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Abstract: Human gut microbes are a profitable tool for the modification of food compounds
into biologically active metabolites. The biological properties of catechins have been extensively
investigated. However, the bioavailability of catechin in human blood plasma is very low. This
study aimed to determine the biotransformed catechin metabolites and their bioactive potentials
for modulating the immune response of human peripheral blood mononuclear cells (PBMCs).
Biotransformation of catechin was carried out using in-vitro gut microbial biotransformation
method, the transformed metabolites were identified and confirmed by gas chromatography-mass
spectrometry (GC–MS) and high-performance liquid chromatography-mass spectrometry (HPLC–MS).
Present observations confirmed that the catechin was biotransformed into 11 metabolites upon
microbial dehydroxylation and C ring cleavage. Further, immunomodulatory potential of catechin
metabolites was analyzed in peripheral blood mononuclear cells (PBMCs). We found up-regulation
of anti-inflammatory cytokine (IL-4, IL-10) and down-regulation of pro-inflammatory (IL-16, IL-12B)
cytokine may be due to Th2 immune response. In conclusion, biotransformed catechin metabolites
enhance anti-inflammatory cytokines which is beneficial for overcoming inflammatory disorders.

Keywords: anti-inflammatory; cytokine; immunomodulation; human peripheral blood mononuclear
cells; catechin; metabolites; proliferation; antioxidants

1. Introduction

Human health is directly influenced by the immune system, which is designed to provide the
host protection against harmful foreign substances. Almost all infectious diseases are the result of
an inadequate immune response [1]. Therefore, the modulation of the immune system is of great
importance for the control of many immunological disorders. Green tea has been consumed for
centuries due to its health benefits [2]. Green tea extract contains different polyphenols, such as
catechin (C), epicatechin (EC), epigallocatechin gallate (EGCG), and epicatechin gallate (ECG), that are
responsible for various health benefits, such as antioxidant, antibacterial, and anticancer properties, and
protection against cardiovascular diseases, among others [3]. A number of studies have demonstrated
that catechin is poorly absorbed and is excreted to a small extent in urine [4,5]. Subsequently, the
fate and bioavailability of catechin, including intestinal absorption, distribution in human tissue, and
excretion, must be established.
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The gut microbiota transforms the phytocompounds into numerous bioactive metabolites. Recent
studies have suggested that catechin can be degraded and/or modified by many intestinal bacteria [6],
thus significantly altering the parent compound [7]. In recent decades, studies have focused on
catechin biotransformation by the microorganisms present in the human gut. Despite this exponential
increase in microbiome research, the link between biotransformation and the role of biotransformed
metabolites still remains largely unexplored. Recently, reports have suggested that biotransformed
catechin metabolites exert several biological activities, such as the inhibition of platelet aggregation and
the activation function, the inhibition of cyclooxgenous-2 in colon cancer cells, and antiproliferative
activity in prostate and cancer cells [8,9].

Low-grade chronic inflammatory processes result from the interaction between monocytes, T
lymphocytes, endothelial cells, and smooth muscle cells [10]. Predominantly, subsets of monocytes
and T lymphocytes play a critical role in immunoregulation. Several studies have highlighted the
immunomodulatory effects of biotransformed or bio-active metabolites on proinflammatory and
anti-inflammatory cytokine production in different in vivo and in vitro models. Several studies have
reported that polyphenol-related gut bio-active metabolites modulate the immune response through
the stimulation of certain anti-inflammatory cytokines and decreased proinflammatory cytokine
production [11–13]. The human gastrointestinal tract contains high level of biotransformed metabolites,
which can penetrate host tissues and interact with immune cells, thereby triggering host immunological
response [14]. However, no reports are available on the biotransformed catechin and how it responds
to anti-inflammatory cytokines (Interleukins-IL-1A, IL-1B, IL-4, IL-5, IL-6, IL-10, IL-13, transforming
growth factor beta (TGF-β) and pro-inflammatory cytokines (IL-2, IL-12, IL-17A, interferon gamma
(INFγ), granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor alpha
(TNF-α).

The gut microbe produces a larger toolkit of enzymes that catalyze the diverse range of chemical
reactions and results in transformation of catechin. However, this alteration can cause increase or
decrease the activity on human health [15]. The aim of the present study was to investigate in vitro
microbial biotransformation and the effect of biotransformed metabolites on the proliferation of
human peripheral blood mononuclear cells (PBMCs), specifically the production of pro-inflammatory
cytokines and anti-inflammatory cytokine profiles such as IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13,
IL-17A, interferon gamma (IFN-γ), transforming growth factor-β, (TGF-β), tumor necrosis factor-β
(TNF-β), and GM-CSF. The expression of genes related to human PBMCs was also studied.

2. Materials and Methods

2.1. Reagents

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Histopaque were
purchased from Sigma (St. Louis, MO, USA) and RPMI-1640 medium was obtained from Invitrogen
(Grand Island, NY, USA). Multianalyte ELISA array kits for 12 cytokines were purchased from Qiagen
(MEH004A, Qiagen, Hilden, Germany). Distilled water was obtained using a Milli-Q system (Millipore
Laboratory, Bedford, MA, USA). Deionized water was obtained using a Direct-QUV 3 Multipore
Water purification system (Millipore, Burlington, MA, USA). All other chemicals and reagents were of
analytical grade unless otherwise specified.

2.2. Preparation of Fecal Slurry

Fecal samples were obtained from three healthy volunteers who had usually taken a normal
diet and had not received any antibiotics for a minimum of six months prior to stool collection. All
subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
Institutional Review Board of King Saud University College of Medicine (E-19-3703). Fecal bacterial
suspensions were prepared by the method described previously [16]. Briefly, the collected fresh
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samples were stored in 4 ◦C in to an anaerobic chamber and diluted (1:10 w/v) with 0.1 M phosphate
buffer (pH 7.2) within 1–2 h and mixed uniformly by vortexing. The resultant fecal slurries were pooled,
slurry was centrifuged at 4000× g for 10 min, and resultant fecal bacterial suspension inoculated into
fermentation vessels containing minimal medium.

2.3. Fecal Batch-Culture Fermentation

Fecal batch-culture fermentation was carried out as previously reported [17]. Briefly, five separate
500-mL glass fermenter vessels were filled with 250 mL of sterilized medium (peptone bacteriological
(2 g/L), NaCl (0.1 g/L), yeast extract (2 g/L), K2HPO4 (0.04 g/L), KH2PO4 (0.04 g/L), resazurin (1 mg/L),
MgSO4·7H2O (0.01 g/L), NaHCO3 (2 g/L), CaCl2·6H2O (0.01 g/L), hemin (50 mg/L), Tween 80 (2 mL/L),
vitamin K (10 µL/L), bile salts (0.5 g/L), l-cysteine (0.5 g/L), and double-distilled water. The medium
was regulated to a pH of 7.0 and constantly sparged with O2-free N2 overnight. The pH was maintained
at 7.0 and the temperature at 37 ◦C, so as to simulate the conditions of the human gut. The vessels
were inoculated separately with 15 mL of fecal slurry (1.5% w/v) along with 100 mM catechin (C0567,
Sigma-Aldrich). A negative control was maintained in a separate batch-culture vessel prepared under
the same conditions without catechin. Anaerobic conditions were maintained and biotransformed
metabolites harvested at 24 h, then immediately stored at −80 ◦C for further analysis.

2.4. Separation and Purification of Biotransformed Metabolites

The biotransformed metabolites were separated by the method described in Takagaki and
Nanjo [18] with some modifications. The entire crude culture samples were centrifuged at 7000× g
for 10 min at 10 ◦C. The resulting supernatants were collected and filtered using a 0.25-µm Millipore
microfilter. The collected filtrates were extracted three times with an equivalent volume of ethyl
acetate. Excess solvents from biotransformed crude extract (BCE) were removed by roto-evaporator
under controlled temperature (40 ◦C). Further, the BCE were subjected to preparative thin layer
chromatography using mobile phase 0.5% (v/v) acetic acid in 60% (v/v) aqueous methanol. Two visible
spots were observed, these procedures were repeated ≈ 50 times and the respective spots were pooled
separately in order to obtain the compounds quantitatively. The separated compounds were named
as biotransformed metabolites A (BTMFA) and biotransformed metabolites B (BTMFB), and all were
pooled, filtered using a PVDF 0.22-µm microfilter and further profiled by gas chromatography and mass
spectrometry (GC–MS) and high-performance liquid chromatography/mass spectrometry (HPLC–MS).

2.5. GC–MS Analysis

The pooled fecal samples, control (fecal sample along with medium without catechin) and
separated biotransformed metabolites were analyzed by GC–MS using the modified method [19]
with a ZB-5MS 30 m × 0.25 i.d. × 0.25 µm capillary column (Phenomenex, Cheshire, UK) with an
injection volume of 10 µL, an initial temperature of 70 ◦C for 10 min, which was increased to 150 ◦C at
10 ◦C/min for 15 min and then to 220 ◦C at 5 ◦C/min for 15 min, an injector temperature of 270 ◦C, an
MS transmission line of 280 ◦C, an ion source at 190 ◦C, and a split ratio of 1:100. Scanning of mass
was carried out at 50–650 m/z at 0.82 scans/s. The electron impact energy was 70 eV. Biotransformed
compounds were identified in relation to their retention time, with the mass spectra of authentic
standards from the NIST 98 library.

2.6. HPLC-MS Analysis

HPLC were performed using Agilent 1290 infinity system (Agilent Technologies Inc, Waldbronn,
Gremany) coupled with quadrupole LC/MS Agilent 6120 (Agilent Technologies Inc). The samples were
injected on to a C-18 column (4.6 25 cm, 5l m; phenomenex, Torrance, CA, USA). The solvent used
were A—90% acetic acid–water and B—10% MeOH, establishing following elution gradient; isocratic
10% B for 5 min, 10–100% B over 10 min, 100% B for 6 min, and re-equilibration of the column using
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flow rate of 0.1 mL/min. The spectra were recorded in negative and positive ionization mode between
m/z 50 and 1200.

2.7. Immunomodulatory Activity of Biotransformed Metabolites on PBMCs

One hundred milliliters (100 mL) of venous blood was collected from a single healthy donor who
had not consumed any antioxidant-containing foods (e.g., salads, fruits, and natural/manufactured
juices) 24 h prior to blood collection. PBMCs were isolated using Histopaque (Histopaque-1077, Sigma)
density gradient methods by centrifuging for 15 min at 2500× g [20] with some modifications. The
concentration of PBMCs was adjusted to 1 × 104 cells/mL in RPMI-1640 culture medium. The cells
were maintained in RPMI-1640 culture medium supplemented with 10% FBS at 37 ◦C and 5% CO2 in a
humid environment for 24 h.

2.8. Cytotoxicity (MTT) Assay

The MTT assay was used to examine cell viability. Briefly, the isolated primary PBMCs
(lymphocytes, monocytes) were seeded at a density of 1 × 104 cells/mL in 96-well plates. The
pooled biotransformed metabolites, BTMFA and BTMFB, and BCE were treated with different
doses (0, 20, 40, 60, 80 and 100 µg/mL). After 24 and 48 h incubation, 20 µL (MTT, 5 mg/mL) of
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide were added to each well. The plates
were incubated for 4 h to overnight, and the supernatant was then removed by centrifugation. The
insoluble formazan was dissolved with dimethyl sulfoxide (DMSO 100%) and the optical density was
measured at 570 nm and reference filter (630 nm) using a microplate reader (Promega, Madison, WI,
USA). From the values obtained, the percentage viability (relative to survival of control cells) was
calculated. Each assay was performed three times (in duplicate/dose) and data are presented as the
percentage mean ± SD.

2.9. Cytokines Analysis

BTMFA, BTMFB, and BCE were tested for their effect on the production of pro-inflammatory and
anti-inflammatory cytokines in unstimulated PBMCs. The metabolites were dissolved in DMSO and
further diluted in RPMI-1640 cell culture medium. The final concentration of DMSO in the cells was
less than 0.1%. In the control experiments, this concentration did not show any effects on the measured
parameters. PBMCs were added (1 × 104 cells/mL) to 96-well plates and pre-incubated for 1 h at 37 ◦C
in a humidified environment containing 5% CO2. After treatment, the supernatants were collected after
centrifugation and stored at −80 ◦C until further analysis. The level of cytokines was determined by
using two multi-analyte ELISArray kits (Qiagen, Hilden, Germany) (pro-inflammatory cytokines IL-2,
IL-12, IFN-γ, GM-CSF, and TNF-α, and anti-inflammatory cytokines IL-4, IL-5, IL-10, IL-13, IL-17A,
and TGF-β1) according to the manufacturer’s protocol. Briefly, 50 µL of assay buffer were added to
each well of ELISArray plate and then 50 µl collected test samples and control samples were added to
appropriate well and incubated for 2 h at 37 ◦C. The unbounded cytokines were removed and 100 µL
of detection antibody solution were added to each well and incubated for 1 h and wells were washed
three times with washing solution and 100 µL of Avidin-HRP (Qiagen) was added to each well and
incubated for 30 min. After washing, developmental followed by stop solution were added to each
well at respective intervals. Finally, the level of cytokines was detected at 450 nm using a microplate
reader (Promega).

2.10. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

Complementary DNA (cDNA) was synthesized directly from treated and untreated human WBC
using FastLane Cell cDNA Kit (Qiagen, Hilden, Germany). The purity was checked and quantified
using the NanoDrop spectrophotometer ND-1000 (NanoDrop Technologies Inc., Wilmington, DE,
USA). Quantitative real-time PCR was performed with the SYBR Green PCR Master Mix (Qiagen,
Chatsworth, CA, USA) in an ABI 7500 fast real-time PCR system (Applied Biosystems, Foster City,
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CA, USA) according to the manufacturer’s protocol. The mRNA levels of IL-4, IL-10, IL-12B, IL-16,
and the reference gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were assayed using
gene-specific SYBR Green-based QuantiTect® Primer Assays (Qiagen, Hilden, Germany) according
to manufacturer’s instructions. A 25-µL reaction volume was used in each well of the PCR plates.
Briefly, 12.5 µL of master mix, 2 µL of assay primer and 2 µL of template cDNA (500 pg) were added
to each well. Reaction mixtures were incubated for initial denaturation at 95 ◦C for 5 min, followed
by 40 PCR cycles. Each cycle consisted of 95 ◦C for 5 s and 60 ◦C for 30 s. The relative quantification
of the aforementioned gene expression was analyzed using an ABI 7500 Fast Real-Time PCR system
(Applied Biosystems). The values were expressed as fold changes over the control and expressed as
means with their standard errors.

2.11. Statistical Analysis

Data were analyzed using ANOVA (SPSS/11.5 software package, IBM Corporation, Armonk, CA,
USA) followed by Tukey’s test. All data are expressed as mean ± standard error of the mean (SEM).
Differences were considered to be significant if the p-value was ≤ 0.05.

3. Results and Discussion

3.1. Profiling of Biotransformed Metabolites

The metabolites present in BTMFA and BTMFB were profiled by GC/MS (Figures 1 and 2).
A total of 11 (10 metabolites from BTMFA and 1 metabolite from BTMFB) biotransformed
catechin metabolites were identified. BTMFA consisted of the following simple form phenolic
metabolites: dehydroquinic acid (1), 4-ethylphenol (2), 4-methoxyphenyl propan-2-ol (3), 3-phenyl
propionic acid (4), 2-phenoxyethanol (5), benzene tricarboxylic acid,1,2-dimethyl ester (6),
catechol-1,4-benzenediol (7), benzene-1,3,5-tris1-methylpropyl (8), 3,5,7-trihydroxy-2H-chromen-2-one
(9), and 4-hydroxyphenylpropionic acid (10). BTMFB were rich in dimethoxycinnamic acid (B1). The
presence of all the metabolites were confirmed by HPLC-MS analysis based on m/z. The obtained data
were listed in the Supplementary File 1. None of the metabolites/ precursor were found in the control
GC/MS analysis (Supplementary Table S2). The literature confirms that the compounds obtained were
phenolic metabolites and are beneficial to human health [21,22].
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Gas chromatography–mass spectrophotometry (GC–MS) profiles of catechin biotransformed
metabolites by human gut microbes.

The catechin structure has the potential to strongly interact with bacterial enzymes due to its
benzenoid ring and the hydrogen bonding potential of its hydroxyl groups [23,24]. Several isoflavone
metabolizing gut bacteria such as Eggerthella lenta, Flavonifractor plautii, Adlercreutzia equolifaciens,
Asaccharobacter celatus, Slackia equolifaciens, and Slackia isoflavoniconvertensare are capable of transforming
catechin in the intestinal tract as a result of dehydroxylation and C-ring cleavage to form metabolites
7, 10 and B1 [6]. Lactobacillus is capable of reducing catechin by inducible enzymes under in vitro
anaerobic conditions to produce metabolites 1, 4, 6, and B1 [25]. The metabolites 2, 3, 4, 7, 10 and B1
were identified as the major catechin metabolites in human blood plasma and urine samples collected
from participants 6–48 h after drinking tea [19]. The consumption of catechins by humans results in an
increase of metabolite 4 in the blood plasma [26] and an increased urine excretion of metabolites 1, 3, 4,
10 and B1 [27,28]. In vivo animal studies have shown similar results in terms of urinary metabolites
from rats after feeding with a catechin diet [29]. These metabolites were also found in an in vitro
experiment as a major product of colonic metabolism of polyphenols by human fecal microbiota [30].

3.2. Effect of Biotransformed Catechin Metabolites on the Cell Population of Human PBMCs

A number of studies on the role of polyphenols in PBMC proliferation, differentiation, and
activation for the regulation and determination of immune function are available [21]. In recent years,
research on the biotransformation of polyphenols has shed some light on biotransformed polyphenols
in response to immune function. In the present study we evaluated the immunomodulatory effect of
biotransformed catechin metabolites. BTMFA, BTMFB, and BCE from catechin and their effects on the
cell population of PBMCs (monocytes, T lymphocytes, and B lymphocytes) were investigated by MTT
analysis. We measured the viability of cell culture medium alone and biotransformed metabolites at
varying concentrations (20, 40, 60, 80, and 100 µg/mL). PBMC viability in culture medium alone was
in the range of 99–100%, BTMFA treatment in the range of 90–100% viability (Figure 3(A1–A3)), and
BTMFB treated in the range of 84–86% viability after 48 h (Figure 3(B1–B3)). Pure catechin treatment
with PBMC revealed the decreasing cell viability of unstimulated PBMCs [31,32]. Similarly, other
studies have also reported that T cell proliferation was inhibited by catechin through inhibiting T
cell division and cell cycle progression in a dose-dependent manner in vitro [33]. Surprisingly, our
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results showed that biotransformed catechin metabolites did not induce cell death. The cytotoxic effect
of pure catechin and alterations in biotransformed catechin may due to the addition and alteration
of hydroxyl groups [34,35]. Moreover, the BCE of biotransformed metabolites showed slight and
significant proliferation in unstimulated PBMCs in a dose-dependent manner. This may be due to
the presence of high concentrations of various bacterial metabolites, which may act as mitogen for
the proliferation of PBMCs. Recent studies have confirmed that polyphenol metabolites are able to
penetrate tissue and also permeate into macrophages to be further converted into the methylated
form [36].
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at concentration of 20, 40, 60, 80, and 100 µg/mL. The columns represent the mean ± standard error of
the mean (SEM) of the data from duplicate tests. Asterisk (*) represents data statistically significantly
different with respect to the control (p < 0.05).

3.3. Effect of Biotransformed Metabolites on Cytokine Secretion in PBMCs

Cytokines are modulators of inflammation and play a key role in acute and chronic inflammation
via a complex network of interactions. The influence of catechin biotransformed metabolites on
the release of 12 cytokines in unstimulated PBMCs are shown in Figure 4. PBMC incubation with
BTMFA increased the production of IL-6 (174.89 pg/mL), IL-8 (68.19 pg/mL), IL-1B (52.55 pg/mL), IL-1A
(31.05 pg/mL), IL-10 (30.57 pg/mL) and IL-2 (12.75 pg/mL). However, BTMFB and BCE produced similar
quantity of IL-6 (10.36; 10.89 pg/mL) compared to unstimulated control (IL-6, 7.49 pg/mL). The secretion
of IL-4, IL-12, IL-17A, IFN-γ, TNF-α, and GM-CSF were suppressed and IL-8 levels were similar in all
the tested colonic bacteria-transformed catechin metabolites. In previous studies, epicatechin (EC),
epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG) were reported
to inhibit the production of IL-1A, IL-1B, and IL-6, but increased the levels of IFN-γ, TNF-α, and
GM-CSF [37,38]. This obtained data suggests that catechin is transformed into many metabolites by
colonic bacteria and these metabolites stimulate human PBMCs differently. Our results indicate that
cytokine secretion by PBMCs due to the stimulation of colonic catechin metabolites was dependent on
structure, such as monomeric flavanols. The superior effect of BTMFA due to presence of hydroxylated
phenolic acid and the length of the side chains of the functional groups present in the metabolites
influence the cytokine families [9]. The transformed metabolites that are present in BTMFA such as
phenyl propionic acid, benzene carboxylic acid, cinnamic acid and catechol are capable of stimulating
human PBMCS to produce inflammatory cytokines [14,39]. The results of IL-1B and IL-6 were in
agreement with other studies performed with monomeric and dimeric flavanols of phenolic acids [10].
It was also reported that the simple form of phenolic derivates, such as flavones and flavanols, inhibit
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TNF-α secretion in macrophages [40]. Phenolic metabolites derived from gut microbial metabolisms
modulate the inhibitory or stimulatory activity of PBMCs for cytokine production and may result from
transcriptional and post-transcriptional events, which activate a series of cytokines.
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interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17A, granulocyte-macrophage colony stimulating
factor (GM-CSF), interferon gamma (IFN-γ), transforming growth factor-beta (TGF-β1), and tumor
necrosis factor (TNF-α) were measured in PBMCs (duplicates).

3.4. Effect of Biotransformed Metabolites on the Expression of IL mRNA in PBMCs

The roles of biotransformed catechin metabolites on the gene expression of cytokines such as
IL-4, IL-10, IL-12B, and IL-16 in PBMCs were analyzed (Figure 5). After exposure of BTMFA, BTMFB,
and BCE, the gene expression of the target genes were analyzed. Dose-dependent upregulation was
observed in IL-4, IL-10 and IL12-B genes of BTMFA-treated PBMCs. BTFA trigger Th2 cells to produce
IL-4, IL-6, IL-10 cytokines and thereby regulate the humoral immunity. In other studies catechin
and quercetin induce the production and gene expression of Th1 cytokines and down-regulated the
Th2 derived cytokines [41]. The expression was 3-fold higher in IL-4, IL-10, and IL-16 in high dose
BCE-treated cells due to the higher affinity binding of the receptors in immune cells, thus triggering
an intracellular signaling pathway that ultimately regulated the host’s immune response [42]. IL-4,
IL-12B, and IL-16 gene expression was downregulated when BTMFB concentration increased. Th2 cells
produce IL-4 [43] and play a role in the production of allergen specific IgE, tissue migration of Th2
cells, regulation of tight junctions, and epithelial barrier integrity [44,45]. The downregulation of these
genes, which regulate T cells through AhR mediated pathways [46], resulted in the suppression of SP1
protein expression and apoptotic cell death in many cancer cells [47]. Moreover, dihydroxy phenolic
metabolites induce the activation of mitogen-activated protein kinase (MAPK) and nuclear factor
(NF-kB) pathways, resulting in the activation of dendric cells and regulatory T cells, which contribute
to the maintenance of immunotolerance, therefore inhibiting autoimmunity [48]. IL-10 regulates
inflammatory interleukin production and antibody response [49]. IL-12B activates the antitumor
activity of macrophages and promotes the cytolytic activity of natural killer (NK) cells and lymphokine
activated killer cells [50]. IL-16 mediates its biological activity through CD4 and promotes Th1
mediated responses [51]. Th1 cells can inhibit cancer cells by inducing cytotoxic activity in NK cells [52].
NK cells produce perforin and granzyme B which triggers apoptosis and necrosis in cancer cells by
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creating a hole in the cell membrane, thus facilitating cell destruction [53]. Results clearly suggest that
biotransformed catechin metabolites showed immunomodulatory effects in human PBMCs.Biomolecules 2019, 9, 830 9 of 12 
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D1—150 µg/mL, D2—300 µg/mL.

4. Conclusions

The results in the present study revealed that gut microbes transform catechin by dehydroxylation
and C ring cleavage. The biotransformed catechin metabolites stimulate human PBMCs differently.
BTMFA and BCE upregulate the production of anti-inflammatory cytokines and downregulate
pro-inflammatory cytokines. We conclude that biotransformed catechin metabolites enhance
Th2 immune response by anti-inflammatory cytokines, which is more beneficial to overcome
inflammatory disorders. Further studies on the use of gut microbe-derived pure catechin metabolites
as immunomodulatory agents should be carried out.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/12/830/s1,
Figure S1: HPLC-MS chromatographic profile of BTMFA; Figure S2: HPLC-MS chromatographic profile of
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