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ABSTRACT: The COVID-19 pandemic, and future pandemics,
require diagnostic tools to track disease spread and guide the
isolation of (a)symptomatic individuals. Lateral-flow diagnostics
(LFDs) are rapid and of lower cost than molecular (genetic) tests,
with current LFDs using antibodies as their recognition units.
Herein, we develop a prototype flow-through device (related, but
distinct to LFDs), utilizing N-acetyl neuraminic acid-function-
alized, polymer-coated, gold nanoparticles as the detection/capture
unit for SARS-COV-2, by targeting the sialic acid-binding site of
the spike protein. The prototype device can give rapid results, with
higher viral loads being faster than lower viral loads. The
prototype’s effectiveness is demonstrated using spike protein,
lentiviral models, and a panel of heat-inactivated primary patient
nasal swabs. The device was also shown to retain detection capability toward recombinant spike proteins from several variants
(mutants) of concern. This study provides the proof of principle that glyco-lateral-flow devices could be developed to be used in the
tracking monitoring of infectious agents, to complement, or as alternatives to antibody-based systems.
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The COVID-19 pandemic has led to >171 million
confirmed cases and ∼3.7 million deaths worldwide,

reported to WHO, as of the 4th of June 2021.1 COVID-19 is
caused by the coronavirus SARS-COV-2, first reported in
Wuhan (China).2 Despite global efforts, there are still a limited
number of effective therapeutics. Vaccines have now been
approved for use, but with limited supplies; a major
mechanism for controlling disease spread remains testing,
identification, and patient isolation.
The testing system deployed by more economically

developed countries (MEDCs) and less economically
developed countries (LEDCs) has been based primarily on
molecular (genetic) approaches such as real-time reverse-
transcription polymerase chain reaction (rRT-PCR).3−6

However, RT-PCR-based approaches require dedicated
laboratory facilities and trained personnel, meaning early in
the pandemic CT scans, which are not recommended for
routine use, were initially employed.7 Due to the infrastructure
needs of RT-PCR and long processing times, RT-PCR does
not typically provide a rapid turnaround, especially in a high
volume laboratory setting, although it is considered the gold
standard for COVID-19 diagnosis. In July 2020 during the
early stages of the COVID-19 pandemic, in the United States,

the average wait time for an RT-PCR test result was 4 days
with 37% of people receiving the results within 2 days.8 The
availability of RT-PCR testing also varies significantly between
countries; per 1000 people (31/7/2020)9 the United Kingdom
(2.27) and the United States (2.91) have significantly out-
tested LEDCs such as Zimbabwe (0.07) or Myanmar (0.01).9

In Iran, for example, CT scanners are more abundant10 than
RT-PCR machines.11,12 Faster RT-PCR devices, such as those
based on DNAnudge, have been developed and allow for
decentralized testing outside of hospital or lab environments
but do have capacity requirements of one machine to one
test.13 Other molecular genetic techniques have also been
developed, which similarly do not require centralized testing
infrastructure. For example, loop-mediated isothermal ampli-
fication (LAMP)14 can return a diagnosis in just over 90 min
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(LamPORE device). Although faster than conventional RT-
PCR, neither of these offer rapid results at a capacity that
would facilitate mass screening or at a cost per device that
would allow point-of-care testing in the home or in low-
resource environments.15,16

Lateral-flow devices (LFD) are established tools for rapid
diagnosis, giving results often in under 30 min and therefore
can rapidly identify infected individuals. LFDs, such as the
home-pregnancy test,17 use antibodies as detection units in
both the stationary phase (test line bound to nitrocellulose)
and as a coating for the mobile phase (on the surface of a gold
nanoparticle). Upon binding the target analyte, the stationary
and mobile phase form a “sandwich” with the analyte in the
middle. The results are visible by the eye as a red or blue line
depending on the precise gold formulation, although other
nanomaterials, such as fluorescent particles, can be used.18

LFDs are typically cheap (compared to molecular methods),
require little to no training or clinical infrastructure to use, and
can be scaled up to enable large population testing. LFDs tend
to have lower sensitivity (some false negatives) but high
selectivity (few false positives). The cost-effectiveness and
clinical usefulness of LFDs have been demonstrated by malaria
rapid diagnostic tests,19,20 in the diagnosis of cutaneous
leishmaniasis21 and in comparisons with more expensive RT-
PCR approaches for Ebola diagnosis.22 Consequently, the
appeal of LFDs in the COVID-19 pandemic is that their low
cost and rapid turnaround time may enable mass testing of
large populations.23 This could find asymptomatic individuals
spreading the virus, who would not be identified by
symptomatic RT-PCR testing only,24−26 currently the
preferred option in most healthcare systems.
The first LFDs for the COVID-19 pandemic were designed

to detect antibodies in patient blood samples produced in
response to SARS-COV-2 infections.27−29 These were
intended to report if a patient has previously been infected;
not to indicate active infection, so could not effectively be used
in screening/triage settings or mass testing for active infections.

Antigen LFDs, in contrast, are designed to diagnose the
presence of the virus i.e., an active infection. Several antigen
lateral-flow tests, by late 2020, had passed Phase 3 testing in
the United Kingdom,30 gained WHO “Emergency Use Listing”
approval,31 or had emergency approval granted by The United
States Food & Drug Administration.32,33 These devices all
utilize antibodies as detection/capture units. To the best of our
knowledge, these devices all use antibodies to target the
nucleocapsid protein of SARS-COV-2. A university-based
validation testing between LFDs and PCR confirmed that
LFDs cannot detect lower viral loads but were estimated to be
capable of identifying up to 85% of infections in the cohort
trialed26 showing their potential for frequent, low-cost testing
when deployed appropriately.
It is important to note that antibodies are not essential

components in LFDs, and other recognition moieties could be
used, including nucleic acids,34 glycans, and lectins.35 Glycan-
based LFDs could offer advantages over other recognition
moieties. For example, glycans are the site of pathogen
adhesion during many viral infections36,37 especially respiratory
viruses such as influenzas,38 and glycans can be chemically
synthesized at scale. Glycan binding can also explore the
“state” of a pathogen; for example, LecA/B are upregulated by
Pseudomonas aeruginosa during infection.39,40 Furthermore,
glycans are often more thermally robust than proteins41

making them ideal candidates for low-resource environments.
Glycosylated gold nanoparticles (the mobile phase) are well
established having been used in colorimetric/aggregation-
based diagnostics, surface enhanced-Raman, and other bio-
assays.42−45 Despite this, glycans as capture units have not
been widely applied in lateral flow46 and to the best of our
knowledge have not been shown to function using clinical
samples, only models.
We have previously reported that the S1 domain of the

SARS-COV-2 spike protein can bind α,N-acetyl neuraminic
acid (Neu5NAc), a sialic acid,47 and similar binding has been
observed for other zoonotic coronaviruses toward sialic

Figure 1. Nanoparticle synthesis and flow-through devices. (A) Neu5NAc-terminated polymer coating; (B) TEM micrograph of polymer-coated
AuNPs; (C) C 1s portion of the XPS spectrum of polymer-coated AuNPs; and (D) flow-through device layout and assay procedure (top to
bottom).
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acids48−50 (e.g., MERS). The exact biological role of sialic acid
binding is not yet understood for SARS-COV-2, with clear
differences in its role in cell entry compared to MERS.51

Microarray, ELISA and STD NMR have been used to further
demonstrate that sialic acids are receptors for the SARS-COV-
2 spike protein.52−54 It has also emerged that sulfated
glycosaminoglycans (including heparin sulfates) bind SARS-
COV-2 spike protein, and can inhibit viral entry.55−57 Glycans
(including those carrying terminal sialic acids) have been
shown to participate in the angiotensin-converting enzyme 2
(ACE2) receptor binding during SARS-COV-2 cell adhesion/
entry.58 Incorporation of α,N-acetyl neuraminic acid onto a
polymer-stabilized glyconanoparticle platform enabled detec-
tion of (purified) spike protein in an LFD (5 μg·mL−1) and
also detection of a pseudotyped lentivirus presenting the
SARS-COV-2 spike protein at 1.5 × 104 transduction units·
mL−1 in a dipstick test.47

Herein, we demonstrate that glycan-based flow-through
devices can detect SARS-COV-2 in heat-inactivated primary
patient swabs and validate these initial results against RT-PCR.
Compared to an LFD format, no test line was used, rather the
sample is directly absorbed onto the nitrocellulose strip.
Device optimization was achieved using a lentivirus and
recombinant SARS-COV-2 spike protein showing that heat (or
chemical) inactivation did not prevent usage. The prototype
devices were then used with a panel of primary heat-inactivated
swabs, demonstrating the principle that flow-through glyco-
assays can be used to detect viral infection and hence that
glyco-LFDs are feasible if suitable test lines can be developed.
Furthermore, the devices were shown to detect recombinant
mutant spike proteins showing that glycan-based detection
may still detect variants of concern. This conceptual approach
could be broadly applied to other pathogens/disease states and
provide redundancy in testing regimes compared to using
antibodies alone.

■ RESULTS
Our previously reported synthetic strategy to generate α-
Neu5NAc-polymer-tethered gold nanoparticles was employed
(Supporting Information).47 Telechelic poly(N-hydroxyethyl
acrylamide), pHEA, was synthesized using RAFT (reversible
addition−fragmentation chain transfer) polymerization, and 2-
amino-2-deoxy-N-acetyl-neuraminic acid was conjugated to the
ω-terminus by displacement of a pentafluorophenyl ester
(allowing monitoring by 19F NMR).59 These polymers were
then assembled onto gold nanoparticles (∼35 nm by TEM),
Figure 1A−C, and characterized by DLS/UV−Vis (Supporting
Information) and XPS (Figure 1C and Supporting Informa-
tion). Just 10 mg of the glycan-terminated polymer can
produce sufficient gold colloid for >2500 assays, highlighting
the scalability of this approach. The use of a polymer linker
between the particle and glycan provides colloidal stability and
reduces nonspecific binding.
In a standard lateral-flow device, a test line is printed onto

the paper to capture the antigen (e.g., a virus), which is then
“sandwiched” by the nanoparticle detection unit. To streamline
the development process, no test line was used, and instead,
the patient sample is directly deposited and dried onto the
strip with the viral components absorbing onto the stationary
phase; hence, this is a flow-through, rather than lateral-flow,
device.23,60 This removes the need for a validated, stable and
specific test line, accelerating the development process and
allowing us to prove the potential of glycan recognition for

future complete lateral-flow devices. The setup of this
approach is shown in Figure 1D, with the sample application,
the flow of the glycan−gold conjugate, and then detection.
Figure 1D also shows a silver-staining step, which can improve
detection limits in flow-through devices (and LFDs)
(discussed in detail later). The silver stain enhances the signal,
as silver ions that are soluble in water are reduced to insoluble
metallic silver catalyzed by the gold nanoparticles. This causes
the silver to precipitate onto the surface of the gold increasing
the signal.
Flow-through cassettes were manufactured in-house, as

described in the Supporting Information. SARS-COV-2 spike
protein-bearing lentivirus was applied to the test line in 20
devices at 104 transduction units·mL−1a concentration
within the expected viral range of COVID-positive patient
respiratory swabs (Figure 2A).61,62 Nineteen out of 20 devices

showed a positive result on the test line (no silver staining
used). As a negative control, bald virus (without the spike
protein) was also run in 20 cassettes. Five out of twenty
showed potential weak positives, confirming the role of spike
protein as the binding partner for the nanoparticles. The
control line used in these devices was Ricinus communis
agglutinin I (RCA120) lectin at 5 mg·mL−1, hence, a strong red
line/crescent formed as the AuNPs were sequestered by the
high concentration of RCA120 used. Later, the RCA120 control
spot concentration was lowered to 1 mg·mL−1 to improve the
performance. In the development of a “real” finished device,
the control line also has to be validated, which is outside of the
scope of this work. As 1 μL of the lentiviral solution was
applied to each device, ∼10 transduction units/devices were
applied, which would suggest a very low limit of detection. A
possible explanation for this observation is that inert
(nontransducible) particles, which also display spike protein,
may contribute but are not counted in the transduction unit
concentration, i.e., there are more potentially detectable

Figure 2. Device validation. (A) Photographs of the test line of
lentivirus (no silver staining) positive for spike protein, negative
(bald), and also after heat treatment at 60 °C for 30 min. The
recombinant S1 domain of spike protein in flow-through devices; (B)
heat treatment at 60 °C for 30 min [spike] = 0.25 mg·mL−1

(Escherichia coli expressed). (C) Tergitol treatment for 30 min
[spike] = 0.5 mg·mL−1 (HEK293 expressed). Note control lines are
not optimized but weak signals are present. “+” indicates a positive
response and “−” indicates a negative response.
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particles than expected. Lentiviral vectors have been reported
to show variance between the number of transduction units to
genome copy in a range of 60−600, supporting this
hypothesis.63

In current PCR testing laboratory protocols, nasal swabs are
heat-treated during the processing cycle to sterilize and
deactivate the virus prior to RNA-extraction steps.64 To
evaluate if our flow-through device was compatible with a heat-
inactivated virus, the lentivirus was heated to 60 °C for 30 min,
and 20 repeats were run, and all cases gave a positive result.
[Please note, when using primary swab samples, below, a
different inactivation temperature is used, which was following
a clinical workflow]. To probe the origin of thermal tolerance,
a truncated SARS-COV-2 spike protein (expressed in-house in
E. coli, see the Supporting Information) was heated to 60 °C
for 30 min, then applied to devices (Figure 2B). As can be
seen, heat treatment did not prevent binding. These
observations show that glycan-based diagnostics may detect
both intact and deactivated virus; this is also a condition of
PCR, the current gold standard. The chemical deactivation
medium was also explored to probe the tolerance. Tergitol NP-
40 is a surfactant, which has been validated to inactive SARS-
COV-2 at 0.1 and 0.5 wt % within 30 min.65 Figure 2C shows
devices with spike protein (expressed in HEK293 cells47) and
Tergitol showing detection with 0.1 wt % but more spreading
of the sample spot, which reduced the intensity. At the higher
0.5 wt %, the signal was reduced significantly due to the
spreading of the test spot.
As this flow-through approach requires direct addition of the

swab extracts onto the test zone, the impact of volume applied
was explored to optimize the deposition process. Figure 3A
shows test zones of devices run as a function of the volume of a
heat-inactivated primary nasal swab sample, which was

validated as positive by RT-PCR (Ct = 8.3 from swab eluted
with 2 mL of water) and an RT-PCR negative sample. Up to 3
μL (0.15 vol % of the total sample) could be applied to the test
line without problems. However, further study (Table S8)
highlighted problems with 3 μL with high viral load samples.
Larger volumes (>3 μL) captured essentially all of the particles
in flow, preventing the development of the control line. Some
false positives also occurred with larger volumes, therefore 2
μL was chosen as the optimal application volume for
experiments from here on.
Antibody-based LFDs (lateral-flow immunoassays) should

not be exposed to extremes of humidity and heat, but it is
expected that the glycan/polymer particles used here could be
more robust. Devices were manufactured and left in the
laboratory (on a shelf, with no desiccant) for 21 days, while
some were baked in an oven for 12 h at 70 °C (Tables S5 and
S9). Figure 3B shows the results of these preliminary stability
tests, indicating that the tests retained function compared to
cassettes not exposed to the atmosphere for 21 days (Tables S3
and S4) or subjected to heating (Table S9). It is important to
note that the heat-treated devices did give weaker signals, but
the conditions used for this were extreme and no silver staining
was used at this point and hence the weaker signal. These
initial robustness studies highlight the promise of glycopolymer
systems; however, further studies and control line optimization
are necessary. Device robustness is crucial for use “in the
community” or in low-resource settings where cold chains are
not established and more widely to reduce the number of failed
devices.
Encouraged by the positive results with pseudotyped

lentivirus, primary samples were the next step. For this,
surplus nasal swabs eluates (which had been eluted and heat
inactivated as part of clinical investigation of symptomatic
patient/staff and assessed by RT-PCR) were used. These tests
were not conducted blind, with the PCR result known to the
user. After specimen application, devices were dried at 37 °C
to ensure consistency across this study in terms of drying
conditions. Figure 4A shows devices, following the addition of
buffer: note that a lower Ct value indicates a higher viral load.
A positive result (red line/spot at the test position) was clear,
whereas control line/spot intensity varied between samples. It
is crucial to note that a usable real-world device requires both
control and test lines for a valid result. Converting Ct to viral
concentration is not a linear relationship and varies between
the methods used, but Figure 4 covers a wide range from weak
to very strong positives. As these tests are “homemade”, there
is likely to be more variance than in mass-manufactured
devices and hence the silver-staining step employed here
provides signal enhancement. Figure 4B exemplifies this with 5
other swab samples, which despite having relatively low Ct
values gave weaker signals on the test line. After silver staining,
Figure 4C shows that these (from Figure 4B) all now give clear
and strong positives. Negative samples, after silver staining, did
not lead to false positives (discussed further below in the
context of larger sample numbers) (Tables S13−S15), unless
longer developing times were used. Figure 4D shows the
impact of silver staining on the signal intensity (from image
analysis), confirming that low viral loads benefitted more from
the signal increase, compared to higher viral loads (low Ct). It
is notable that commercial lateral-flow diagnostics have a time
window for reading results, as over-development can lead to
false positives.

Figure 3. (A) Impact of sample volume applied to the test line. From
2 mL primary swab elution of Ct 8.3 (+ve) and a primary swab
elution negative by RT-PCR (−ve), no silver staining used. (B)
Impact of stress conditions on device function. Heat-treated devices
tested with the swab sample (Ct 6.29) or after 21 days using indicated
lentivirus (“Bald” ∼1 × 104 LP·mL−1 and “+ Spike” 1.5 × 104 TU·
mL−1). “+” indicates a positive response on the test strips, “++”
indicates a very strong positive response, “(+)” indicates a weak
positive response, and “−” indicates a negative response.
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As previously discussed for the lentiviral data, as only 2 μL of
the specimen is applied, the total number of viral particles/
device is expected to be very low. A Ct of 26 (using RT-PCR)
has been reported to give ∼100 PFU·mL−1 or ∼105 RNA
copies·mL−1.66 This would mean detection of ∼200 RNA
copies per device or <1 PFU per device. Ct to PFU and RNA
copy numbers are known to vary between RT-PCR machine,
method, and calibration.66−69 Therefore, while Ct can give an
indication of PFU and viral load, it is not an exact
equivalence,70 and hence, for a test that detects the spike
protein correlating these different measurements is challenging.
Ct values used here were from the Abbott assay.69,71 It is
important to note here that the numbers above do not include
defective viral particles (e.g., capsid only and RNA-deficient
particles),72,73 which may still have spike protein components
(which is targeted in this work). In the case of the (cultured)
Ebola virus, for example,74 depending on the passage number,
the ratio of total viral particles to plaque-forming units (intact
virus) has been reported in the range of 102−105, which,
depending on the nature of particles, may contribute to
diagnostic performance. To the best of our knowledge, the
particle:PFU ratio is not available for SARS-COV-2, but we
hypothesize that the detection limit may be enhanced due to
these additional (non-plaque forming) viral particles or
fragments of the released spike protein. Preliminary experi-
ments on heat-treated purified SARS-COV-2 (from cell
culture, not patients) showed higher limits of detection,
supporting the hypothesis that defective particles may be
contributing, rather than the release of spike protein from viral
particles, which would also occur in this control.
Encouraged by the above results, a panel of 50 positive and

54 negative, PCR-validated patient-derived swab samples were
tested (see the Supporting Information for how these were
handled, including dry transport and heat inactivation.) Each

sample was analyzed twice, on independent devices, treated in
the analysis as an independent run, and reported as such in the
results below. The tests were not run blind, and the Ct values
were known to the user. Failed devices (where gold conjugate
did not flow, for example) were excluded from the analysis (1
positive sample device and 2 negative sample devices). As
above, all samples were dried onto the devices at 37 °C before
running to ensure consistency. Figure 5A shows the

distribution of positive samples as a function of the Ct values
after silver staining, with high viral loads (lower Ct) giving
fewer false negatives, as would be expected. Figure 5A is
annotated showing the sensitivity (% true positives) by the Ct
value. Analysis of non-silver-stained devices is provided in the
Supporting Information for comparison purposes.
Confusion matrices were produced from both positive and

negative sample sets (Figure 5B). After silver staining, a
sensitivity value of 85% and specificity of 93% were achieved.
This sensitivity is comparable to some commercial LFDs,66

whereas the specificity is lower. Before silver staining (where
control lines were not always visible and hence judged by the
test line presence only), a lower sensitivity (68%) but higher
specificity (96%) was observed. The total number of false
positives was 8 (from 6 samples) across the study. Considering
that this is a prototype, the values are promising. To the best of
our knowledge, this is the first example of a flow-through
glyco-assay assessed with clinical samples, providing proof of
principle that glycan binding could be exploited in a complete

Figure 4. Flow-through device with clinical samples. Total 2 μL of the
sample was applied to each test line. (A) Photographs taken after 20
min of buffer. (B) Photographs from different panels taken after 20
min of the buffer and then (C) subjected to silver-staining
enhancement. (D) Impact of silver staining on signal intensity of
control and test lines, obtained by image analysis.

Figure 5. Flow-through (FT) device performance using heat-
inactivated primary patient swabs after the silver-staining step (a
positive result is test and control line being visible). (A) Results of
device performance (hit or miss) as a function of Ct for devices ran
alone. Thresholds indicated are the sensitivity as a function of the Ct
value. (B) Confusion matrices after silver staining. Sensitivity = TP/
(TP + FN); specificity = TN/(TN + FP); PPV = TP/(TP + FP);
NPV = TN/(TN + FN). TP = true positive; TN = true negative; FN
= false negative; and FP = false positive. (C) Devices using
recombinant spike protein from variant strains. Sequence information
in the Supporting Information. Larger versions of (A) can be found in
Figure S16A,B for clarity.
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lateral-flow type device to complement antibody-based
systems.
SARS-COV-2 variants with mutations in the spike protein

have (and continue to) emerged, and any diagnostics should
retain the ability to detect these. Davis and co-workers have
reported that the B1.1.7 and B1.351 spike mutants have
reduced NMR STD signal (i.e., weaker contacts) to the NAc
protons of α2,3-α sialyllactoside compared to the wild-type,
and hence there is potential that the glycan-binding affinity
may be decreased.52 To test the impact of this, 3 mutant
truncated spike proteins, B1.1.7, B.1.351, and P1 (variants first
detected in Kent (U.K.), South Africa, and Brazil), were
expressed in E. coli and tested in our devices. In all cases, a
positive test line was seen (Figure 5C, no silver staining),
showing that detection capability is retained. It is crucial to
again note that binding affinity does not relate linearly to signal
output in flow-through (or lateral-flow) devices and hence this
does not rule out differences in the individual protein/glycan
interactions.
Influenza has haemagglutinins and neuraminidases, which

target sialosides (including N-acetyl neuraminic acid),75 and
sialic acid nanoparticles, which bind influenza, are well
known,76,77 so it was important to consider cross-reactivity.
Heating is known to reduce haemagglutination activity;78

hence, our specificity (above) might have been improved by
the heat inactivation of the sample. To explore influenza cross-
reactivity, haemagglutinins from H1N1, H3N2, H7N8, and
H7N3 as well as betapropiolactone (BPL)-inactivated
influenza virions were tested and the devices are shown in
the Supporting Information. H3N2 haemagglutinins were
detected in the devices but H1N1, H7N9, and H7N3
haemagglutinins were not, noting relatively high concen-
trations were used (0.5 mg·mL−1). In contrast, using intact
influenza virus there was no cross-reactivity observed. A further
control of heat-inactivated SARS-COV-2 remained detectable
under these conditions (Supporting Information). The lack of
apparent influenza cross-reactivity can be attributed to the
effective low haemagglutinin concentration on the viral surface,
compared to using just “pure” protein along with differential
absorption onto the nitrocellulose. From a structural biology
perspective, haemagglutinins make binding contacts to not
only the terminal glycan used here (Neu5NAc) but can also
contact linker units (e.g the lactose, in sialylactose). Our
preliminary data47 and additional thermal shift assays
(Supporting Information) suggest that the SARS-COV-2
spike protein had a similar affinity toward Neu5NAc as to
sialyllactose (2.3 and 2.6). Hence, the use of the Neu5NAc
monosaccharide as the detection unit may lead to reduced
overall affinity toward influenzas, while maintaining SARS-
COV-2 affinity, and hence providing some selectivity in the
flow-through format.

■ DISCUSSION
Here, we have demonstrated a prototype flow-through device,
which is capable of detecting SARS-COV-2 by exploiting the
interaction between α-N-acetyl neuraminic acid and the viral
spike protein. Rather than a traditional lateral-flow design
where there is a capture unit on the stationary phase (“test
line”), we developed our system so that the primary sample (in
this case derived from nasal swabs) was directly deposited as
the test line and hence is a “flow-through” device. This
approach removed the need to develop a test line, speeding up
the initial development process and allowing us to prove the

principle that glycans could be used in complete lateral-flow
devices with primary samples. Crucial to achieving this is the
use of a polymeric coating, which reduces nonspecific
interaction with any deposited biological components (e.g
mucus, cell debris) as well as providing the tether to display
the glycan. Using a lentiviral model, the flow-through devices
were specific toward spike-bearing lentiviruses, compared to
bald lentiviruses. Using recombinant, truncated, spike protein,
we demonstrated that the protein retains sialic acid-binding
capacity even after heating or limited detergent treatment. This
observation shows that this device may detect damaged viruses
and hence cannot be claimed to only detect intact viruses
(similar to other diagnostic tools for SARS-COV-2). Using a
panel of RT-PCR-validated swab samples, these prototype flow
devices were shown to achieve, after silver staining, 85%
sensitivity and 93% specificity, using Ct values as high as 25.
The apparently low detection limit may be in part due to the
detection of defective viral particles, which also bear the spike
protein. This will require further studies to validate their
contribution and the role of using heat-inactivated swabs and
their handling chain. Further optimization of the device and
running buffers are expected to lead to improvements,
especially to further reduce any nonspecific interactions, as
well as the potential to develop a full lateral-flow device.
With any diagnostic or sensor, there is potential for cross-

interaction with other agents. Cross-reactivity with two
influenza strains (H1N1 and H3N2) was not seen, even
though the nanoparticles do have an affinity toward H3N2
haemagglutinins, which may be due to differential absorbance
to the test zone or differences in overall detection limits. The
molecular details of recently reported spike protein mutations
(including the H69/V70 deletions) on the actual binding
affinity toward sialosides (and hence this detection method)
are still under study.79 The devices developed here were shown
to be capable of detecting recombinant spike proteins from
several variants, demonstrating that these mutations do not
remove glycan-binding function. Future work will further
explore the roles of sample preparation including the heat-
inactivation step, mechanism of application of specimens, and
fundamental studies of the glycan recognition function and its
biochemical basis. Consideration must also be given to
removing the need for a pipette as an application system to
the device, followed by the time delay for drying the specimen
onto the strip. Both of these could be improved, or more
ideally developed into a complete lateral-flow (test line)
device, which will be explored in the future. The evidence
provided here shows that glycan flow technology (lateral-flow
and flow-through glyco-assays) could be translated to clinical
settings to be used alongside more traditional antibody-based
approaches.

■ MATERIALS AND METHODS
Please see the Supporting Information for complete experimental
procedures.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssensors.1c01470.

Complete chemical synthesis/characterization and bio-
logical methods; device manufacture; uncropped and
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unedited images of all flow-through devices used in this
work; and additional control experiments (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Matthew I. Gibson − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.; Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.;
orcid.org/0000-0002-8297-1278; Email: M.i.gibson@

warwick.ac.uk

Authors
Alexander N. Baker − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.; orcid.org/0000-
0001-6019-3412

Sarah-Jane Richards − Department of Chemistry, University
of Warwick, Coventry CV4 7AL, U.K.

Sarojini Pandey − Institute of Precision Diagnostics and
Translational Medicine, University Hospitals Coventry and
Warwickshire NHS Trust, Coventry CV2 2DX, U.K.

Collette S. Guy − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.; School of Life Sciences,
University of Warwick, Coventry CV4 7AL, U.K.;
orcid.org/0000-0002-5153-0613

Ashfaq Ahmad − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.; Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.

Muhammad Hasan − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.; Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.

Caroline I. Biggs − Department of Chemistry, University of
Warwick, Coventry CV4 7AL, U.K.

Panagiotis G. Georgiou − Department of Chemistry,
University of Warwick, Coventry CV4 7AL, U.K.;
orcid.org/0000-0001-8968-1057

Alexander J. Zwetsloot − Warwick Medical School, University
of Warwick, Coventry CV4 7AL, U.K.

Anne Straube − Warwick Medical School, University of
Warwick, Coventry CV4 7AL, U.K.; orcid.org/0000-
0003-2067-9041

Simone Dedola − Iceni Diagnostics Ltd., Norwich NR4 7GJ,
U.K.

Robert A. Field − Iceni Diagnostics Ltd., Norwich NR4 7GJ,
U.K.; Department of Chemistry and Manchester Institute of
Biotechnology, University of Manchester, Manchester M1
7DN, U.K.

Neil R. Anderson − Institute of Precision Diagnostics and
Translational Medicine, University Hospitals Coventry and
Warwickshire NHS Trust, Coventry CV2 2DX, U.K.

Marc Walker − Department of Physics, University of Warwick,
Coventry CV4 7AL, U.K.

Dimitris Grammatopoulos − Warwick Medical School,
University of Warwick, Coventry CV4 7AL, U.K.; Institute of
Precision Diagnostics and Translational Medicine, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry
CV2 2DX, U.K.

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssensors.1c01470

Author Contributions
○A.N.B. and S.-J.R. contributed equally.

Notes
The authors declare the following competing financial
interest(s): A.N.B, S.J.R and MIG are named inventors on a
patent application relating to this. Iceni Diagnostics have
licensed aspects of technology reported here from UoW. RAF
is a shareholder in Iceni Diagnostics who part-funded this work
This study used remnant elutions from nasal swab samples
routinely collected from symptomatic staff/patients at the
University Hospital Coventry and Warwickshire NHS Trust
and tested by standard PCR protocols employing the Abbott
RealTime SARS-COV-2 assay (09N77-095) during April−
September 2020. As this was an evaluation study using the left-
over anonymized material (which had been heat-treated to
render acellular), no written informed consent was obtained,
although the project was registered with the local COVID-19
research committee.

■ ACKNOWLEDGMENTS
M.I.G. is supported by the Royal Society (Industry Fellowship
191037) and the ERC (866056). The BBSRC MIBTP
program (BB/M01116X/1) and Iceni Diagnostics Ltd. are
thanked for supporting A.N.B. BBSRC/InnovateUK are
thanked for funding the Specialty Glycans project BB/
M02878X/1. UoW, EPSRC (EP/R511808/1), and BBSRC
(BB/S506783/1) impact acceleration accounts are thanked, as
is UoW for funding. The Warwick Polymer Research
Technology Platforms is acknowledged for SEC analysis.
This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under the
Marie Skłodowska−Curie Grant Agreement No. 814236. The
Leverhulme Trust is thanked for support (RPG-2019-087).
A.J.Z. is funded by the MRC DTP (MR/N014294/1). A.S. is a
Wellcome Trust Investigator 200870/Z/16/Z. Dr. Marta
Neves, Dr. Kathryn Murray, and Angela Hurst are thanked
for assisting in preparing the flow devices. The authors
sincerely thank the technical and administrative staff of the
UoW who enabled the author’s laboratories to remain open
during the COVID-19 pandemic. Reagents were obtained
through BEI Resources for evaluation of influenza binding. A
complete list is in the Supporting Information.

■ REFERENCES
(1) World Health Organization. WHO Coronavirus Disease
(COVID-19) Dashboard. https://covid19.who.int/ ( accessed
December 16, 2020).
(2) Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang,
W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; Chen, H.-D.; Chen, J.;
Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.;
Wang, X.; Zheng, X.-S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.;
Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.-F.; Shi, Z.-L. A Pneumonia
Outbreak Associated with a New Coronavirus of Probable Bat Origin.
Nature 2020, 579, 270−273.
(3) Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.;
Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.;
Jervey, S. R.; Liu, C. Assay Techniques and Test Development for
COVID-19 Diagnosis. ACS Cent. Sci. 2020, 6, 591−605.
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