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Abstract. Candida boidinii Pmp47, an integral peroxi- 
somal membrane protein, belongs to a family of mito- 
chondrial solute transporters (e.g., ATP/ADP ex- 
changer), and is the only known peroxisomal member 
of this family. However, its physiological and biochemi- 
cal functions have been unrevealed because of the diffi- 
culties in the molecular genetics of C. boidinii. In this 
study, we first isolated the PMP47 gene, which was the 
single gene encoding for Pmp47 in a gene-engineerable 
strain $2 of C. boidinii. Sequence analysis revealed that 
it was very similar to PMP47A and PMP47B genes 
from a polyploidal C. boidinii strain (ATCC32195). 
Next, the PMP47 gene was disrupted and the disrup- 
tion strain (pmp47A) was analyzed. Depletion of 
Pmp47 from strain $2 resulted in a retarded growth on 
oleate and a complete loss of growth on methanol. Both 
growth substrates require peroxisomal metabolism. EM 
observations revealed the presence of peroxisomes in 
methanol- and oleate-induced cells of pmp47A, but in 
reduced numbers, and the presence of material of high 
electron density in the cytoplasm in both cases. Metha- 
nol-induced cells ofpmp47A were investigated in detail. 
The activity of one of the methanol-induced peroxi- 

some matrix enzymes, dihydroxyacetone synthase 
(DHAS), was not detected in pmp47A. Further bio- 
chemical and immunocytochemical experiments re- 
vealed that the DHAS protein aggregated in the cyto- 
plasm as an inclusion body, while two other peroxisome 
matrix enzymes, alcohol oxidase (AOD) and catalase, 
were active and found in peroxisomes. Two peroxi- 
some-deficient mutants, strains M6 and M13 (described 
in previous studies), retained DHAS activity although 
it was mislocalized to the cytoplasm and the nucleus. 
We disrupted PMP47 in these peroxisome-deficient 
mutants. In both strains, M6-pmp47A and M13- 
pmp47A, DHAS was enzymatically active and was lo- 
cated in the cytoplasm and the nucleus. We suggest that 
an unknown small molecule, which PMP47 transports, 
is necessary for the folding or the translocation machin- 
ery of DHAS within peroxisomes. Pmp47 does not cat- 
alyze folding directly because active DHAS is observed 
in the M6-pmp47A and M13-pmp47A strains. Since 
both AOD and DHAS have the PTS1 motif sequences 
at their carboxyl terminal, our results first show that de- 
pletion of Pmp47 could dissect the peroxisomal import 
pathway (PTS1 pathway) of these proteins. 

UKARYOTIC cells are compartmentalized into several 
organelles that have single, double, or triple mem- 
branes. Organelle matrix enzymes are translo- 

cated into the targeted organelle by its cis-targeting signal 
and trans-acting translocation machinery, and they must 
fold properly and often obtain coenzymes to acquire enzy- 
matic activity. From the organelle's side, each organelle 
membrane has to import and export not only proteins, but 
also small molecules between the cytoplasm and the or- 
ganelle matrix to activate enzymes, maintain ion gradients, 
and often provide energy. These processes are often 
linked with protein translocation. 

The peroxisome is a class of ubiquitous eukaryotic or- 
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ganelles where various kind of oxidative metabolisms are 
executed. Current interest in peroxisomes comes not only 
from their functions, but also from their importance re- 
garding human genetic diseases. Notably, human peroxi- 
somal transporters, Pmp70 and ALDP, both belonging to 
the ABC transporter family, were reported to be responsi- 
ble for genetical disorders, Zellweger syndrome (ZS) 1, and 
X-linked adrenoleukodystrophy (ALD; Kamijo et al., 
1990; G~rtner et al., 1992; Mosser et al., 1993), respec- 
tively. Both are severe disorders that usually lead to death 
within several years of birth. In ZS patients, normal perox- 
isomes are absent, but peroxisomal enzymes are usually 
active and are mislocalized in the cytoplasm. ALD pa- 

1. Abbreviations used in th& paper: ALD, adrenoleukodystrophy; AOD, 
alcohol oxidase; CAT, catalase; DHAS, dihydroxyacetone synthase; KPB, 
potassium phosphate buffer; ZS, Zellweger syndrome. 
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tients are deficient in a peroxisomal enzyme, very long 
chain fatty acyl CoA synthase (VLCFAS) (Van den Bosch 
et al., 1992). However, the roles of these transporters in 
peroxisome assembly or in VLCFAS enzyme activity are 
not clear. 

It is known that there are at least three independent 
pathways of protein import into peroxisomes (Subramani, 
1993; Purdue and Lazarow, 1994). Many peroxisomal pro- 
teins contain a carboxyl-terminal-targeting signal, PTS1, 
represented by the sequence -SKL or its derivatives. 3-ke- 
toacyl-CoA thiolase and several others contain an NH2- 
terminal targeting signal, PTS2, a sequence of 25-36 
amino acids in length (Swinkels et al., 1991). Recently, an- 
other targeting signal for an integral peroxisome mem- 
brane protein, Pmp47 for Candida boidinii (McCammon 
et al., 1990, 1994), has been found to exist. Pichia pastoris 
Pas8p is considered to be the PTS1 receptor (McCollum et 
al., 1993; Terlecky et al., 1995). In the pas8 mutant, thio- 
lase is competent for peroxisomal protein import, but other 
PTSl-containing proteins are mislocalized into the cyto- 
plasm. Recently, the human homologue of Pas8p, PXR1, 
has been cloned, and it has been shown to complement 
some ZS cell lines (Dodt et al., 1995; Wiemer et al., 1995). 

There are both biochemical and genetic advantages to 
study peroxisomal assembly in methylotrophic yeasts, P. pas- 
toris, Hansenula polymorpha, and C. boidinii (Bellion and 
Goodman, 1987; Hansen et al., 1992; Subramani, 1993; 
Heyman et al., 1994): (a) peroxisomal proliferation is ro- 
bust, such that peroxisomes can comprise most of the cyto- 
plasmic volume; (b) proliferation can be easily detected 
and studied by EM; and (c) only two enzymes, alcohol oxi- 
dase (AOD) and dihydroxyacetone synthase (DHAS), 
comprise most of the matrix mass. 

In respect to applied fields, both AOD and DHAS have 
biotechnological importance. The use of the AOD pro- 
moter for the expression of heterologous genes in methy- 
lotrophic yeasts is now a commonly used technology in 
molecular biology and in the production of heterologous 
proteins (Gellissen et al., 1991; Cregg, 1993; Sakai et al., 
1994, 1995c). AOD can be used to produce various useful 
aldehydes (Sakai and Tani, 1987, 1988), and recently, we 
described a new enzymatic method to prepare 13C-labeled 
dihydroxyacetone phosphate by the combined reaction 
system of AOD and DHAS (Yanase et al., 1995). There- 
fore, revealing the mechanism of translocation and folding 
of these enzymes will give us useful information to over- 
produce these enzymes in peroxisomes of methylotrophic 
yeast cells. 

Pmp47 of C. boidinii is an integral membrane protein 
that belongs to a protein family of mitochondrial solute 
carriers (e.g., ATP/ADP exchanger; Jank et al., 1993; 
Kuan and Saier, 1993). Pmp47 is induced on divergent per- 
oxisome-inducing carbon sources (methanol, oleate, and 
D-alanine), suggesting its importance in basic peroxisomal 
function rather than in a specific metabolic pathway (Good- 
man et al., 1990). However, its function was not investi- 
gated because of the lack of molecular genetics of the 
polyploidal strain, C. boidinii strain (ATCC32195), used in 
the study. As the first step to understand the function of 
Pmp47, we have cloned and disrupted the corresponding 
gene in the haploid strain $2. The phenotype of the result- 
ing strain pmp47A indicates an important role of Pmp47 in 

the translocation and folding of DHAS. We suggest here 
that the folding and translocation process of some matrix 
protein depends not only on its targeting signal and trans- 
location machinery, but also on some solute factor within 
peroxisomes. 

Materials and Methods 

Strains, Media, and Cultivation 

C. boidinii strains TK62 (ura3; Sakai et al., 1991), M6 (ura3), and M13 
(ura3) were used as hosts for transformation. The latter two strains were 
derived from strain TK62 as nonutilizers of multiple peroxisomal prolifer- 
ating carbon sources (methanol, oleate, and D-alanine), and were charac- 
terized as peroxisome-deficient strains in a previous study (Sakai et al., 
1995b). C. boidinii transformant GC (Sakai et al., 1995c) was used as the 
wild-type strain. Escherichia coli XL-1 Blue (Ausubel et al., 1987) was 
used for plasmid propagation. 

Synthetic MI media (Sakai et al., 1995) were used for growth experi- 
ments and for the preparation of cells for EM. The concentrations of the 
carbon sources used were 0.7% (vol/vol) methanol, 0.5% (vol/vol) oleate, 
0.6% (wt/vol) D-alanine, 2% (wt/vol) glycerol, and 2% (wt/vol) glucose. 
Tween 80 was added to the oleate medium at a concentration of 0.05% 
(vol/vol). The initial pH of the media were adjusted to 6.0. Cultivation was 
aerobic at 28°C with shaking, and the growth was followed by measuring 
the OD at 610 nm. Determination of the growth on oleate was described 
previously (Sakai et al., 1995b) using a diluted sample of the same medium 
as the reference. The semisynthetic MI-YE medium (MI+0.5% yeast ex- 
tract) containing 0.7 % (vol/vol) methanol and 2% (wt/vol) glycerol were 
used for the induction of methanol-induced enzymes and for peroxisome 
purification for both wild-type and pmp47A cells. 

DNA and RNA Methods 

Southern blotting to a Biodyne nylon membrane (Pall Bio Support, New 
York, NY) and hybridization were done under high stringent conditions 
as previously described (Sakai et al., 1995a). Gel-purified DNA was 32p_ 
labeled according to the method of Feinberg and Vogelstein (1983). Total 
RNA and formaldehyde-denatured gels for Northern analysis were pre- 
pared as described previously (Sakai and Tani, 1992). PolyA RNA was 
purified using the BIOMAG TM mRNA purification kit (PerSeptive Diag- 
nostics, Inc., Cambridge, MA). 

Protein Methods and Antibody Preparations 

Standard 9% Laemmli gels (Laemmli, 1970), with the separating gel at pH 
9.2, were used. Immunoblotting was performed by the method of Towbin 
et al. (1979) using the ECL detection kit (Amersham, Arlington Heights, 
IL). The IVA7 monoclonal anti-PMP47 antibody and anti-AOD were 
kindly provided by Dr. J.M. Goodman (University of Texas Southwestern 
Medical Center, Dallas, TX). DHAS was purified from the cell-free ex- 
tract of C. boidinii No. 2201 to an apparent homogeneity on SDS-PAGE 
as described previously (Kato et al., 1982). Anti-DHAS polyclonal anti- 
body was raised in rabbits, and the antisera were purified using Econo-Pac 
Serum IgG purification column (Bio Rad Laboratories, Hercules, CA). 
For immunocytochemical experiments, the material that cross-reacts to 
the cell wall was removed as follows: C. boidinii cell wall fraction was pre- 
pared from a 9-12% dextrin continuous gradient centrifugation of the cell 
lysate. 10 ~1 cell wall fraction (prepared from ~1.5 OD610 units cells) was 
added to a 100-p.l anti-AOD antiserum or anti-DHAS IgG fraction. After 
an overnight incubation at 4°C, the suspension was centrifuged at 20,000 g 
to remove the cross-reactive material, and the resultant supernatant was 
used for immunocytochemistry experiments. 

Cloning and Sequencing of PMP47 from C. boidinii $2 
The probe harboring PMP47A gene from C. boidinii ATCC32195, a 1.2-kb 
PstI-HindIII fragment (Moreno et al., 1994), was used to clone the 
PMP47 gene of C. boidinii $2. A Southern analysis of EcoRV-digested ge- 
nomic DNA of C. boidinii $2 probed with PMP47A fragment revealed a 
single 5.9-kb band. A pool of EcoRV-digested genomic DNA of approxi- 
mately this size was gel purified and ligated into the EcoRV site of pBlue- 
script II SK +. E. coli transformants were transferred onto a Biodyne nylon 
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membrane (Pall Bio Support). After the lysis of bacteria, the liberated 
DNA was bound to the nylon membrane, and these blots were then used 
for colony hybridization under high stringency hybridization conditions 
using Church-Gilbert buffer (1% BSA, 1 mM EDTA, 0.25 M NaC1, 0.25 
M Na3PO4, pH 7.2, 7% SDS) (Church and Gilbert, 1984). Hybridization 
was performed at 65°C overnight and then the membranes were washed 
three times in 0.3× SSC at the same temperature. Three clones that 
showed strong positive signals were found to harbor a reactive 5.9-kb 
EcoRV fragment. The total PMP47 gene was read using the synthetic oli- 
gos for sequencing primers, and the nested deletion mutants were derived 
as described previously (Yanisch-Perron et al., 1985). The sequenced re- 
gion was read on both strands using a 7-deaza sequencing kit from Takara 
Shuzo (Kyoto, Japan) and PRISM DyeDeoxy Terminator Cycle Sequenc- 
ing Kit and DNA sequencer model 373A (Applied Biosystems, Inc., Fos- 
ter City, CA). 

Construction of the Disruption Cassette and One-step 
Gene Disruption of PMP47 
The 3.3-kb HincII-HindIII fragment of pMP471 DNA (Fig. 2) containing 
the truncated COOH-terminal coding region and 3' flanking region of C. 
boidinii PMP47 was cloned into the multiple cloning site of pBluescript II 
KS+, yielding pMP473. Next, the 746-bp SspI-EcoRV fragment of 
pMP471 DNA containing the 5' flanking and truncated NHz-terminal 
coding region was blunt-ended with T4 polymerase, then ligated to the 
unique EcoRV site of pMP473, yielding pMP4732. Finally, the BamHI- 
PstI fragment of C. boidinii URA3 DNA (Sakai and Tani, 1992b) and the 
HindllI digest of pMP4732 were blunt-ended and subjected to ligation, 
yielding the C. boidinii PMP47 disruption vector, pMP47BP. This vector 
had the C. boidinii URA3 DNA as the selectable marker and the trun- 
cated C. boidinii PMP47-flanking sequences (Fig. 1). Transformation of 
C. boidinii strains were performed with the modified lithium acetate 
method (Sakai et al., 1993). 

Preparation of Cell-free Extract and Enzyme Assays 
Cells were harvested by centrifugation at 500 g, washed twice with ice-cold 
distilled water, suspended in 0.1 M potassium phosphate buffer (KPB), 
pH 7.5, and disrupted with an insonator (model 201M; Kubota, Co. Ltd., 
Tokyo, Japan) (2 MHz for 35 rain). The cell debris was removed by cen- 
trifugation at 20,000 g for 20 rain at 4°C. The resultant supernatant fluid 
was immediately assayed for enzyme activity. 

DHAS (EC 2.2. 1.3) activity was determined as described previously 
using B-hydroxypyruvate (lithium salt; Sigma Chemical Co., St. Louis, 
MO) as the substrate (Yanase et al., 1995). Formaldehyde disappearance, 
which was dependent on the addition of the substrate, was measured by 
the method of Nash (1953). 1 U was defined as the amount of enzyme cat- 
alyzing the conversion of I ixmol substrate per minute. 

The enzyme activities of alcohol oxidase (EC 1.1.3.13; Tani et al., 1985), 
catalase (CAT; EC 1 .11 .1 .6 ;  Bergmeyer, 1955), and cytochrome c oxi- 
dase (EC 1.9. 3. 1; Tolbert, 1974), were assayed by the described proce- 
dures. Protein was measured by the method of Bradford (1976) with a 
protein assay kit (Bio Rad Laboratories) using BSA as the standard. 

Subcellular Fractionation 
Wild-type and pmp47A cells, grown on YPD medium for 24-30 h, were 
washed once and transferred to the semisynthetic glycerol plus methanol 
medium (2 liters) at an initial OD610 of 0.2-0.4 and grown for 10-16 h. The 
induced cells were harvested by centrifugation, treated with 0.1 M Tris- 
H2SO 4 (pH 9.3)-10 mM DTT for 15 min, and converted to spheroplasts in 
1.6 M KCI-10 mM MOPS-5 mM Na~SO3, pH 7.2, containing Zymolyase 
100T (~1 rag/150 OD610 U cells) for 60-90 min. 

Subcellular fractionation was performed as follows, essentially accord- 
ing to the method of Goodman (1984). All subsequent steps were per- 
formed at 2°C. Spheroplasts were harvested by centrifugation at 500 g and 
suspended in Suspend buffer (I.0 M sorbitol, 5 mM MES), pH 5.5, con- 
taining 1 mM PMSF, and then osmotically lysed by the addition of 1.0-1.5 
vol of ice-cold lysis buffer (0.25 M sorbitol, 5 mM MES, pH 5.5, containing 
1 mM PMSF). Lysis was monitored microscopically. The lysate was os- 
motically adjusted back to 1.0 M sorbitol by the addition of equilibrium 
buffer (1.75 M sorbitol, 5 mM MES, pH 5.5, containing 1 mM PMSF). 
Unlysed cells, large organelles, and other cell debris were removed care- 
fully from the lysate by repeating centrifugation at 500 g. The resulting su- 

pernatant was subjected to a centrifugation at 20,000 g for 20 min to ob- 
tain a crude pellet consisting mainly of peroxisomes and mitochondria. 

The obtained organellar suspension was fractionated on a semicontinu- 
ous sucrose gradient. The organellar suspension (~2.0 ml) was layered on 
top of a 36-ml semicontinuous gradient (2.0 ml of 30, 36, 42, 43, 44, 45, 46, 
47, 48, 49, 50, 52, 54, 57, 60, 63, 66, and 68% (wt/wt) sucrose), and centri- 
fuged at 2°C for 5 h 30 min at 27,000 rpm (100,OO0 g) in a rotor (SW28; 
Beckman Instruments, Inc., Fullerton, CA). The gradient was drained by 
pippetting into 19 fractions from the top (fraction 1) to the bottom (frac- 
tion 19). Fractions were assayed for CAT and cytochrome c oxidase activ- 
ities. For immunoblotting, proteins from the selected fractions (100 g,l) 
were precipitated by the addition of TCA to a final concentration of 10%, 
washed twice with cold acetone, and resuspended in 100 ~zl of 1× Laem- 
mli sample buffer. These suspensions were boiled, subjected to SDS- 
PAGE, and immunoblotted with anti-AOD (×10,000 dilution) and anti- 
DHAS (x20,000 dilution) antibodies. 

To a portion (~100 t~l) of the peak fraction of peroxisomes (fraction 13 
for wild type and fraction 14 forpmp47A), 1 M Tris-C1 buffer, pH 8.0, was 
added to a final concentration of 30 mM, and the samples were incubated 
on ice overnight, then spun at 20,000 g to obtain supernatant and pellet 
fractions (Fig. 5 C). An identical volume of a portion of the pellet suspen- 
sion was examined with or without the addition of 1 M Tris-C1 buffer. 
Equivalent portions of pellet and supernatant fractions were loaded on 
SDS-PAGE and analyzed by immunoblotting. 

EM and Immunocytochemistry 
Whole cells were fixed in 2.0% glutaraldehyde in 0.1 M KPB, pH 7.2, at 
4°C for 2 h. After washing with 0.1 M KPB, the cells were postflxed with 
1.5% (wt/vol) KMnO4 at 4°C for 16 h and poststained in 1.5% (wt/vol) 
aqueous uranyl acetate at room temperature overnight. Afterwards, they 
were pelleted and dehydrated in a graded acetone series, and were infil- 
trated in a Spur resin (hard) series (Spur resin/propylene oxide 1:1, 3:1, 7:1, 
and 100% Spur resin). Polymerization was performed at 37°C for 24 h, 
45°C for 24 h, and 60°C for 2 d. 

Cells were fixed in a solution containing 4.0% paraformaldehyde and 
1.0% glutaraldehyde in 0.1 M KPB, pH 7.2, at 4°C for 4 h. After fixation, 
cells were washed once with 0.1 M KPB, pH 7.2, containing 8% (wt/vol) 
sucrose and 0.05 M NH4CI, then three times with 0.1 M KPB, pH 7.2, con- 
taining 8% sucrose. They were thereafter pelleted and dehydrated in a 
graded ethanol series (30%, 50%, 70%, 90% twice, 100% twice for 10 
min) with gentle shaking. The cells were then infiltrated in graded LR 
White series (The London Resin Co. Ltd., Hampshire, U.K.; LR White/ 
ethanol 1:1 for 60 rain, 2:1 for 60 rain, and 100% LR White overnight). Af- 
ter replacing 100% LR White by centrifugation, polymerization was per- 
formed at 60°C for 2 d. 

Immuno-gold labeling was performed on ultrathin sections using anti- 
AOD and anti-DHAS antibodies. Sections were quenched in 50 mM gly- 
cine in PBS (2 mM KH2PO4, 8 mM Na2HPO4, 150 mM NaCl, pH 7.4) for 
10 min. After washing in PBS three times, they were blocked with 5% nor- 
mal goat serum in the washing buffer (PBS containing 0.8% BSA, 0.1% 
IGSS quality gelatin, 2 mM NaN3) for 30 rain, washed in the washing 
buffer three times, and incubated with primary antibody at the dilution 
rate of 1/20,000 for anti-AOD and 1/10,000 for anti-DHAS in an incuba- 
tion buffer (1.0% normal goat serum in the washing buffer) for 2 h. After 
3× 10 min washes in the washing buffer, sections were incubated with 15 nm 
gold-labeled goat anti-rabbit IgG (H+L)  (AuroProbe H E M  GAR G15; 
Amersham) diluted 1/30 in incubation buffer fo( 2 h. After washing in the 
washing buffer, sections were postfixed with 2.0% glutaraldehyde in PBS 
for 10 min, washed twice in PBS and twice in distilled H20. Finally, sec- 
tions were stained with 2.0% aqueous uranyl acetate at 45°C for 30 rain 
and then with lead citrate at room temperature for 3 min. UItrathin sec- 
tions were cut with a diamond knife on a Reichert-Jung Ultracut E (Rei- 
chert-Jung Optische Werke, AG, Vienna, Austria). "Gold colored" sec- 
tions were transferred to nickel grids and observed under an EM (model 
100C; Jeol Ltd., Tokyo, Japan). 

Results 

C. boidinii $2 Contains a Sole Gene Encoding for 
Prop47 

Previously, two closely related genes, termed PMP47A 
and PMP47B, were isolated from C. boidinii ATCC32195 

Sakai et al. Yeast Peroxisomal Transporter Prop47 39 



(Moreno et al., 1994). To determine if strain $2, a haploid 
strain of C. boidinii, also contained two PMP47 family 
genes, genomic Southern analysis of C. boidinii $2 D N A  
was performed using PMP47A or PMP47B as probes. 
Only one fragment from each digestion bound to the 
PMP47A probe, and an identical banding pattern was seen 
with the PMP47B probe. In contrast, genomic D N A  from 
strain ATCC32195 gave doublet or triplet bands on South- 
ern analysis (data not shown). These results indicate that 
C. boidinii $2 contains only one gene encoding for Pmp47. 
Similar results were seen with the C. boidinii Pmp30 (Sa- 
kai et al., 1995a), i.e., Pmp30 was encoded by only one 
gene (PMP30) in strain $2, while strain ATCC32195 had 
two genes PMP30A and PMP3OB. 

The gene encoding for Pmp47 in C. boidinii $2 (PMP47) 
was isolated by colony hybridization using PMP47A as the 
probe. Restriction mapping and sequence analysis showed 
near perfect identity to PMP47B (Fig. 1). D N A  within the 
coding region was 99% identical to PMP47B, resulting in 
changes in only two amino acid residues. It was also 92% 
identical to PMP47A. The sequenced portions of 5' and 3' 
flanking regions were also highly conserved. The deduced 
419-amino acid sequence of Pmp47 was consistent with 
the six-membrane-spanning model for the mitochondrial 
transporter family (data not shown). An internal region 
(amino acids 199-267), which was recently shown to be es- 

sential for the sorting of the protein to peroxisomes (Mc- 
Cammon et al., 1994), was completely conserved among 
the three genes coding for Pmp47. From these results, we 
conclude that PMP47A and PMP47B are probably allelic 
in the polyploid strain ATCC32195. 

Next, the PMP47-disruption vector pMP47BP was con- 
structed (Fig. 2 A). C. boidinii TK62, the ura3 derivative 
of strain $2 (Sakai et al., 1991), was transformed with 
pMP47BP. The obtained disruptant was named pmp47A. 
Proper gene disruption in pmp47A was confirmed by 
Southern analysis with EcoRI-digested DNA from the 
transformant (Fig. 2 B). The D N A  from the host strain 
gave a doublet band of 3.7 and 1.6 kb. Only the 3.7-kb 
band shifted to 4.0 kb in pmp47A, as expected for a disrup- 
tion caused by homologous recombination (Fig. 2 A). In 
addition, immunoblotting with an anti-Pmp47 revealed the 
loss of the signal in pmp47A (Fig. 2 C). These results con- 
firmed that the haploid strain C. boidinii $2 contained only 
one gene coding for Pmp47. 

Growth Characteristics of C. boidinii pmp47 A 

Peroxisome-deficient mutants (strains M6 and M13) (Sa- 
kai et al., 1995b) of C. boidinii are severely deficient in 
peroxisomal function because they could not grow on ole- 
ate, o-alanine, or methanol as a sole carbon source. C. boi- 
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141 G L S V W Q S M A A G A V A G T I S R V 160 

421 GGTTTATC TGTTTGGCAAAG TATGGCTGC TGGTGCAGT TGCTGGTACAATTTCACGGGTC 480 

1 6 1 A T N P I W V A N T R M T I L S K N Q G  180 
481GC~CAAATCC~TTTGGGTTGCT~TAC~GAAT~C~TCTTATCTAAAAATC~GGT 540 

1 8 1 K L G K L N T I E ' A I I Y I L K N E G W  200 

541 AAATTAGGCAAATTAAATAC~TTG~GCCATTATTTATATCTTAAAGAATG~GGTTGG 600 

2 0 1 Q K L F T G I V P A L F L V L N P I I Q  220 
601 CAAAAATTATTTACAGGTATTGTACCTGCATTATTTTTGGTTTTAAATCC~TTATTC~ 660 

2 2 1 Y T I F E Q L K S F I V K I K K R N V T  240 
661 TACAC~TTTTTG~C~TTAAAATCATTTATTGTTAAAATTAAAAAGAGA~TGTTACA 720 

2 4 1 P V D A L L L G A F G K L I A T I I T Y  260 

721 CCTGTTGAT~TTTATTATTAGGTGCTTTTGGTAAATT~TTGCCAC~TTATTACATAT 780 

2 6 1 P Y I T L R S R M H V K S M T E N N E D  280 
781 CCTTACATTACTTTACGTTCTAG~T~ACGTTAAAAGTATGACTGAAAAT~TG~GAT 840 

281 S E K E R T D S V Q S L P E D G S D E D 300 
841 TCTGAAAAGGAAAG~CAGATA~GTTC~TCTTTACCTGAAGATGGATCAGATG~GAT 900 

C 

3 0 1 N S K E N P Y A E T I N K I I S K L P S  320 
901 ~CTCGAAAGAAAATCCTTACGCTGAAAC~TC~TAAAATTATATCTAAATTACCATCT 960 

321 P I V S M F T I G Y K M Y K E E G V S S 340 

I 
981 CC~TTGTATC~TGTT TAC~TA~ TTATAAAATGTATAAAG~G~GGTGT~GTTCA 1020 

T 

3 4 1 F Y B G L S V K L L Q S I L N A A F L F  360 

1021 TTTTATCGT~TTTATCTGTGAAATTATTACAAAGTATATTG~TGC~CATTCTTATTT 1080 

3 6 1 Y F K E E L L I L S D G I I K S T K R V  380 

A 
1081 TATTTCAAAGAAG~T TATT~TCT TATCTGATGG~T~TAAAATC~C TAAAAGAGT T 1140 

C 

3 8 1 T G L A N N P Y N A K D V I H S F E K A  400 
1141 ACTGGATTAGCT~T~TCCTTAT~TGCAAAAGA~TTATTCATTCATTTGAAAAAGCT 1200 

4 0 1 L C M R N P R S R T T T V P Q T N E E *  420 
1201 TTATGTATGCGT~TCCTCGTTCACGTACTAC~CAGTTCCTCAAACT~TG~G~T~ 1260 

1261 ATTCAGAAAAAGCAAATTTAAATTTAAATTTT~T~GTATCTGTTTCACTACTATTTAC 1320 

1321 TTTTTTTTAGTTTTTTTGTTTTTCCCTTTTGT~TTCCCCATC~ 1365 

Figure 1. Nucleotide sequences and their deduced amino acid sequences of  PMP47 from C. boidinii $2 and PMP47B from C. boidinii 
ATCC32195. Upper sequence represents the PMP47 gene. The nucleotide and amino acid sequence of PMP47B is shown only when it 
is different from PMP47. Differences in amino acid sequences are also shown in bold type. Dashes signify deleted bases. The PMP47 se- 
quence was submitted to GenBank and was assigned the accession number U53145. 

The Journal of Cell Biology, Volume 134, 1996 40 



Figure 2. One-step gene disrup- 
tion of PMP47 gene in C. boidi- 
nii. (A) Restriction map of the 
cloned fragment and its disrup- 
tion strategy. (B) Genomic 
Southern analysis from EcoRI- 
digested total DNA (,-~3 Ixg) 
from various C. boidinii strains 
with the radiolabeled probe 
shown in A. (C) Immunoblot 
analysis of cell-free extract from 
10-h methanol-induced cells us- 
ing anti-Pmp47 monoclonal anti- 
body. About 3 ~g protein was 
loaded on each lane. 

dinii mutant defective in the PTS1 receptor homologue 
gene (PSR1) also showed the same growth phenotype on 
these carbon sources (Sakai, Y., H. Matso, and N. Kato, 
unpublished data). In contrast, pmp47A was able to grow 
on oleate and D-alanine plates, although it did not grow on 
methanol. This result suggested that functional peroxi- 
somes, at least in oleate- and o-alanine-grown cells, were 
present in the absence of Pmp47. We compared the 
growth rate in several liquid media between the wild-type 
and pmp47A strains (Fig. 3). Both grew the same in glu- 
cose. In contrast, the disruption caused the loss of growth 
in methanol and a marked defect of growth in oleate. The 
disruption caused a small but reproducible (in three exper- 
iments) inhibition of growth in glycerol, acetate, and D- 

alanine (D-alanine was used as a single carbon and nitro- 
gen source). In other words, effects of growth in "peroxi- 
somal substrates" caused by PMP47 disruption varied 
from little (o-alanine) to severe (methanol). 

DHAS Is Inactive and Aggregated in pmp47A 

Because the most severe growth defect was observed on 
methanol, the phenotype of pmp47A grown on methanol- 
glycerol was studied further; activities of peroxisomal en- 
zymes in the cell-free extracts of methanol-induced cells 
were determined. Since pmp47A could not grow on metha- 
nol, glycerol was added to the methanol medium for both 
wild-type and pmp47A strains. The addition of glycerol did 
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Figure 3. The disruption of 
PMP47 affects growth in 
methanol-  and oleate-media 
severely. Strains were grown 
on synthetic MI medium with 
the indicated carbon sources. 
Open symbols, C. boidinii 
pmp47zl; closed symbols, wild- 
type strain. 

not repress the methanol-induced enzymes (Sakai et al., 
1995c). We could detect no DHAS activity in pmp47A, 
while AOD and CAT were active at levels comparable to 
the wild-type strain (Fig. 4 A). Immunoblot analysis with 
anti-DHAS and anti-AOD was performed with the ex- 
tracts from pmp47A. Although anti-AOD gave a strong 
band of 74 kD, no bands were detected with anti-DHAS 
(soluble fraction; designated as S in Fig. 4 B, left panel). In 
this experiment, the cell-free extract was prepared by soni- 
cating the cells, and unbroken cells and insoluble materials 
were removed by centrifugation at 20,000 g. However, 
when the aggregated material in the precipitate was solu- 
bilized by boiling in Laemmli sample buffer (containing 
0.1% SDS) (Laemmli, 1970), a strong 78-kD band cross- 
reacting with anti-DHAS appeared (Fig. 4 B, left panel; 
pellet fraction designated as P). This indicated that DHAS 
was synthesized in pmp47A, but was in an inactive and in- 
soluble form in these cells. In contrast, AOD existed in a 
soluble form in pmp47A. 

Peroxisomal enzyme activities were also examined with 
cell-free extracts from oleate- and D-alanine-induced cells. 
The peroxisomal enzymes tested (CAT, acyl CoA oxidase, 
isocitrate lyase, thiolase, and D-amino acid oxidase) were 
active in levels comparable to the wild-type strain (data 
not shown). However, oleate-induced pmp47A accumu- 
lated two- to threefold higher levels of unmetabolized ole- 
ate within the cells than the wild-type strain, indicating an 
effect of the gene disruption on the 13-oxidation pathway. 

Purification of Peroxisomes on Sucrose Gradient 
Ultracentrifugation 

We then tried to purify the peroxisomal fraction from 

methanol plus glycerol-grown cells of pmp47A and wild 
type on sucrose gradients (Fig. 5) to get information on the 
subcellular localization of insoluble DHAS in these cells. 
Cells were spheroplasted, gently disrupted by osmotic ly- 
sis, and unbroken cells, nuclei, and cell debris were re- 
moved by low speed centrifugation at 500 g twice. This 
pellet from pmp47A contained a large amount of aggre- 
gated DHAS (> 90% of total amount), whereas that from 
wild-type cells contained less DHAS (~45--60%). Or- 
ganelle pellets mainly containing peroxisomes and mito- 
chondria (for both strains) and aggregated DHAS (for 
pmp47A) were prepared by differential centrifugation. 
These pellets were fractionated on discontinuous sucrose 
gradients. 

Fig. 5 A summarizes the experiments performed on su- 
crose gradient fractions from wild-type cells. CAT activity 
was seen primarily in fractions 10-14, and a mitochondrial 
marker, cytochrome c oxidase, was seen in fractions 3-8. 
CAT seen in the top fraction may have been caused by the 
leakage of peroxisomes during manipulation. Immuno- 
blots with antibodies against AOD and DHAS showed 
that these peroxisomal proteins also colocalized with CAT 
within the gradient. To confirm that AOD and DHAS 
were inside peroxisomes, fraction 13 was subjected to 30 
mM Tris-C1, pH 8.0, which causes peroxisomes to rupture 
and release matrix enzymes (Goodman et al., 1984). As 
shown in Fig. 5 C, these conditions caused release of AOD 
and DHAS, confirming that they were indeed compart- 
mented in peroxisomes. Under the conditions used, Pmp47 
remained in the pellet fraction showing a strong inter- 
action with the membrane. 

Fig. 5 B summarizes the parallel experiments performed 
for the pellet fraction from pmp47A cells. This pellet frac- 
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Figure 4. DHAS was inactive and was present as insoluble material in prnp47A but was in a soluble and active form in prnp47A deriva- 
tives from two peroxisome-deficient strains M6 and M13. (A) Methanol-induced enzyme activities after induction on methanol plus 
glycerol for 16 h. n.d., not detected. (B) Immunoblot of the cell-free extract from 16-h methanol plus glycerol induced cells with anti- 
AOD or anti-DHAS. Cells of the indicated strains were disrupted by sonication, and were separated into supernatant (S) and pellet 
fraction (P) after centrifugation at 20,000 g. The samples were boiled in Laemmli sample buffer (0.1% SDS) and subjected to SDS- 
PAGE. 

tion contained ,-o5-10% of D H A S  aggregates from lysed 
cells, and this could not be removed by differential centrif- 
ugation. Similar to the wild-type cells, cytochrome c oxi- 
dase activity was found in fractions 5-8 of sucrose gradi- 
ent. Also, C A T  activity and the peak of A O D  were found 
in fractions 13 and 14. However,  D H A S  behaved differ- 
ently. In addition to peroxisomal fractions 12 and 14, 
D H A S  protein was detected in fractions 4 and 6, overlap- 
ping with the mitochondrial marker. Thus, a fraction of 
the D H A S  protein had not been imported into peroxi- 
somes. The main peroxisomal peak fraction 14 was sub- 
jected to 30 mM Tris-Cl, pH  8.0. While A O D  was released 
to the supernatant, similar to wild-type cells, D H A S  was 

not releasable with this treatment (Fig. 5 C). From these 
experiments, we assume that A O D  and C A T  had translo- 
cated into peroxisomes as well as the wild-type strain, and 
that most  parts of aggregated D H A S  were not transported 
to peroxisomes. 

E M  Observations 

The subcellular morphology of the wild-type and pmp47A 
cells grown on methanol plus glycerol was compared with 
KMnO4-fixed cells and by immunogold EM using anti- 
bodies raised against A O D  or DHAS.  

Typically, wild-type cells grown on methanol plus glyc- 
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Figure 5. Semicontinuous sucrose gradient frac- 
tionation of organelle pellets from (A) wild-type 
and (B) pmp47A strains. Cells were grown on 
methanol plus glycerol medium for 16 h, and 
then organellar pellets were prepared and frac- 
tionated on a sucrose gradient as described in 
Materials and Methods. Dotted line represents 
sucrose concentration. CAT (closed triangle) and 
cytochrome c oxidase (closed circle) activity are 
expressed in relative values to the maximum ac- 
tivity in the fractions. The relative activity 1.0 for 
CAT corresponds to 77.8 U/ml for wild type and 
86.5 U/ml for pmp47zl, and that for cytochrome c 
oxidase corresponds to 1.44 U/ml for wild type 
and 1.61 U/ml for pmp47A. (C) DHAS was not 
released by treatment with 30 mM Tris-C1, pH 
8.0, from peroxisomal fractions of pmp47A. The 
peak of peroxisomal fraction for wild type (frac- 
tion 13 in A) and that forpmp47A (fraction 14 in 
B), were divided into a pellet fraction (P) and su- 
pernatant fraction (S) by 20,000 g centrifugation 
after treatment with (+) and without ( - )  30 mM 
Tris-C1, pH 8.0. Immunoblot was performed with 
anti-DHAS polyclonal, anti-AOD polyclonal, 
and anti-Pmp47 monoclonal. 

erol (or methanol alone) had spheroids of ~ 3  ~m in diam- 
eter, composed of  three or four tightly packed peroxi- 
somes (Fig. 6 A). In the wild-type cells, A O D  and D H A S  
localized differently within peroxisomes. A n t i - A O D  cross- 
reacted preferably with the core of peroxisomes (Fig. 6 B), 
while those labeled with ant i -DHAS dominantly cross-re- 
acted with the peripheral part of  peroxisomes (Fig. 6 C). 
In contrast to the wild-type cells, pmp47A had only one or 
two peroxisomes when induced on methanol plus glycerol 
medium (Fig. 6 D). The most striking feature in methanol- 

induced cells of pmp47A was cytoplasmic irregularly 
shaped regions of  high electron density, suggesting pro- 
teinaceous aggregates (Fig. 6 D). These suggested the in- 
volvement of  Pmp47 in the translocation of  some matrix 
enzymes, since similar aggregates were also observed for 
the peroxisome-deficient mutant  strains (Sakai et al., 
1995b). Indeed, ant i -DHAS reacted with aggregates in the 
cytoplasm (Fig. 6 F). This shows that the cytoplasmic ag- 
gregates that we observed in KMnO4-fixed cells contained 
DHAS.  Also, ant i -DHAS did not react with the peroxi- 
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some matrix while anti-AOD reacted exclusively with the 
peroxisomal matrix (Fig. 6 E). From these immuno-EM 
and fractionation experiments, DHAS aggregated within 
the cytoplasm whereas AOD (and we assume CAT) trans- 
located properly in the absence of Pmp47. Comigration of 
a part of aggregated DHAS with peroxisomal and mito- 
chondrial fraction in sucrose gradient centrifugation ex- 
periments with pmp47A may be caused by the nonspecific 
binding of aggregated DHAS to the organelle membranes 
through hydrophobic interaction. 

We also observed an high electron density region in Die- 
ate-induced cells of pmp47A, suggesting aggregation of 
some oleate-induced protein. While 9 or 10 separated per- 
oxisomes of small sizes (0.1-0.7 ~m) were observed in the 
wild-type cells (Fig. 6 G), there were only 3 or 4 in oleate- 
induced cells of prnp47A (Fig. 6 H). Thus, both methanol- 
and oleate-induced cells of pmp47A had a smaller number 
of peroxisomes than those of the wild-type strain. Previ- 
ously, we observed the decreased number of peroxisomes 
in pmp30A and suggested that Pmp30 is responsible for 
peroxisome proliferation (Sakai et al., 1995). Not only pro- 
tein translocation but also peroxisome proliferation seems 
to be inhibited in pmp47A. D-alanine-induced cells of both 
wild-type and pmp47za had a very few number of small 
peroxisomes (0.1-0.2 p~m) compared with methanol- and 
oleate-induced cells (data not shown). Areas of high elec- 
tron density were not observed in D-alanine- andglucose- 
grown cells (data not shown). 

DHAS Is Active in pmp47A Strains in the Context of 
Peroxisome-deficient Mutants 

Our experiments show that Pmp47 is necessary for the 
translocation and proper folding of DHAS. Then, is 
Pmp47 required for the folding per se of DHAS? In a pre- 
vious study, we derived two mutant C. boidinii strains defi- 
cient in peroxisomes, strain M6 and strain M13 (Sakai et al., 
1995). These strains, which were originally isolated as non- 
utilizers of multiple peroxisome-proliferating carbon sources, 
mislocalize several peroxisomal enzymes (AOD, CAT, 
D-amino acid oxidase, thiolase, and acyl-CoA oxidase) to 
the cytoplasm. Morphologically, these mutants lacked per- 
oxisomes, and areas of high electron density were seen in 
the cytoplasm and the nuclei of methanol-induced cells. 
Meanwhile, another C. boidinii peroxisome assembly mu- 
tant defective in the PTS1 receptor (PSR1A) had small 
methanol-induced peroxisomes (Sakai, Y., unpublished 
results). 

To explore the relationship between Pmp47 and these 
mutants, we first confirmed the mislocalization of DHAS 
in strains M13 and M6 by differential centrifugation and 
immunocytochemical experiments. Protoplast of methanol- 
induced cells were osmotically ruptured, and the cell de- 
bris was removed by low speed centrifugation at 500 g, as 
described above. The organellar pellet fraction (contain- 
ing mainly peroxisomes and mitochondria) was pelleted 
by centrifugation at 20,000 g. The supernatant fraction was 
considered as the cytoplasmic fraction. In the wild-type 
strain, 75% of the activity of DHAS, 90% of the activity of 
AOD, and 60% of the activity of peroxisomal catalase 
were found in the organellar pellet fraction (Fig. 7 A). 
These pellettable enzyme activities were released into the 

supernatant fraction by the addition of Triton X-100 be- 
fore the 20,000 g centrifugation, indicating that these en- 
zymes are enclosed in a membranous structure. In contrast 
to the wild-type strain, both strains M6 and M13 had only 
a trace of pellettable activities of AOD, CAT, and DHAS, 
with or without the addition of Triton X-100. DHAS mis- 
localization in strain M6 and M13 was also confirmed by 
immunoblot analysis (Fig. 7 A). Immuno-EM (Fig. 7, B 
and C) showed that AOD and DHAS were observed in 
both the cytoplasm and the nucleus of strain M13. A simi- 
lar labeling pattern was observed for strain M6 (data not 
shown). The mislocalization of AOD into the nucleus in 
pas mutants of P. pastoris and H. polymorpha have also 
been reported (van der Klei et al., 1991; McCollum et al., 
1993). Thus, both M6 and M13 that had been induced on 
methanol contained active and soluble forms of DHAS, 
AOD, and CAT (Fig. 4, A and B, right panel) in the cyto- 
plasm. Also, both M6 and M13 retained the ability to syn- 
thesize Pmp47 (Fig. 2 C). 

To determine whether Pmp47 was required for DHAS 
activity in these mutants, we disrupted PMP47 in these 
mutant strains, yielding M6-pmp47zi and M13-pmp47A 
(Fig. 2), and enzyme activities were followed after metha- 
nol induction. As shown in Fig. 4 A, DHAS activity, as 
well as AOD and CAT activities, were induced in both 
M6-pmp47zl and M13-pmp47A to comparable levels of 
their host strain. Also, soluble fractions of cell-flee ex- 
tracts from M6-pmp47A and M13-pmp47A yielded DHAS- 
reactive bands by immunoblot analysis, in contrast to 
prnp47zi (Fig. 4 B, right panel). Next, the localization of 
DHAS and AOD in these strains were examined. Differ- 
ential centrifugation experiments of M6-pmp47A and M13- 
prnp47zl gave the same results as their host strain (Fig. 7 
A). Also by immuno-EM, AOD and DHAS were mislo- 
calized in the cytoplasm and the nucleus of M13-pmp47A 
(Fig. 7, D and E), similar to the host strain M13 (Fig. 7, B 
and C). The same labeling patterns were also observed 
with strains M6 and M6-pmp47A (data not shown). From 
these experiments, we conclude that Prop47 itself was not 
essential for the folding of DHAS. 

Since Pmp47 belongs to a transporter family, we as- 
sumed that a compound normally transported by Pmp47 
into peroxisomes was necessary for the translocation and 
folding process of DHAS. Also, another factor necessary 
for this process, which is the direct acceptor of the solute, 
must exist inside peroxisomes. 

Induction of mRNA for Prop47, AOD, and DHAS 
during the Early Stage of Peroxisome Proliferation 

In the experiments described above, Pmp47 was found to 
be necessary for the transport and folding process of 
DHAS. Therefore, at the early stage of peroxisomal pro- 
liferation, induction of Pmp47 should precede or be con- 
comitant with the induction of DHAS, as was observed in 
C. boidinii ATCC32195 (Veenhuis and Goodman, 1990). 
First, we confirmed this observation in strain $2, where 
Pmp47 was encoded by a single gene. We also determined 
the mRNA concentrations for Pmp47, DHAS, and AOD 
to see whether the induction of Prop47 was regulated at 
the mRNA level. In detail, wild-type cells precultured on 
glucose were transferred to methanol MI medium, and at 
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Figure 6. Subcellular morphology and immunocytochemical experiments of (A-C and G) the wild-type and (D-F and H) pmp47A cells 
grown on (A-F) methanol plus glycerol for 10 h, and (G and H) oleate for 16 h. Overall morphology with (A, D, G, and H) KMnO4- 
fixed cells and immunocytochemical experiments using (B and E) anti-AOD and (C and F) anti-DHAS. Note the high electron density 
regions in the cytoplasm of (D) methanol- and (H) oleate-induced cells ofpmp47A. (E) Anti-AOD-antibodies reacted with the peroxi- 
some matrix in pmp47A. (F) On the other hand, anti-DHAS antibodies did not react with the peroxisome matrix, but with aggregates in 
the cytoplasm in pmp47A. P, peroxisome; N, nucleus; V, vacuole; M, mitoehondrion. Bar, 1 I~m. 

each time point, proteins and mRNA were extracted for 
immunoblot and Northern analysis, respectively. As shown 
in Fig. 8 A, Pmp47 protein concentrations reached 40% of 
the maximum as early as 2 h after induction. DHAS and 
A O D  were detected only after 4 h of induction. To com- 
pare these observations at mRNA levels, mRNA was ex- 
tracted and hybridized with radiolabeled PMP47-, AOD-, 
DHAS-, and C. boidinii actin-DNA (Fig. 8 B). The band 
representing Pmp47-mRNA was detectable in glucose- 
grown cells. Induction of this species was very rapid, 
reaching 50% of maximal value after 1 h and obtaining a 
plateau after 2 h. The mRNAs for DHAS and A O D  were 
detected only after 2 h. In contrast, the concentration of 
actin mRNA (as a control) was almost constant with the 
induction time (Fig, 8 B). From these results, we conclude 
that the induction of Pmp47 occurs before the matrix en- 
zymes and that this is regulated mainly at the mRNA level. 

Discussion 
During the gene disruption studies of a putative peroxiso- 
mal transporter Prop47 of C. boidinii, we found that 
pmp47A cells lost the activity of DHAS, an important en- 
zyme for methanol metabolism. This observed phenotype 
is analogous to the phenotype of cell lines from ALD pa- 

tients. In both cases, the loss of a matrix enzyme activity 
came from the loss of a peroxisomal transporter. 

Methanol-induced cells were effected more severely by 
PMP47-disruption than oleate- or D-alanine-induced cells. 
Therefore, in this study, we have focused on the function 
of Pmp47 in relation to the translocation and folding pro- 
cess of two major peroxisomal matrix enzymes, A O D  and 
DHAS. The carboxyl terminal sequence of A O D  and 
DHAS of C. boidinii has a PTSl-like motif of ARY (Sakai 
and Tani, 1992) and NHL (Sakai, Y.,unpublished data), 
respectively. In the case of H. polymorpha, these proteins 
had a carboxyl-terminal sequence of ARF and NKL, re- 
spectively (Hansen et al., 1992), and both tripeptide se- 
quences were shown to be sufficient for targeting nonper- 
oxisomal proteins to peroxisomes, indicating that they 
function as PTS1. In our experiments described here, de- 
pletion of Pmp47 in the wild-type cells resulted in the mis- 
localization of only DHAS and not AOD. Our results first 
suggested a diversity of the PTS1 pathway (or peroxisomal 
protein import), which originates from the difference of the 
solute requirement of these PTS1 proteins. Recent studies 
showed that some folded proteins are competent for per- 
oxisomal transport, and suggested that folding machiner- 
ies are not necessary within peroxisomes (Glover et al., 
1994; McNew and Goodman, 1994; Walton et al., 1995). 
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However, these reports do not exclude the existence of 
some other protein that is folded after its import into per- 
oxisomes. In our case with DHAS, the results suggest that 
DHAS folds within peroxisomes. If the folding of DHAS 
occurs in the cytoplasm, it is hard to explain the observed 
phenotypes of pmp47A strains. Another observation to 
support this idea is that a small but significant fraction of 
DHAS is resistant to extraction from peroxisomal mem- 
branes (Goodman et al., 1986; Sakai, Y., unpublished 
data). Under conditions where AOD, Prop20, and Pmp30 
were extracted (90 mM NaOH for 1 h), a considerable 
amount of DHAS (approximately equimolar to Pmp47) 
remained in the membrane fraction together with the inte- 
gral Pmp47. This biochemical result suggests that DHAS 
was trapped in the peroxisomal membrane as a hydropho- 
bic form. 

In pmp47A-cells, DHAS protein could not be folded 
properly and accumulated as aggregates in the cytoplasm. 
However, in peroxisome-deficient strains, M6 and M13 
and their pmp47A-derivatives, DHAS was located in the 
cytoplasm in a soluble form and DHAS aggregates were 
not observed. A soluble and active form of DHAS was 
also observed in the cytoplasm of the PTS1 receptor-defi- 
cient strains, P. pastoris pas8 (McCollum, et al., 1993) and 
C. boidinii psrlza (Sakai, Y., unpublished results). To ex- 
plain these observed phenotypes, we hypothesize a rela- 
tionship between the biochemical function of Prop47 and 

the translocation-folding process of DHAS (Fig. 9). At 
least four components are thought to be necessary for this 
process: DHAS, Pmp47, the unknown solute transported 
by Pmp47, and the peroxisomal factor necessary for 
DHAS folding (the peroxisomal chaperone model) or 
DHAS translocation (the translocation machinery model). 
According to the peroxisomal chaperone model, this is ex- 
plained as follows: although DHAS and the solute trans- 
ported by Pmp47 are both mislocalized in the cytoplasm of 
Pmp47A, the absence of peroxisomal chaperone in the cy- 
toplasm prohibits DHAS to fold properly. This problem 
might be amplified by the large concentration of DHAS in 
the cytoplasm. However, peroxisome-deficient strains M6 
and M13 allowed folding of DHAS in the cytoplasm prob- 
ably because the peroxisomal chaperone was also mislo- 
calized there. On the other hand, according to the translo- 
cation machinery model, the solute is primarily required 
for the translocation of DHAS through the peroxisomal 
membrane. For example, the solute may be necessary for 
releasing DHAS from the translocation machinery within 
the membrane to the matrix. In this case, some interaction 
between DHAS and the membrane component prevents 
DHAS from folding into an active state in pmp47A. Since 
inhibition by membrane components of the translocation 
machinery will not occur in peroxisome-deficient mutants, 
DHAS could fold into an active form. We think that the 
peroxisomal chaperone model seems to be more consis- 
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Figure 7. DHAS is active but mislocalized in peroxisome-deficient mutant strains (M6 and M13) and their prnp47za derivatives (M6- 
pmp47A and M13-pmp47A). (A) Activities of peroxisomal enzymes in the organellar pellet after differential centrifugation in the (open 
box) presence and (shadow box) absence of 0.5% Triton X-100. Cells were induced on methanol for 12-16 h to see the localization of 
peroxisomal enzymes. Total activities (U) in each experiment (the total activity in the pellet fraction plus the total activity in the super- 
natant fraction) were as follows: AOD; 0.225 for wild-type strain ( -  Triton X100) ( - T ) ,  0.208 for wild-type strain (+ Triton X100) 
(+ T), 0.118 for strain M6 ( -T) ,  0.126 for strain M6 (+T), 0.098 for strain M6-pmp47A ( -T) ,  0.105 for strain M6-pmp47A (+T), 0.176 
for strain M13 ( -T) ,  and 0.198 for strain M13 (+T), 0.190 for strain M13-pmp47A ( -T) ,  and 0.182 for strain M13-pmp47A (+T). Cata- 
lase; 8230 for wild-type strain ( -T) ,  7603 for wild-type strain (+T), 3550 for Strain M6 ( -T) ,  3920 for strain M6 (+T), 3602 for strain 
M6-prnp47zl ( -T) ,  3650 for strain M6-pmp47A (+T), 3720 for strain M13 ( -T) ,  4310 for strain M13 (+T), 3950 for strain M13-pmp47A 
( -T) ,  and 4050 for Strain M13-pmp47A (+T). DHAS; 0.512 for wild-type strain ( -T ) ,  0.437 for wild-type strain (+T), 0.125 for strain 
M6 ( -T) ,  0.110 for strain M6 (+T), 0.135 for strain M6-pmp47A ( -T) ,  0.133 for strain M6-prnp47A (+T), 0.618 for strain M13 ( -T) ,  
and 0.552 for strain M13 (+T), 0.550 for strain M13-pmp47A ( -T) ,  and 0.527 for strain M13-pmp47A (+T). DHAS activities were not 
detected in pellet fractions except the case for the wild-type strain ( -T) .  Equivalent portion of the (P) organellar pellet and (S) superna- 
tant fraction from 20,000 g centrifugation was loaded on SDS-PAGE and analyzed by immunoblot analysis using anti-DHAS. The ab- 
sence or presence of 0.5% Triton X-100 was shown by - or +, respectively. (B-E) Immunocytochemical experiments using (B and D) 
anti-DHAS and (C and E) anti-AOD antibodies and immunogold on ultrathin sections of strain M13 cells (B and C), and strain M13- 
prnp47A cells (D and E). In both peroxisome-deficient strains M13 and M13-pmp47A, anti-AOD or anti-DHAS-labeled gold particles re- 
acted with the cytoplasm and the nucleus, but not with mitochondria. Symbols are the same as Fig. 6. 

tent  with the present  and previous observations.  (a) In  the 
t ranslocat ion machinery model ,  D H A S  aggregation in 
pmp47A is caused by interact ion between D H A S  and 
membrane  component  of the t ranslocat ion machinery.  
However ,  such interact ion will not  occur when the PTS1 

mot i f  is de le ted  from D H A S .  Hansen et al. (1992) re- 
por ted  that H. polymorpha D H A S  deple ted  of its PTS1 
mot i f  aggregated in the cytoplasm. Whi le  dele t ion of the 
PTS1 t r ipept ide  might direct ly lead to misfolding, the inac- 
cessibility of  the peroxisomal  chaperone  to this molecule  is 
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the more  likely explanation. In peroxisome-deficient mu- 
tants, the peroxisomal chaperone will also be mislocalized 
in cytoplasm together with DHAS.  (b) In methanol-in- 
duced cells, a large amount  of both D H A S  and A O D  are 
produced in the cells ( > 5 0 %  of total soluble proteins). 

These amounts are sure to exceed the amount  of the trans- 
location machinery (e.g., PTS1 receptor), since the ma- 
chinery molecules are to be reused in other cycles of trans- 
location. As a result, some part of the produced D H A S  in 
p m p 4 7 A  will have to exist free from the translocation ma- 

Figure 8. Induction of Prop47, AOD, and 
DHAS, and their mRNAs during the early stage 
of peroxisomal induction. (A) Immunoblot anal- 
ysis. (B) Northern analysis. Proteins (3.0 Ixg) and 
mRNAs (1.0 t~g) extracted from each time point 
after transfer to methanol medium were loaded 
on to each lane. The bands from immunoblot 
analysis and Northern analysis were quantified 
by densitometric analysis as shown in right fig- 
ures. Squares, Pmp47 and its mRNA; closed cir- 
cles, AOD and its mRNA; triangles, DHAS and 
mRNA; open circles, actin mRNA. Northern fil- 
ters were labeled with radiolabeled DNA frag- 
ments from coding sequence of AOD1 (0.7-kb 
BgllI-Sal I fragment of pMOX33) (Sakai and 
Tani, 1992), PMP47 (1.6-kb HinclI-HindlIl frag- 
ment from pMP471) (this study), DASl (1.8-kb 
EcoRV-Bgl II fragment) (Sakai, Y., unpublished 
data), and C. boidinii ACT1 DNA fragment (0.6- 
kb ClaI-HindlII fragment; Komeda, T., unpub- 
lished data). 
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Figure 9. The diversity of peroxisomal protein import pathway 
(the PTS1 pathway) and a working hypothesis for the mechanism 
of DHAS import and folding. Both DHAS and AOD have a 
PTS1 motif sequence, NHL and ARY, respectively. However, 
only DHAS seems to demand a solute transported by Prop47 for 
showing its activity. The solute may be necessary for the folding 
of DHAS in peroxisomes (the peroxisomal chaperone model) or 
for the translocation of DHAS (the translocation machinery 
model). According to the peroxisomal chaperone model, in 
pmp47A cells, although both DHAS and the solute are present in 
the cytoplasm, DHAS could not fold into an active form because 
of the lack of peroxisomal factor. In peroxisome-deficient strains, 
all of these molecules are within the cytoplasm, and so DHAS 
could fold into an active form. According to the translocation 
model, DHAS could not fold into an active form in pmp47A be- 
cause of the inhibition of folding by the membrane component. 
Peroxisome-deficient strains had an enzyme activity since DHAS 
folding was not inhibited by the membrane component. 

chinery or the membrane. However, in the experiment, all 
DHAS protein existed as aggregates in pmp47A (Fig. 4 B). 
(c) If the folding of DHAS was inhibited by the transloca- 
tion machinery or peroxisomal membranes, the aggregates 
should contain a considerable amount of AOD, since 
A O D  is one of the major component of purified peroxiso- 
mal membranes. However, anti-AOD labeled gold parti- 
cles did not react with cytoplasmic aggregates. 

What does Prop47 directly transport? Since the protein 
family to which Pmp47 belongs is known to transport 
small solute compounds such as ADP/ATP, phosphate, 
tricarboxylate, 2-oxoglutarate/malate, etc., we favor the 
hypothesis that Pmp47 is an ATP/ADP exchanger, based 
on the following observations: (a) The highest sequence 
similarity of Pmp47 among the nearly 40 transporters in 
the family is with the mitochondrial ATP/ADP exchanger 
(Jank et al., 1993; Kuan and Saier, 1993). (b) The inverted 
topology of Pmp47 with respect to the mitochondrial 
ATP/ADP exchanger (McCammon et al., 1994) suggests 
an opposite direction of the exchange of substrates that is 
consistent with the function of the two organelles. ATP 
within mitochondria is required for translocation (Cyr et 
al., 1993), while there is a cytoplasmic ATP requirement 
for peroxisomal import (Imanaka et al., 1987; Wendland 
and Subramani, 1993). (c) Peroxisome proliferation may 
require energy in the form of ATP. (d) ATP is present in 

the cytoplasm and could enable DHAS-folding in the 
PTS1 receptor-deficient strain. The development of a di- 
rect transport assay with purified peroxisomes has been 
greatly hindered by the extreme fragility of peroxisomes. 
However, further analysis of pmp47A and reconstitution 
of DHAS activity in vitro (i.e., determination of factors in- 
volved in the folding of DHAS into an active form from 
aggregated DHAS) will give us information on the com- 
pound transported into peroxisomes by Pmp47. 

Our present studies have been limited to methanol-in- 
duced cells of C. boidinii. However, the function of Pmp47 
was not restricted to methanol-induced cells, since growth 
was retarded, electron-dense aggregates were seen, the 
number of peroxisomes was decreased, and unmetabo- 
lized oleate accumulated in oleate-induced pmp47A cells. 
As Pmp47 is related to oleate metabolism, homologues of 
Pmp47 may be present in other organisms, e.g., S. cerevi- 
siae and other higher organisms. From these observations, 
we speculated that the role of Pmp47 in vivo is a general 
function in peroxisomal transport and organeUe prolifera- 
tion rather than a specific function in methanol metabo- 
lism. This was also supported by the fact that a larger 
amount of Pmp47 was produced in oleate-induced cells 
than in methanol- and D-alanine-induced cells. 

In conclusion, our results show that the loss of an or- 
ganelle transporter (not a protein translocator) causes a 
severe defect in the translocation and folding of an or- 
ganelle matrix protein and in organelle proliferation. 
Transporters of this sort may not be restricted to peroxi- 
somes and may exist in other organelles. Although our un- 
derstanding of the role of transporters has been focused 
on metabolites and drug transport, a defect in an organel- 
lar transporter was shown to result directly in severe cellu- 
lar disorders. Revealing the molecular mechanism of th~se 
defects will help us to understand the molecular basis of 
genetic diseases such as ALD. 
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