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The endogenous timekeeping system evolved to anticipate the time of the day through the
24 hours cycle of the Earth’s rotation. In mammals, the circadian clock governs rhythmic
physiological and behavioral processes, including the daily oscillation in glucose
metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The
results from a series of studies have demonstrated that environmental or genetic
alterations of the circadian cycle in humans and rodents are strongly associated with
metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests
that astrocyte clocks have a crucial role in regulating molecular, physiological, and
behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given
the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding
the mechanisms underlying glucose homeostasis regulation by the circadian clock and its
dysregulation may improve glycemic control. In this review, we summarize the current
knowledge on the tight interconnection between the timekeeping system, glucose
homeostasis, and insulin sensitivity. We focus specifically on the involvement of
astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of
glucose metabolism.
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FUNCTIONAL HIERARCHY OF THE TIMEKEEPING SYSTEM

The circadian (in Latin “circa”, around; “diem”, day) clock is an endogenous and self‐sustaining
oscillator that operates with a periodicity of 24 hours (h) to maintain proper rhythms of the vast
majority of physiological and behavioral processes, including food intake, energy balance, sleep-
wake cycles and many others (1). In mammals, the timekeeping system comprises a pacemaker
located in the hypothalamic suprachiasmatic nucleus (SCN) (2, 3), as well as non-SCN brain and
peripheral clocks and cell-autonomous oscillators within virtually every cell type of the body (4, 5).
In the absence of any time cue from the environment, these clocks free run with a period close to
24 h. To compensate discrepancies between this intrinsic period and the environmental cycle,
circadian clocks entrain to external Zeitgebers (ZT, in German “time giver”). The light entrains
the SCN to local time which in turn, conveys the temporal information to other clocks in the
brain and peripheral tissues via neuronal, hormonal, or behavioral activity rhythms, such as the
n.org March 2021 | Volume 12 | Article 6620171
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feeding-fasting and sleep-wake cycles, which serve as entrainment
signals for extra-SCN clocks (6, 7) (Figure 1).

While a substantial amount of information is known about
the neuroanatomy of the SCN, the mechanisms of light-affected
entrainment and the transmission of time cues to other brain
areas or peripheral clocks are not yet fully understood. Briefly,
the SCN is a heterogeneous and complex bilateral nucleus (8, 9)
comprising approximately 10,000 self-oscillating neurons on
each side, in mice (10–12). Each part is divided into two
functional subgroups, one in the ventrolateral region and the
other in the dorsal SCN. The ventrolateral region or core receives
direct photic inputs from the intrinsically photosensitive retinal
ganglion cells (ipRGCs) (13–15). Activation of the retino
hypothalamic tract by light increases the firing of vasoactive
intestinal polypeptide (VIP)-expressing SCN cells and VIP
release. VIP neurons set and phase-shift the circadian time by
VIPergic and g-aminobutyric acid (GABA)ergic signaling to
arginine vasopressin (AVP)-expressing neurons within the
Frontiers in Endocrinology | www.frontiersin.org 2
second subgroup of cells located in the dorsal SCN or shell
(Figure 1). Ultimately, this results in the induction of the so-
called clock genes Period1 (Per1) and Period2 (Per2) (16) and
subsequent time-of-day dependent phase responses of the SCN,
thereby enabling entrainment to the light-dark (LD) cycle.

If food availability is restricted to a particular time of day or
night (often referred to as time-restricted feeding, TRF), animals
exhibit increased activity in anticipation of feeding (termed food
anticipatory activity, FAA). Moreover, in this paradigm, the
peripheral clocks shift their phase to preserve alignment with
mealtime. The effects of TRF on peripheral clocks and/or
behavior persist even when the feeding is out of phase with the
LD cycle, and, indeed, can be uncoupled from the SCN, which
remains synchronized to the light (17–19). Remarkably, in the
absence of a functional SCN, FAA is preserved and food intake
becomes an effective ZT capable of coordinating circadian
rhythms of behavior, peripheral clock gene expression, and
clock outputs, such as hormone secretion (20, 21). Thereby,
FIGURE 1 | The circadian timing system. The timekeeping system is composed of two pacemakers (the SCN and the FEO), and peripheral clocks in other brain
areas and peripheral tissues. Light inputs reaching the SCN via the retina and the retinohypothalamic tract, are the most important Zeitgeber for the SCN, which in
turn synchronizes peripheral clocks through neural, endocrine, temperature, and behavioral signals. Feeding-related signals (INS and ketones bodies) generated by
peripheral tissues and IGLNPY neurons entrain the FEO, which regulate the outputs such as FAA.
March 2021 | Volume 12 | Article 662017
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the entrainment to TRF has been proposed to be independent of
the SCN and driven by a food-entrainable oscillator (FEO) of still
unknown location. A recent study reported that innervation of
ipRGC to neuropeptide Y (NPY)-expressing intergeniculate
leaflet (IGL) neurons in early postnatal stages, allow the
entrainment to TRF in adults. In this model, TRF inhibitory
signals from IGLNPY neurons modulate the SCN activity,
allowing the FEO signals to influence FAA (22).

As hypothalamic lesions and gene knockouts (KOs) targeting
specific cell types in the hypothalamus, brainstem, or forebrain
areas also impair FAA (23–29), it is reasonable to hypothesize
that the FEO might be functionally distributed among brain
areas that are competent to drive changes in behavior instead to
be restricted to a particular brain region. In line with this idea, it
was recently reported that the action of insulin (INS) and
insulin-like growth factor-1 (IGF-1) triggered after feeding, on
different brain regions, are necessary and sufficient for both the
FAA and the phase-shift of body clocks (7). Remarkably, an
elegant study showed that the signal that generates FAAmight be
synthesized in the liver. Specifically, it was shown that liver PER2
is required for hepatic-derived ketone bodies production which
in turn signals the brain to induce FAA (30). In sum, the FEO
may not be in a single tissue but it might be of systemic nature. In
this context, the feeding-related signals, such as INS and ketones
generated in peripheral tissues, entrain different brain regions
competent to drive changes in behavior. Among these regions is
included the SCN, which is tuned by innervation of ipRGCs to
IGL during development to allow non-photic entrainment to
food (22) (Figure 1).
ASTROCYTE CIRCADIAN CLOCKS

How the activity of a small number of SCN neurons is translated
into rhythmic behaviors or physiology at the organism level? The
human brain contains more than 100 billion cells, the majority
being glial cells, coordinated by this endogenous clock to
determine alertness waxes and wanes in a highly predictable
manner over the course of a 24 h day (31). However, how this
clock signaling is orchestrated within so many brain cells that
lead to the cycle-to-cycle precision of circadian rhythmicity is
unknown. Consequently, we face a lack of knowledge on the
mechanisms by which circadian dysfunction affects a wide range
of physiological processes such as metabolic imbalance,
premature aging, and reduced longevity (32–38).

Astrocytes have long lived in the shadow of the neurons as
they were thought to have mainly a structural role in the central
nervous system. The recent findings showing the critical role of
the astrocyte clock in the control of SCN function and circadian
behavior (39–43) is a game-changing discovery that offers
radically new research directions for therapy of brain diseases
originated by environmental miss functioning of circadian
rhythms or genetic factors affecting clock genes or outputs.
This glial cell type is highly diverse in its morphological
appearance, functional properties, and distribution among and
within different brain regions (44, 45). However, they share three
Frontiers in Endocrinology | www.frontiersin.org 3
anatomical features that are crucial to understand its functional
contributions to the timekeeping system.

Firstly, the longstanding concept that astrocytic processes
interdigitate to create a scaffold for the neuronal organization,
has been challenged by several studies showing that, in vivo,
astrocytes are organized in nonoverlapping domains, i.e, with
little interaction between adjacent cells (46–48). Thus, one
astrocyte can coordinate the activity of multiple sets of
contiguous synapses, via regulation of neurotransmitters levels
in the synaptic cleft, via control of the extracellular space, or by
releasing chemical signals that actively modulate synaptic
transmission, often referred to as gliotransmitters. Specifically,
astrocytes play an essential role in the coupling of SCN neurons
by controlling both glutamate and GABA levels (40, 42, 43, 49–
51). Moreover, SCN astrocytes undergo rhythmic structural
rearrangements (52), along with rhythms in GFAP expression
(53), which allows differential day/night coverage of VIP neurons
to facilitate entrainment to light (52, 54). Similarly, in response to
metabolic cues, astrocytes undergo structural and morphological
changes to influence the synaptic inputs within the hypothalamic
melanocortin system, which might ultimately affect the feeding
behavior (55–58). Astrocytes also regulate the extracellular space
(59–62), enabling the exchange of solutes between the
cerebrospinal fluid and the interstitial space, a system referred
to as glymphatic clearance. As the diffusion of SCN output
signals is sufficient for rhythmic behavior (63, 64), daily
changes in the glymphatic system may underly the
synchronization among different brain regions across the
circadian cycle. On the other hand, in Drosophila, a glial-
released factor was shown to be critical for normal rhythmicity
by regulating a neurotransmitter, pigment dispersing factor,
acting on a receptor similar to that for VIP in mammals (65–
67). Similarly, in rodents, astrocytes release gliotransmitters,
such as ATP, in a circadian manner (68), and arrhythmic
astrocytes alter VIP expression in vivo (40). However, whether
ATP release and/or astrocytic rhythmic metabolism impact the
activity patterns of VIP neurons is still unknown.

Secondly, astrocytes form a syncytium, via gap junctions, that
allow the propagation of small signaling molecules through the
glial network (69). Pharmacological inhibition of gap junctions
in SCN slides (70, 71) and mouse models with deletion of the
neuronal connexin-36, impairs the circadian pattern of neuronal
activity without affecting the long-term synchronization of clock
gene expression (72) and with mild effect on behavioral rhythms
(73). Similarly, studies in mouse models with deletion of
astrocytic specific connexins indicate that the astrocytic
coupling in the SCN is dispensable for circadian rhythm
generation and light-entrainment (74). However, recently, a
long-range function of astrocytes for the transmission of
timing cues to distant neural populations was investigated in
vitro with microfluidic devices that allowed compartmentalizing
distinct neuronal populations connected through a network of
astrocytes. In this paradigm, astrocytes were able to synchronize
the clock of segregated cortical neuronal populations if
intercellular communication between the glial network and/or
calcium signaling were intact (75). Whether astrocytes are
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involved in the spatial transmission of timing cues in other extra-
SCN brain regions in vivo is still unknown.

Thirdly, the exchange of metabolites and hormones through
the blood-brain barrier (BBB) relies on astrocytes and is
dependent both on the sleep/wake state and in the circadian
clock (59, 76–80). As hypothalamic astrocytes have a crucial role
in sensing nutrients such as glucose and fatty acids (56, 81–83)
and express receptors for leptin (84, 85), IGF-1 (86), thyroid
hormone (87), INS (57), and glucocorticoids (GCs) (88, 89)
among others, they could link or coordinate peripheral and
central oscillators. For example, astrocytes, as well‐known
targets of GCs, might be sensitive to the negative feedback loop
of the hypothalamus‐pituitary‐adrenal axis. It is widely accepted
that GC signaling can reset peripheral clocks but not the central
pacemaker because SCN neurons do not express the GC receptor
(90). However, astrocytic feedback loops, via GC signaling, could
explain the so far puzzling results showing that the Per1‐Luc
phases of SCN were affected significantly when adrenalectomized
animals were treated with hydrocortisone (6).
MOLECULAR DYNAMICS OF THE CLOCK

The Nobel Prize in Physiology or Medicine in 2017 was awarded
to three Chronobiologists who first cloned the Droshopila Period
gene in 1984 (91, 92). This finding allowed us to understand how
the timekeeping system anticipates the environmental changes
related to the Earth’s rotation in most, if not all, living organisms.

The molecular clock involves rhythmic and self‐sustained
transcriptional–translational feedback loops (TTFLs) of clock
genes/proteins (Figure 2). The E‐box specific transcription
factors BMAL1 (Brain and muscle Arnt‐like protein‐1) and
Frontiers in Endocrinology | www.frontiersin.org 4
CLOCK (Circadian locomotor output cycles kaput) are the
positive limb of the TTFL, which heterodimerize to activate
transcription of the repressors Per1/2/3 and Cryptochrome genes
(Cry1/2) (93, 94). The negative loop comprises PER/CRY
heterocomplex that, upon accumulation, lead to the
degradation of BMAL1/CLOCK dimers, thus inhibiting their
own transcription (95). Hence, a new cycle of PER and CRY
protein accumulation begins, generating rhythmic changes in the
levels of the core clock transcripts and proteins that persist for
approximately 24 h (96) (Figure 2). In a secondary feedback
loop, the CLOCK- BMAL1 complex controls the rhythmic
expression of the genes encoding the REV-ERB nuclear
hormone receptors and ROR (97). In turn, REV-ERB and ROR
compete for the same RORE elements within the Clock and
Bmal1 promoter, repressing or activating, respectively, Clock and
Bmal1 transcription (Figure 2).

Direct targets of CLOCK/BMAL1, referred to as clock-
controlled genes (CCGs), include genes that are critically
involved in rhythmic processes such as feeding behavior, sleep-
wake cycle, and glucose homeostasis (34, 98) (Figure 2). In turn,
metabolic state sensing pathways also alter the molecular clock in
anticipation of the LD cycle. Specifically, during feeding, anabolic
processes are triggered by the activation of the INS-AKT-mTOR
pathway, whereas during fasting, AMP-activated protein kinase
(AMPK) activation triggers catabolic processes and inhibits
mTOR activity (99). BMAL1 phosphorylation and PER2
translation are regulated by the INS-AKT-mTOR pathway that
is activated in the postprandial state (7, 100–102). Similarly, in
peripheral tissues, AMPK1, which senses cellular ATP levels,
modulate CRY1 phosphorylation and thus its rhythmic
degradation (103). Additionally, high levels of glucose control
the period length viaO- GlcNAcylation of CLOCK, BMAL1, and
FIGURE 2 | Core molecular clock network. The mammalian molecular clock consists of a transcriptional-translational feedback loop involving the clock proteins
CLOCK, ARNTL, PER, and CRY and the nuclear receptors REV-ERB and ROR. The positive limb (CLOCK and BMAL1) heterodimerizes and activates the
transcription of downstream genes, including Per, Cry, Rora and Rev-erb. The negative limb proteins (PERs and CRYs) multimerize and inhibit CLOCK/BMAL1. In a
secondary loop, Bmal1 and Clock are regulated by the repressor REV-ERB and its opposing nuclear receptor RORa, which bind competitively to the shared element
RORE, thus repressing or activating the transcription of the Bmal1 or Clock gene, respectively. Post-translational modifications of core-clock factors can also regulate
transcription (e.g., deacetylation of BMAL1 or PER2 by SIRT1, BMAL1 phosphorylation or PER2 translation by INS signaling; O- GlcNAcylation of CLOCK, BMAL1
and PER2; and CRY1 phosphorylation by AMPK).
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PER2 (104–106). The molecular clocks are also sensitive to the
ratio of reduced to oxidized nicotinamide adenine dinucleotide
(NAD) and flavin adenine dinucleotide (FAD), which are
indirect sensors of cellular energy status. Oxidation of NAD
is under control of the clock and, in turn, prevents the
deacetylation and this the transcriptional activity of CLOCK-
BMAL1 complex by Sirtuin 1 (SIRT1) and poly-ADP-
ribosylation mediated by poly(ADP-ribose) polymerase 1
(107–110) (Figure 2).

In summary, the circadian system ensures a temporal
partitioning of catabolic and anabolic reactions synchronizing
organism metabolism to the feeding-fasting cycle. However, as
the connection of metabolism and the circadian clock works in
both directions (111) is not surprising that animal models of
genetic clock defects display metabolic alterations and that clock
alterations can be found in metabolically challenged
conditions (112).
COORDINATION OF GLUCOSE
HOMEOSTASIS BY CENTRAL AND
PERIPHERAL CLOCKS

Glucose homeostasis is optimal when fasting-feeding and rest-
activity cycles, hormonal rhythms, and central and peripheral
clocks oscillate in synchrony with each other to ensure that the
timing cues and tissue responsiveness are achieved at the right
time. During the active phase, metabolic tissues such as the liver,
muscle, and fat are very sensitive to INS to guarantee that glucose
uptake is properly achieved after food intake. Conversely, these
tissues are more resistant to the hormone during the fasting
phase, to facilitate the endogenous glucose production and free
fatty acid (FFA) secretion (113–115). In this section, we discuss
the clocks in the tissues and organs involved in the control of
glucose homeostasis and describe their role in the regulation of
INS sensitivity and secretion.

The hypothalamus integrates glucose-sensing mechanisms
with multiple effector pathways to precisely coordinate hepatic
glucose production, muscle and fat glucose uptake, and
endocrine pancreas function (Figure 3). Briefly, in the arcuate
nucleus of the hypothalamus (ARC), orexigenic agouti-related
peptide (AgRP)-producing neurons, and anorexigenic neurons
releasing the pro-opiomelanocortin (POMC)-derived peptide,
a-melanocyte-stimulating hormone, together with the neurons
expressing the melanocortin 4 receptor (MC4R), are essential
for glucose sensing (117). AgRP neurons are glucose-inhibited
cells whereas POMC neurons are glucose-excited (118). In
general terms, competitive binding of a-MSH and AgRP to
MC4Rs defines the activation magnitude of downstream
pathways and effectors. Furthermore, POMC and AgRP
neurons project to numerous extrahypothalamic and
hypothalamic regions, including the ventromedial nucleus
(VMH) (119), which is crucial to initiate the glucose counter-
regulatory response to hypoglycemia (120) (Figure 3). On the
other hand, hypothalamic astrocytes respond to hyperglycemia
Frontiers in Endocrinology | www.frontiersin.org 5
by retraction of the coverage around POMC neurons to modify
meal patterns (56). Consistently, astrocytes sense INS and
leptin to co‐regulate behavioral responses and metabolic
processes via the control of brain glucose uptake and the glial
ensheathment of POMC neurons, respectively (57, 58).
Moreover, deletion of leptin receptors in astrocytes reduces
the physiological anorexigenic response to this hormone and
enhances fasting or ghrelin-induced hyperphagia (58).
Additionally, stimulation of astrocytes with ghrelin modify
glutamate and glucose metabolism as well as glycogen storage
by decreasing GLUT2, glutamine synthetase, and lactate
dehydrogenase, and increasing glutamate uptake, glycogen
phosphorylase, and lactate transporters, which might
modulate the signals/nutrients reaching neighboring neurons
(121). Finally, activated astrocytes release adenosine to inhibit
AgRP neurons, thus suppressing the ghrelin-mediated increase
of food intake (122, 123) (Figure 3).

As the SCN imposes the sleep-wake cycle and food intake
occurs in the active period, the involvement of the pacemaker in
controlling glucose homeostasis and systemic INS sensitivity is
indirect (124). Indeed, BMAL1 deletion in SCN does not affect
the body weight despite complete loss of rhythmic behavior (20).
Moreover, the circadian locomotor activity but not the metabolic
disturbances of Bmal1−/− mice were rescued by restoring
BMAL1 expression in the SCN (125). Similarly, mice with
astrocyte‐specific deletion of BMAL1 show altered energy
balance and glucose homeostasis despite their circadian
locomotor activity is not lost (39–43). Thus, peripheral and/or
extra-SCN hypothalamic clocks, but not the SCN, might have a
crucial role in developing glucose intolerance and INS resistance.
In line with this idea, BMAL1 ablation within SF1 neurons in the
VMH is sufficient to alter energy expenditure (126).
Additionally, AgRP-specific ablation of BMAL1 increases
hepatic gluconeogenesis (127). However, currently, little is
known about the specific physiological functions of extra SCN
brain clocks. This knowledge could be highly valuable for
biomedical understanding and future therapeutic advancement
in the metabolic imbalance associated with circadian disruption.

Metabolic tissues involved in glucose homeostasis also have
autonomous clocks that govern and adjust their daily metabolic
function or outputs. For example, in the liver, with an essential
role as a buffer for glucose variations arising from rhythmic food
consumption, ablation of the local clock leads to hypoglycemia
restricted to the fasting phase and exaggerated glucose clearance
(128). Moreover, it was reported that while hepatic glycogenesis
is controlled by CLOCK (129), gluconeogenesis in the fasted
state, is under the regulation of the repressor CRY1 (130–133).
On the other hand, efficient glucose uptake by the hepatocytes at
the beginning of the active phase depends on the rhythmic
expression of glucose transporters and glucagon receptor (134,
135). Another tissue with a key role in the control of glucose
homeostasis is the skeletal muscle. This tissue is responsible for
70-80% of INS-stimulated glucose uptake in the postprandial
state (136). Interestingly, INS sensibility in muscle is controlled
both by light and the local clock (137–140). Specifically, it was
shown that photic inputs entrain diurnal changes in clock gene
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expression and INS sensitivity in muscle via SIRT1 in SF1
neurons (140). On the other hand, deletion of the autonomous
clock in muscle is sufficient to cause local INS resistance (137).
Glucose uptake is also dependent on rhythmic INS action in the
white adipose tissue (WAT) (141). However, contrary to liver or
skeletal muscle, ablation of the local clock in WAT do not impact
glucose homeostasis and INS sensitivity (142), suggesting that
lipid mobilization is mainly regulated by the hypothalamic
actions of INS and leptin. Finally, brown adipose tissue (BAT),
which relays in FFA and glucose supply to regulate
thermogenesis, is highly flexible in terms of glucose uptake
potential and can significantly contribute to whole-body
glucose metabolism under some conditions. In this tissue, INS-
stimulated glucose uptake is regulated by the VMH and AgRP
neurons (143–145), as well as by the local clock (146, 147).
Interestingly, mouse and human BAT express a red-light-
sensitive protein, OPN3 (148), which increases glucose uptake
upon red light stimulation. Recently, an elegant study
demonstrated that animals reared without violet light show
Frontiers in Endocrinology | www.frontiersin.org 6
increased responses to b-agonists, which in humans activate
BAT, lower blood glucose levels, and increase and INS sensitivity.
This effect was mediated by a violet light-sensing photoreceptor
Opsin 5 (OPN5) in glutamatergic warm-sensing hypothalamic
preoptic area neurons (149). Altogether, these studies open the
possibility of modulating glucose homeostasis by manipulating
environmental light.

Altogether this suggests that perturbed rhythms of the central
and/or tissue clocks might lead to a mismatch between hepatic
glucose production, muscle glucose uptake, and carbohydrate
intake which could contribute to elevated levels of glucose and an
imbalance between lipid storage in WAT and lipid oxidation in
the brown adipose tissue. Furthermore, hyperglycemia in diabetes
is traditionally attributed to reduced INS sensitivity in skeletal
muscle and liver but also coupled to decreased INS secretion by
the pancreas. Not only glucose homeostasis and INS sensitivity is
under control of the local clocks in most of the above-mentioned
metabolic tissues, but the pancreatic clock also controls rhythmic
INS secretion (150, 151). Indeed, ablation of the pancreatic clock,
FIGURE 3 | Astrocytes and clocks modulate hypothalamic glucose-sensing mechanisms. The ability of POMC and NPY/AgRP neuronal populations in ARC to alter
energy metabolism is due to their sensitivity to several circulating signals, including hormones, such as leptin and insulin (INS), and nutrients. Hypothalamic astrocytes
provide neurons with structural support and nutrients. Moreover, hyperglycemia, INS, and leptin signaling in this glial cell type lead to changes in the astrocytic
coverage of POMC and/or AgRP neurons to regulate glucose sensing. Glucose transported into astrocytes can be metabolized to lactate, which is released and
taken up by neurons and metabolized into pyruvate to serve as a glycolytic substrate. Astrocytes can also modulate synaptic transmission by uptake of
neurotransmitters from the synaptic cleft (glutamate and GABA) and by releasing gliotransmitters such as adenosine, which inhibits AgRP neurons. In the ARC, the
astrocyte circadian clock might control food intake and glucose homeostasis by regulating the uptake of GABA. On the other hand, the clock in AgRP neurons is
required for coordinating leptin response and glucose metabolism. VMH neurons include glucose-sensing cells, referred to as glucose-excited and glucose-inhibited
neurons. The activation of glucose-excited neurons leads to decreased hepatic glucose production and increased peripheral glucose uptake. VMH glucose-inhibited
neurons are activated in response to hypoglycemia. In recurrent hypoglycemia, high accumulation of lactate enhances the glucose-excited neuronal activity and
consequent GABA release, inhibiting the counterregulatory response. A high-fat diet increases astrocyte ketone bodies production, which are exported to VMH
neurons to ultimately control food intake. Subsets of VMH neurons also express SF1. These SF1 neurons contain a clock that modulates energy expenditure by
regulating cyclic thermogenesis in brown adipose tissue (BAT). As hypothalamic AMPK modulates BAT thermogenesis (116), and has a crucial role in the molecular
clock, it would be interesting to investigate its involvement in the control of rhythmic BAT thermogenesis by the SF1 neuronal clock. TCA, tricarboxylic acid cycle.
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in mice, is sufficient to cause hypoinsulinemia and hyperglycemia
(150, 152–154).

Interestingly, feeding-related hormones involved in the
control of glucose homeostasis are timing cues for circadian
behaviors. For example, leptin is involved in the regulation of
sleep-wake cycles (155, 156); ghrelin, stimulate FAA in mice
(157) and INS action, triggered after feeding, is a critical
entrainment signal for the FEO (7). Thus, an intriguing
unsolved question concerns how the neurocircuits involved in
glucose homeostasis and the central or peripheral clocks
crosstalk and coordinate appropriate metabolic and/or
circadian responses.
INTEGRATION OF GLUCOSE
HOMEOSTASIS BY ASTROCYTE CLOCKS
AND CELLULAR METABOLISM

As brain metabolic pathways are compartmentalized between
astrocytes and neurons, the coordination of both cell types is
needed to meet the high energy requirements of synaptic
transmission and correct brain function (158). Thereby, it is
not surprising that hypothalamic glucose sensing requires an
intact metabolic coupling between astrocytes and neurons (159).
Interestingly, a big percentage of components of cellular
metabolic pathways are direct targets of the molecular clock
(96, 111, 160). Together, this suggests that the close association
between altered glucose homeostasis and circadian disruption
may arise from a shared defect in the astrocyte-neuron metabolic
coupling. In turn, this might impact the neurocircuitry governing
energy and glucose homeostasis or alter metabolic adaptations to
hypoglycemia in the diabetic brain. In this section, we discuss the
current evidence that supports this hypothesis.

The major energy source for the brain is glucose, which is
taken up by astrocytes and neurons via glucose transporters
(GLUTs) (161–163). In the hypothalamus, the neuron-astrocyte
glucose coupling expands beyond the accomplishment of energy
requirements. For instance, astrocytes actively cooperate with
hypothalamic neurons in detecting circulating glucose levels and
in the generation of proper systemic metabolic responses (164).
Not only astrocytic GLUT2 activity is involved in the regulation
of systemic glucose homeostasis in rodents (165–167), but
restoring astrocytic GLUT2 reestablish the counterregulatory
response to low-glucose in GLUT2 deficient mice (165).
Remarkably, rhythmic GLUTs expression (137, 168, 169) is
impaired in the brain of experimental streptozotocin-induced
diabetes rats (169). Moreover, 24 h oscillation in glucose levels
may modulate the expression of clock genes and transcriptional
outputs within hypothalamic neurons involved in glucose
homeostasis (170). Whether astrocyte-neuron metabolism in
hypothalamic glucose sensing and associated-systemic response
in the normal or diabetic brain relies on the astrocyte molecular
clock remains to be investigated. However, this idea is reinforced
by the recent finding that deletion of Bmal1 in astrocytes impairs
INS sensitivity and glucose homeostasis (39).
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Further, glucose can be stored as glycogen or metabolized in
the glycolytic pathway to produce pyruvate, which is either
transferred into mitochondria or converted to lactate.
According to the “Astrocyte-to-Neuron Lactate Shuttle”
(ANLS) hypothesis (171), lactate is primarily produced by
astrocytes and transferred to neurons, where it is converted to
pyruvate for aerobic energy production in mitochondria
(Figure 3). Thereby, the production and the release of lactate
by astrocytes is directly linked to neuronal activity, as showed in
orexin neurons (172, 173). Consistent with the ANLS hypothesis,
brain lactate levels increase during the awake state when
neuronal firing rates are higher and vice versa, leading to a
24 h rhythm of lactate concentration (174, 175). In turn,
astrocytic lactate release regulates the sleep-wake cycle (74)
and entrain forebrain oscillators between states of alertness and
tiredness by controlling the DNA binding of CLOCK/BMAL1
(176). Remarkably, during hypoglycemia in diabetes patients,
brain lactate levels drop while its infusion increased brain lactate
levels compared to healthy subjects (177–179). These findings
suggest increased lactate use as a metabolic substrate, impaired
astrocyte lactate release, or perturbed compensatory metabolic
mechanisms in the diabetic brain. Whether these effects underlie
a potential astrocytic dysrhythmia is currently unknown.

More than half of the energy used by neurons during fasting
derives from ketones bodies (180) synthesized by astrocytes. The
astrocytic switch from glucose to FFA utilization (181, 182) to
produce ketones is particularly enhanced in the hypothalamus
(181), where stimulate neuropeptides critically involved in
glucose sensing and energy homeostasis (83, 182, 183)
(Figure 3). On the other hand, recurrent exposure to low
glucose, mimicking variations often seen in patients with
diabetes, results in increased astrocytic ketogenesis (184–186),
likely to preserve brain ATP production (187). In turn,
increased astrocytic ketogenesis alters INS signaling and
consequently glucose homeostasis (183). Despite it was shown
that Per2 controls the hepatic production of ketone bodies (30),
whether hypothalamic ketogenesis is under the control of the
astrocyte clock remains to be investigated. Similarly, whether
arrhythmic astrocytes impair glucose homeostasis by
contributing to the increased ketogenesis is unknown and
could be crucial for therapeutic interventions involving the
potentiation of the astrocyte clock.

On the other hand, glucose, as well as glutamine, can be
metabolized to uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) through the hexosamine biosynthetic pathway. The
reversible enzymatic post-translational modification of proteins
(on serine and threonine residues) with UDP-GlcNAc as glucose
donor is termed O-GlcNAcylation. This process is conserved
across species as occurs both in mouse brains and Drosophila
neurons. While in conditions of glucose hypometabolism, brain
levels of O-GlcNAc-modified proteins are reduced (188),
hyperglycemia increases GlcNAcylation of proteins related to
the INS pathway, thus contributing to INS resistance (189).
Hyperinsulinemia is also associated with increased
GlcNAcylation (189) of proteins involved in the pathology of
diabetes, such as glycogen synthase, a major gatekeeper of
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glucose metabolism (190, 191). On the other hand, O-GlcN
Acylation serves as a metabolic sensor to control the circadian
period length via modification, and thus changes in the
transcriptional activity of CLOCK and PER2 (104). As neurons
depend on astroglial glucose and glutamine, this suggests that
O-GlcNAcylation of the neuronal clocks might be coupled to
astrocyte metabolism. However, further studies are needed to
verify this hypothesis.

The metabolic endpoint of glycolysis and the mitochondrial
metabolism is ATP generation, which apart from being used to fuel
biological reactions is released to the extracellular space (eATP)
(eATP) (192). Remarkably, INS stimulates ATP release from
astrocytes (193). In turn, eATP leads to rapid upregulation of
glycolysis (194) and promotes glucose uptake into both neurons
and astrocytes (195). eATP is also a signaling molecule that acts on
purinergic, ionotropic P2X, and G-protein coupled P2Y receptors to
regulate neuronal activity (196). In the hypothalamus, NPY and
AgRP neurons express P2X2R (197), whereas SF-1 neurons are
excited by ATP via the P2X4 receptor (198). eATP released by
astrocytes can also be metabolized to adenosine. While activation of
the A1 receptor by adenosine inhibits appetite-stimulating AgRP
neurons (122) (Figure 3), in astrocytes modulate sleep homeostasis
(46). Thus, the circadian release of astrocytic ATP (199) and the
circadian activity of enzymes involved in adenosine synthesis (200)
suggest a central role of the astrocyte clock in modulating both
processes. On the other hand, decreased ATP production activates
the AMPK pathway to impact the circadian clock via degradation of
CRY1 (103). Further investigation will clarify whether astrocytic
rhythmic ATP release entrains the neuronal clocks via circadian
activation of AMPK to control energy homeostasis and circadian
sleep-wake changes in the brain.

Glutamate, the major excitatory neurotransmitter in the adult
CNS, is released from neurons and recycled by astrocytes to form
glutamine (Figure 3), which is returned to neurons and used as a
precursor for synthesizing glutamate and GABA (201). The uptake
of glutamate by astrocytes, critical for neuronal activity (202), is
metabolically expensive and requires an increase in glycolysis and
lactate production (171). Remarkably, control of glutamate and
GABA levels, coupled to astrocyte rhythms (40–43, 203), is
necessary for the generation of molecular and behavioral rhythms
and, is also critically involved in the modulation of hypothalamic
neural circuits controlling glucose homeostasis (39, 204, 205).
However, excessive demands on astrocytes, in response to a
decrease in glucose levels, impair glutamate uptake (206), altering
the glutamatergic signaling to delay the onset of the normal
counterregulatory response to hypoglycemia (206). Conversely,
intake of an obesogenic diet rapidly increases hypothalamic
glutamatergic signaling (207) and the expression of astrocytic
glutamate transporters (208). It is reasonable to hypothesize that
chronic elevated glutamatergic signaling, associated with diet-
induced obesity, increases the metabolic demands on astrocytes to
prevent glutamate-induced excitotoxicity. This in turn negatively
impacts their ability to support neuronal activity thus, contributing
to hypothalamic synaptic dysfunction and the death of POMC
neurons (55, 209, 210). Altogether, this suggests that the regulation
of glutamate and GABA levels might be a key astrocyte circadian
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function in normal physiology and likely involved in the alterations
of the diabetic brain.

The enteric nervous system is gaining more attention in the last
few years. While most of the research focused on the enteric
neurons, less attention was directed towards the enteric glial cells
(EGCs). Glucose enters the body via the gastrointestinal (GI) tract,
and conversely, diabetes-induced GI dysfunction is related to
increased apoptosis of EGC in the myenteric plexus (211). On the
other hand, the gut clock synchronized by food intake (27, 212)
regulates the expression of brush border disaccharidases and glucose
absorption to the habitual feeding period (168). Moreover,
Glucagon-like peptide-1secretion by enteroendocrine L-cells, with
an important role in regulating glucose homeostasis (213, 214), is
under control of the clock (215). In the gut, also anatomical and
metabolome patterns of the microbiota undergo rhythmic
fluctuations, resulting in system-wide effects on host circadian
transcriptional, epigenetic, and metabolite cycles (216).
Interestingly, repeated jet lag in mice disturbs the intestinal
microbiome leading to reduced glucose tolerance (216). Similarly,
fecal transfer from jet-lagged humans into germ-free mice impaired
glucose tolerance (216). These findings suggest that the microbiome
clock has an important role in the development of INS resistance
due to repeated phase shifts. Altogether, this indicates that the
contribution of the gut clock, specifically in the enteric glia, to the
control of glucose homeostasis warrants further work.

Altogether, this data indicates that further investigations
about the role of the astrocyte clock in maintaining the cycle-
to-cycle precision of cellular metabolism and neural rhythmic
behavior could be crucial to counteract the systemic metabolic
abnormalities associated with circadian disruption.
CIRCADIAN DISRUPTION AND DIABETES

In this section, we review the current evidence about the
contribution of genetic or environmental factors (such as
exposure to artificial light-dark cycles, disturbed sleep, shift
work, and jet lag) that impact the timekeeping system to the
development of insulin resistance and type 2 diabetes.

In humans, mutations in several clock genes are strongly
associated with obesity, INS resistance, and type 2 diabetes.
Specifically, it was reported associations between single nucleotide
polymorphisms in ARNT and T2DM (217), specific haplotypes of
CLOCK and obesity (218, 219), and between polymorphisms in
CRY2 and elevated fasting glucose (220, 221). In line with the
human clock gene mutation studies, rodent models with genetic
deletions of core-clock genes (in either a whole-body or a tissue-
specific manner) showed INS resistance, obesity, and type 2 diabetes
(32, 125, 142, 222, 223). Remarkably, deletion of Bmal1 in astrocytes
in mice is sufficient to phenocopy the obesity, INS resistance, and
glucose intolerance of Bmal1-/- constitutive KO mice (39),
suggesting that robust astrocyte circadian rhythms could preserve
whole-body homeostasis and metabolic health.

The central pacemaker anticipates and synchronizes the daily
function of peripheral tissues according to the entrainment by
natural changes in light. With the advent of affordable artificial
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lighting and the 24/7 lifestyle of our society, humans began to
experience increased exposure to artificial lights and irregular
light schedules. These environmental changes lead to a
desynchronization between the internal clock and the external
ZT, a phenomenon referred to as circadian misalignment.
Remarkably, human and animal studies have linked obesity
and type 2 diabetes with increased light exposure during
naturally dark hours (224–230). In turn, exposure to bright
morning light increases fasting and postprandial glucose levels
in patients with type 2 diabetes (230). Despite its relevance for
health, the molecular and cellular mechanisms of normal and
pathological phototransduction in the SCN are unclear. For
instance, VIP rhythm, with a key role in synchronizing SCN
neurons to each other and with the LD cycle (231, 232), is driven
by the LD cycle and not by the circadian clock (233). Thereby,
the mechanism by which deletion of Bmal1 in astrocytes
constantly elevates VIP levels (40) remains unknown. Indeed,
constant illumination increases VIP levels lengthening the
circadian period and resulting in two or more peaks in daily
activity (234), a circadian locomotor pattern that resembles that
of mice with arrhythmic astrocytes (40). Consistently, studies in
Drosophila showed that glial-specific genetic manipulations lead
to circadian arrhythmicity due to alterations on a clock neuron
peptide transmitter (pigment dispersing factor) that acts on a
receptor similar to that for VIP in mammals (65, 66). These
studies suggest that the astrocyte clock might facilitate the
entrainment to light and therefore, to the light-induced phase
shifts in physiology and behavior. Further investigations on the
mechanism underlying circadian entrainment to light are critical
for understanding why aberrant light exposure, disrupts
circadian physiology leading to diabetes and INS resistance.

Evidence from epidemiological and experimental studies
indicate that sleep restriction or disturbance, increases the risk of
obesity and type 2 diabetes (235–239) likely due to increased food
intake (237, 238), altered sympathovagal balance (240, 241), and
increased circulating levels of catecholamines (242) or cortisol (241,
242). Interestingly, astrocytes modulate mammalian sleep
homeostasis by controlling adenosine A1 receptors (243). The
circadian release of the astrocytic transmitter ATP (199) as well as
the circadian activity of enzymes involved in the synthesis of
adenosine in areas of the brain related to sleep (200) suggests a
central role of astrocytes in modulating circadian sleep-wake
changes in the brain. Further studies will be needed to
understand the importance of astrocyte clocks in the relationship
between circadian sleep disorders and diabetes.

Whereas light is the dominant timing cue for the SCN, the time
of meals represents the main ZT for peripheral clocks. Therefore is
not surprising that extended/erratic eating patterns, such as in shift
workers or subjects under experimental circadian misalignment,
showed decreased glucose tolerance and insulin sensitivity (244–
250). Indeed, a short-term circadian misalignment protocol of 8
days in humans is sufficient to cause higher blood glucose and
insulin levels (249). It is reasonable to hypothesize that disturbance
of nutrient fluxes or the misalignment of central and peripheral
clock rhythms might contribute to the pathophysiology of insulin
resistance at the tissue level. For instance, a mismatch between
Frontiers in Endocrinology | www.frontiersin.org 9
hepatic glucose production, muscle glucose uptake, and
carbohydrate intake could contribute to elevated glucose levels,
while an imbalance between lipid storage inWAT, lipid oxidation in
BAT, and hepatic lipid production might contribute to ectopic lipid
accumulation. However, to improve or prevent the metabolic
alterations caused by circadian misalignment we need to further
understand the mechanisms involved in the entrainment of both
central and peripheral circadian clocks. Remarkably, as astrocytes
are at the interface between vessels and neurons, they are in a
privileged position to act as metabolic sensors of systemic cues that
entrain the peripheral clocks, such as GCs, INS, or IGF1 (7, 40, 203).
Further studies will clarify whether those metabolic cues might play
a crucial role in communicating time-of-feeding to the astrocyte
molecular clock linking the periphery and the CNS clocks.
CONCLUSION

A large body of evidence from human or animal studies
demonstrated the circadian regulation of glucose homeostasis and
INS sensitivity. However, the exact mechanisms involved in the
metabolic derangements resulting from circadian disruption are not
fully understood. Emerging groundbreaking findings, showing that
astrocytes are pivotal for the circadian regulation of behavior and
whole-body energy and glucose homeostasis, could provide a new
cellular target to tune physiological responses operating on different
timescales according to metabolic status. A key question that
remains to be investigated is how the astrocyte clock is entrained
to lead to the cycle-to-cycle precision of circadian rhythmicity in the
SCN and/or in extra SCN clocks. Therefore, we face a lack of
knowledge on the mechanisms by which astrocyte circadian
dysfunction affects such a wide range of physiological
processes. Understanding these mechanisms will be a challenge
for years to come but a crucial aspect in designing better therapies,
such as clock agonists, for diabetes. With this knowledge, the use of
chronotherapies or temporally directed therapeutics to improve
human metabolic health will be a matter of time.
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