and they conducted 
flow experiments to measure the permeability. The X-ray microtomography images of the rocks are shown in 
Fig. 8b. Comparison with the experimental results is plotted as green dots in Fig. 8c. The correlation coefficients 
between the simulation results and the estimation from persistent homology was 0.764. The estimation has a 
slight correlation with the simulation results, and the estimated values are larger than the experimental results. 
As mentioned before, Eq. (7) does not consider the effect of tortuosity. Muljadi et al.41 calculated the tortuosity 
from the same Bentheimer sandstone and the Estaillades carbonate images as 1.52 and 1.91, respectively. If we 
take the tortuosity into account, the estimates of the permeability will be close to the experimental values. The cal-
culation of tortuosity in Muljadi et al.41 used the flow velocity42,43. In contrast, the goal of this study is to estimate 
flow properties without flow simulation, so that we need to obtain tortuosity in a different way based on image 
analysis. Correlation between tortuosity and persistent homology parameters would be explored in future studies.

Figure 7.   Streamlines (green lines) in fracture network simulated in OpenFOAM.

Figure 8.   Estimation of permeability by persistent homology (PH) analysis. (a) 2D images from Mehmani and 
Hamdi39, (b) 3D rock images from Andrew et al.40, and (c) comparison with direct simulation and experiment. 
The values are listed in Table 3.
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Discussions
Persistent homology analysis of fracture networks could estimate opening aperture distributions of flow channels 
and estimated permeability with the same order of magnitude as the permeability derived from the flow simula-
tion. Using this method, flow characteristics can be estimated from the image data without the need for fluid 
flow simulation. This could make the analysis of fracture networks quicker. In this study, the longest direct flow 
simulation took 72 h to generate a sufficiently high-resolution computational mesh then solve the Navier–Stokes 
equations, using 320 processors with a maximum of 282 GB of memory in a supercomputational system. In 
contrast, persistent homology was able to calculate the model in less than 10 min with 16 GB of memory using 
a desktop workstation AMD Ryzen 9 5950X.

Several approaches44–46 based on discrete fracture network represent fractures as ellipses or rectangles in 
networks based on Eq. (2). Focusing on the fractures themselves is suitable for fractured rock bodies, but it may 
be difficult to optimize the model because of the increase in number of parameters when the fractures are finer or 
when the body is regarded as a porous medium. In this study, we focus on the flow channels by persistent homol-
ogy instead of individual fractures. Therefore, we can apply the method regardless of porous or fractured rocks.

Recently, some studies have been published to investigate the relationship between porous structures and 
flow by persistent homology29,30,47,48. Most of them were machine learning approaches that put a large number 
of parameters into a black box. In contrast, since our approach focuses on flow-channel structures, permeability 
can be calculated by the simple and easy principle. We used the synthetic fracture networks as well as natural 
rocks. Although the estimation errors were relatively large for 3D rocks, it was shown that a simple model such 
as Eq. (7) can provide reasonably close estimates.

Ushizima et al.26 estimates permeability of porous rocks by using Reeb graphs to represent the pore networks. 
They use persistent homology to distinguish between significant and noisy pore spaces, and to supplement the 
Reeb graphs. In fact, the Reeb graph and persistent homology were used independently and separately. We think 
that using Reeb graphs is a good direction to go to the next step.

We have succeeded in modeling physical phenomena from image data based on the topological data analysis. 
The method could be applied also to a wide range of porous media including artificial devices. It is expected to 
be applicable not only to estimate flow properties, but also to characterize different transport phenomena, such 
as mass transfer, electrical and magnetic flows.

Method
Persistent homology analysis.  STL files of synthetic fracture networks were generated by using Open-
SCAD, and the STL files were converted to the cross-sectional images in 36 mm × 36 mm × 50 mm with a voxel 
resolution of 0.1 mm in Autodesk Netfabb. To eliminate some unexpected noises, all the images were blurred in 
XnConvert. The png files of the image data were analyzed in HomCloud63. When there were small differences 
between birth and death of PH1, the hole structure may appear during the image analysis. Thus, we neglected the 
result with di − bi < 2 were eliminated.

Table 3.   Information of 2D pore39 and 3D rock images40 and their permeability. The correlation coefficients 
between the simulation results and estimations from persistent homology analysis for 2D pore models and 3D 
rock models were 0.887 and 0.764, respectively.

Model Image size (pixels) Domain size (mm) Simulation result Estimation from PH analysis

2D pore

Square

3000 × 1500 20 mm × 10 mm × 0.2 mm

3.13 × 10−10 1.54 × 10−9

GL-D1 1.92 × 10−10 2.74 × 10−10

GL-D2 1.70 × 10−10 4.96 × 10−10

GL-D3 1.47 × 10−10 7.98 × 10−10

GL-D4 1.44 × 10−10 9.71 × 10−10

GS-D1 9.77 × 10−10 5.19 × 10−9

GS-D2 9.75 × 10−10 3.34 × 10−9

GS-D3 9.60 × 10−10 2.43 × 10−9

GS-D4 9.18 × 10−10 2.67 × 10−9

P-D1 3.25 × 10–10 1.75 × 10−9

P-D4 4.01 × 10−10 1.53 × 10−9

Berea 2900 × 2320 1.774 mm × 1.418 mm × 0.02454 mm 1.45 × 10−12 5.06 × 10−12

Model Image size (voxels) Resolution (um/px) Experimental result Estimation from PH analysis

3D rock

Doddington

300 × 300 × 300

2.6929 1.04 × 10−12 3.37 × 10−11

Bentheimer 3.0035 1.88 × 10−12 9.02 × 10−11

Ketton 3.00006 2.81 × 10−12 6.86 × 10−11

Estaillades 3.31136 1.49 × 10−13 2.90 × 10−11
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Direct flow simulation.  Flow behaviors in the rock models were simulated in OpenFOAM (ver. 4.1)34, 
which performs flow calculations based on the Navier–Stokes equation. The simulation used an STL file of the 
network model, in which the upper and lower boundaries were added, as shown in Fig. 9a. Previous study vali-
dated the flow model with fracture networks similar to the rock model in this study by creating test specimens 
from a 3D printer and conducting flow experiment49,50.

First, the meshes of the region were prepared (Fig. 9b), and flow calculation of the loaded STL file were 
performed using a steady-state turbulence solver for incompressible fluids SIMPLE (Semi-Implicit Method 
for Pressure Linked Equations) method. In this study, we set the flow rate to 1.75 × 10−7 m3/s, fluid viscosity to 
9.32 × 10−4 Pa s, and fluid density to 997.5 kg/m3.

Data availability
The data that support the findings of this study are available in https://​doi.​org/​10.​6084/​m9.​figsh​are.​14110​262, 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​14110​208, https://​doi.​org/​10.​6084/​m9.​figsh​are.​14113​439.

Received: 14 March 2021; Accepted: 18 August 2021

References
	 1.	 Renard, P. & de Marsily, G. Calculating equivalent permeability: A review. Adv. Water Resour. 20, 253–278 (1997).
	 2.	 Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny–Carman equation based on a fractal pore-space 

geometry assumption. Geophys. Res. Lett. 33, 1–5 (2006).
	 3.	 Carman, P. C. Fluid flow through granular beds. Trans. Chem. Eng. 15, S32–S48 (1937).
	 4.	 Zimmerman, R. W. & Bodvarsson, G. S. Effective transmissivity of two-dimensional fracture networks. Int. J. Rock Mech. Min. Sci. 

Geomech. Abstr. 33, 433–438 (1996).
	 5.	 Snow, D. Anisotropic permeability of fractured media. Water Resour. Res. 5, 1273–1289 (1969).
	 6.	 Renshaw, C. E. On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. 100, 

629–636 (1995).
	 7.	 Witherspoon, P. A., Wang, J. S. Y., Iwai, K. & Gale, J. E. Validity of cubic law for fluid flow in a deformable rock fracture. Water 

Resour. Res. 16, 1016–1024 (1980).
	 8.	 Zimmerman, R. & Yeo, I. Fluid flow in rock fractures: From the Navier–Stokes equations to the cubic law. Dyn. Fluids Fract. Rock 

https://​doi.​org/​10.​1029/​GM122​p0213 (2000).
	 9.	 Hyman, J. D., Aldrich, G., Viswanathan, H., Makedonska, N. & Karra, S. Fracture size and transmissivity correlations: Implications 

for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of 
fracture size. Water Resour. Res. 5, 2–2 (1969).

	10.	 Valentini, L., Perugini, D. & Poli, G. The, “small-world” topology of rock fracture networks. Phys. A Stat. Mech. Appl. 377, 323–328 
(2007).

	11.	 Andresen, C. A., Hansen, A., Le Goc, R., Davy, P. & Hope, S. M. Topology of fracture networks. Front. Phys. 1, 1–5 (2013).
	12.	 Mecke, K. & Arns, C. H. Fluids in porous media: A morphometric approach. J. Phys. Condens. Matter 17, S503–S534 (2005).
	13.	 Lehmann, P. et al. Impact of geometrical properties on permeability and fluid phase distribution in porous media. Adv. Water 

Resour. 31, 1188–1204 (2008).
	14.	 Scholz, C. et al. Permeability of porous materials determined from the Euler characteristic. Phys. Rev. Lett. 109, 1–5 (2012).
	15.	 Liu, Z., Herring, A., Arns, C., Berg, S. & Armstrong, R. T. Pore-scale characterization of two-phase flow using integral geometry. 

Transp. Porous Media 118, 99–117 (2017).
	16.	 Armstrong, R. T. et al. Porous media characterization using Minkowski functionals: Theories, applications and future directions. 

Transp. Porous Media 130, 305–335 (2019).
	17.	 Edelsbrunner, H. & Harer, J. Persistent homology—A survey. Contemp. Math. https://​doi.​org/​10.​1090/​conm/​453/​08802 (2008).
	18.	 Zomorodian, A. & Carlsson, G. Computing persistent homology. Proc. Annu. Symp. Comput. Geom. 274, 347–356 (2004).
	19.	 Edelsbrunner, H. & Morozov, D. Persistent homology : Theory and practice. In Conference: European Congress of Mathematics 

(2012).
	20.	 Weinberger, S. What is persistent homology?. Am. Math. Soc. 58, 36–39 (2010).

Figure 9.   Simulation in OpenFOAM. (a) Fracture network with upper and lower boundaries. (b) Discretized 
model.

https://doi.org/10.6084/m9.figshare.14110262
https://doi.org/10.6084/m9.figshare.14110208
https://doi.org/10.6084/m9.figshare.14113439
https://doi.org/10.1029/GM122p0213
https://doi.org/10.1090/conm/453/08802


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17948  | https://doi.org/10.1038/s41598-021-97222-6

www.nature.com/scientificreports/

	21.	 Chazal, F. & Michel, B. An introduction to topological data analysis: Fundamental and practical aspects for data scientists. arXiv 
1–38 (2017).

	22.	 Otter, N., Porter, M. A., Tillmann, U., Grindrod, P. & Harrington, H. A. A roadmap for the computation of persistent homology. 
EPJ Data Sci. 6, 1–38 (2017).

	23.	 Kimura, M., Obayashi, I., Takeichi, Y., Murao, R. & Hiraoka, Y. Non-empirical identification of trigger sites in heterogeneous 
processes using persistent homology. Sci. Rep. 8, 1–9 (2018).

	24.	 Hiraoka, Y. et al. Hierarchical structures of amorphous solids characterized by persistent homology. Proc. Natl. Acad. Sci. U.S.A. 
113, 7035–7040 (2016).

	25.	 Ichinomiya, T., Obayashi, I. & Hiraoka, Y. Persistent homology analysis of craze formation. Phys. Rev. E 95, 1–6 (2017).
	26.	 Ushizima, D. et al. Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comput. Graph. 18, 

2041–2050 (2012).
	27.	 Robins, V., Saadatfar, M., Delgado-Friedrichs, O. & Sheppard, A. P. Percolating length scales from topological persistence analysis 

of micro-CT images of porous materials. Water Resour. Res. 52, 315–329 (2016).
	28.	 Tsuji, T., Jiang, F., Suzuki, A. & Shirai, T. Mathematical Modeling of Rock Pore Geometry and Mineralization: Applications of 

Persistent Homology and Random Walk. 95–109 (2018). https://​doi.​org/​10.​1007/​978-​981-​10-​7811-8_​11.
	29.	 Jiang, F., Tsuji, T. & Shirai, T. Pore geometry characterization by persistent homology theory. Water Resour. Res. 54, 4150–4163 

(2018).
	30.	 Herring, A. L., Robins, V. & Sheppard, A. P. Topological persistence for relating microstructure and capillary fluid trapping in 

sandstones. Water Resour. Res. 55, 555–573 (2019).
	31.	 Suzuki, A. et al. Inferring fracture forming processes by characterizing fracture network patterns with persistent homology. Comput. 

Geosci. 143, 104550 (2020).
	32.	 Obayashi, I. & Hiraoka, Y. Persistence diagrams with linear machine learning models. arXiv 1, 421–449 (2017).
	33.	 Choudhury, a. N. M. I., Wang, B., Rosen, P. & Pascucci, V. Topological analysis and visualization of cyclical behavior in memory 

reference traces. In 2012 IEEE Pacific Vis. Symp. 9–16 (2012). https://​doi.​org/​10.​1109/​Pacif​icVis.​2012.​61835​57.
	34.	 Choudhury, A. N. M. I., Wang, B., Rosen, P. & Pascucci, V. Topological analysis and visualization of cyclical behavior in memory 

reference traces. In IEEE Pacific Vis. Symp. 2012, PacificVis 2012—Proc. 9–16 (2012). https://​doi.​org/​10.​1109/​Pacif​icVis.​2012.​61835​
57.

	35.	 Martys, N. & Garboczi, E. J. Length scales relating the quid permeability and electrical conductivity in random two-dimensional 
model porous media. Phys. Rev. B 46, 6080–6090 (1992).

	36.	 Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J. & Torquato, S. Cross-property relations and permeability estimation in 
model porous media. Phys. Rev. E 48, 4584–4591 (1993).

	37.	 Nishiyama, N. & Yokoyama, T. Permeability of porous media: Role of the critical pore size. J. Geophys. Res. Solid Earth 122, 
6955–6971 (2017).

	38.	 Watanabe, K. & Takahashi, H. Fractal geometry characterization of geothermal reservoir fracture networks. J. Geophys. Res. 100, 
521–528 (1995).

	39.	 Mehmani, Y. & Tchelepi, H. A. Minimum requirements for predictive pore-network modeling of solute transport in micromodels. 
Adv. Water Resour. 108, 83–98 (2017).

	40.	 Andrew, M., Bijeljic, B. & Blunt, M. J. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. 
Int. J. Greenh. Gas Control 22, 1–14 (2014).

	41.	 Muljadi, B. P., Blunt, M. J., Raeini, A. Q. & Bijeljic, B. The impact of porous media heterogeneity on non-Darcy flow behaviour 
from pore-scale simulation. Adv. Water Resour. 95, 329–340 (2016).

	42.	 Duda, A., Koza, Z. & Matyka, M. Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 
84, 1–8 (2011).

	43.	 Koponen, I. Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic process. 
Phys. Rev. E 52, 1197–1199 (1995).

	44.	 Jing, Y., Armstrong, R. T. & Mostaghimi, P. Image-based fracture pipe network modelling for prediction of coal permeability. Fuel 
270, 117447 (2020).

	45.	 Srinivasan, S., Karra, S., Hyman, J., Viswanathan, H. & Srinivasan, G. Model reduction for fractured porous media: A machine 
learning approach for identifying main flow pathways. Comput. Geosci. 23, 617–629 (2019).

	46.	 Srinivasan, G. et al. Quantifying topological uncertainty in fractured systems using graph theory and machine learning. Sci. Rep. 
8, 1–11 (2018).

	47.	 Robinson, J. et al. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography. Groundwater 54, 
186–201 (2016).

	48.	 Thakur, M. M., Kim, F., Penumadu, D. & Herring, A. Pore space and fluid phase characterization in round and angular partially 
saturated sands using radiation-based tomography and persistent homology. Transp. Porous Media https://​doi.​org/​10.​1007/​s11242-​
021-​01554-w (2021).

	49.	 Suzuki, A., Watanabe, N., Li, K. & Horne, R. N. Fracture network created by 3-D printer and its validation using CT images. Water 
Resour. Res. https://​doi.​org/​10.​1002/​2017W​R0210​32 (2017).

	50.	 Suzuki, A., Minto, J. M., Watanabe, N., Li, K. & Horne, R. N. Contributions of 3D printed fracture networks to development of 
flow and transport models. Transp. Porous Media 129, 485–500 (2019).

Acknowledgements
Anna Suzuki was supported by JSPS KAKENHI Grant Numbers JP20H02676 and JP17H04976 (Japan); JST 
ACT-X Grant Number JPMJAX190H (Japan). Ippei Obayashi was supported by JSPS KAKENHI Grant Number 
JP 16K17638, JP 19H00834, JP 20H05884; JST PRESTO Grant Number JPMJPR1923; JST CREST Mathematics 
Grant Number 15656429 (Japan); and the Structural Materials for Innovation, Strategic Innovation Promo-
tion Program D72 (Japan), which are gratefully acknowledged. The authors would like to thank Department 
of Earth Science and Engineering, Imperial College London for sharing the micro-CT data of the rocks. These 
micro-CT data can be downloaded through their web page: http://​www.​imper​ial.​ac.​uk/​earth-​sci-ence/research/
research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/. Numerical simulations 
were performed on the Supercomputer system"AFI-NITY" at the Advanced Fluid Information Research Center, 
Institute of Fluid Science, Tohoku University.

Author contributions
A.S. initiated the key concepts, designed, conducted persistent homology analysis, and supervised the research. 
M.M. performed numerical simulation and conducted persistent homology analysis. J.M. assisted flow simulation. 

https://doi.org/10.1007/978-981-10-7811-8_11
https://doi.org/10.1109/PacificVis.2012.6183557
https://doi.org/10.1109/PacificVis.2012.6183557
https://doi.org/10.1109/PacificVis.2012.6183557
https://doi.org/10.1007/s11242-021-01554-w
https://doi.org/10.1007/s11242-021-01554-w
https://doi.org/10.1002/2017WR021032
http://www.imperial.ac.uk/earth-sci


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17948  | https://doi.org/10.1038/s41598-021-97222-6

www.nature.com/scientificreports/

I.O. and Y.H. assisted persistent homology analysis. T.T. and T.I. conducted project administration. A.S. wrote 
the original draft. J.M., I.O., Y.H., T.T. and T.I. reviewed and edited the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Flow estimation solely from image data through persistent homology analysis
	Results
	Detection of flow channels from persistent homology analysis. 
	Synthetic fracture network. 
	Estimation of fracture numbers and apertures by persistent homology. 
	Derivation of permeability. 
	Estimation of permeability from persistent homology analysis. 

	Discussions
	Method
	Persistent homology analysis. 
	Direct flow simulation. 

	References
	Acknowledgements


