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Objective. 'is study was designed to assess the effect of nonrigid connectors (NRCs) and their location in the success of tooth-
and-implant-supported fixed prostheses in the maxillary anterior region by finite element analysis (FEA).Materials and Methods.
'ree 3D FEA models were designed, presuming maxillary lateral incisor and canine to be extracted. Implant (replacing canine),
abutment, bone (spongious and cortical), central incisor (containing dentin, root cement, gutta-percha, and casting post and
core), periodontal ligament, and three three-unit cemented PFM prostheses (a rigid one and two nonrigid) were modeled. 'e
NRC was once in the tooth side and once in the implant side.'e prostheses were loaded twice: 250N to the incisal edges (0° to the
long axis) and 200N to the cingula (45° to the long axis). 'e von-Mises stress and vertical displacement were analyzed. Results.
Under both vertical and oblique loadings, the rigid model presented the highest stress. Under vertical loading, the NRC caused a
significant decrease in the applied stress to the prosthesis, bone, implant, and tooth. Locating the NRC in the tooth side decreased
the applied stress to the prosthesis and NRC. Under oblique loading, prosthesis and implant tolerated less stress in the presence of
an NRC. Placing the NRC in the tooth side resulted in the least stress in all of the components except for porcelain and patrix.
Vertical displacement of the tooth apex was approximately equal in all models. Conclusion. Using an NRC on the tooth side is the
most efficient method in reducing the applied stress to prosthesis, implant, tooth, and bone. 'e amount of intrusion is not
dependent on using an NRC or not.

1. Introduction

Implants have played an essential role in the edentulous
patients’ treatment since they were introduced by professor
Brånemark [1]. In recent years, as the number of residual
teeth has increased in the group of younger elderly, there has
been an increasing interest in using fixed partial prostheses
because of the higher quality of life they provide in com-
parison to removable dentures [2]. Both implant-supported
and tooth-and-implant-supported fixed prostheses can be
used for partially edentulous patients’ oral rehabilitation.

Due to the anatomic (e.g., insufficient available bone) or
economic issues or the loss of osseointegration, inserting a
second implant may be impossible, which leads to the lack of
enough abutments to support an implant-supported fixed
prosthesis [3–6]. So, a tooth-and-implant-supported fixed
prosthesis may be considered as a treatment plan option.
'is kind of prosthesis may also be used to supply more
support and stability for the prosthesis, to reduce the stress
concentration around the implant, or to support distraction
osteogenesis devices [6–8]. 'e periodontally compromised
teeth which need more ferrulization or posterior edentulism,
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in which cantilevers are not allowed, are the other tooth-
implant connection applications [3, 9]. It can also provide
more bite force in comparison to the natural teeth [2].

'e tooth-implant connection has always been a matter
of controversy, and to date, there has been little agreement
on whether tooth-and-implant can be connected and, if so,
with which method [10, 11]. 'e main reason for this debate
is the difference between the mobility of the natural teeth,
which can move 50–200 µm due to the presence of the
periodontal ligament around it, and the ankylosed implant,
which can only move 10 µm as a result of bone flexibility
[5, 8, 12]. Besides, the tooth and the implant have different
movement patterns. 'e tooth has a two-phase movement,
including a rapid movement and a linear one, while the
implant has only a linear movement [13]. As a result, the
prosthesis is considered to play the role of a cantilever and
apply more force to the implant, which may lead to the stress
convergence and bone loss around the implant neck, screw
loosening and screw fracture in screw-retained implants,
decementation of the prosthesis, or the abutment in cement-
retained implants and implant fracture [9–16].

Although some practitioners consider tooth extraction
as an alternative option to tooth-implant connection, Lindh
rejected the idea of tooth extraction [8, 17]. On the other
hand, using nonrigid connectors (NRC) or stress-absorbing
elements was suggested to balance the mobility difference
between the natural tooth and the implant [5, 10, 12, 18, 19].
However, the biggest concern about using nonrigid con-
nectors is the intrusion phenomenon which may be seen
[5, 6, 9, 13, 15, 17–20].

Some studies supported the idea of using rigid prostheses
to avoid the intrusion of natural teeth as a result of using NRCs
(e.g., Al-Omiri et al. [8], Gross and Laufer [10], Carillo et al.
[17], Chee and Jivraj [21], and Ting et al. [22]), while some
others argued that there is no significant difference between the
tooth intrusion in the rigid and nonrigid prostheses (Breeding
et al. [13], Garcia and Oesterle [23], and Ormianer et al. [24]).

Debate continues about the best strategies to connect the
tooth and the implant in a fixed partial prosthesis. Besides, no
research has been found that surveyed this subject in the
anterior region. 'is study aimed to clarify several aspects of
the tooth-and-implant-supported fixed partial prostheses in
the maxillary anterior region. 'e research data in this study
are drawn from three-dimensional finite element analysis
(FEA). FEA is a method used for biomechanical analyses in
the recent twenty years and makes us capable of analyzing
stress and strain distribution in our assumed situation [5, 25].
In this study, von-Mises stress and vertical displacement were
evaluated around different parts of prostheses with and
without NRCs. Besides, the effects of the NRC location were
also assessed. 'e null hypothesis was that nonrigid con-
nectors were not effective in reducing the applied stress to the
prosthesis and implant.

2. Materials and Methods

In order to assess the effect of nonrigid connectors (NRCs)
and their location in the success of tooth-and-implant-
supported fixed prostheses in the maxillary anterior region,

three three-dimensional (3D) finite element models were
designed for a partially edentulous maxilla. In this model,
maxillary lateral incisor and canine were assumed to be
extracted. 'e 3D models of the bone (both cortical and
spongiose), periodontal ligament, enamel, dentin, and root
cement were designed, using computed tomography (CT)
(Figure 1), which were imported into mimics software with
a 1mm space between the slices and were improved
manually by Mimics and 3matics softwares. Anterior
maxillary ridge height was assumed to be 23mm, cortical
bone thickness as 1.5mm, and the periodontal membrane
was considered to be 0.3mm thick. Casting post and core
and three 3-unit PFM bridges were also designed in
Mimics.

'e dental implant and the abutment were designed in
Solidworks 2020. A Straumann bone level tapered (BLT)
implant with a diameter of 4.1mm and a height of 10mm
and a cement-retained Straumann CARES titanium abut-
ment with a gingival height of 1.5mm were designed and
placed in the maxillary canine location. 'e implant was
assumed to be 100% osseo-integrated. 'e maxillary central
was considered to be endodontically treated, one-third of the
canal was filled with gutta-percha, and a casting post and
core was designed for the tooth with 2mm of the ferrule,
which was cemented by zinc phosphate cement. 'e tooth
was conventionally prepared for a PFM restoration. 'ree
different 3-unit PFM bridges were modeled for the designed
maxillary region. 'ey were made of Ni–Cr alloy and
porcelain and were cemented to the tooth-and-implant by
zinc phosphate cement. 'e first model was a rigid resto-
ration, and the next two models had slide-type NRCs. 'e
NRCwas once in themesial side of the pontic, and once in its
distal side, but in both models, the matrix part of the NRC
was contained in the pontic (Figure 2). A friction coefficient
with a value of 0.5 was considered between the matrix and
the patrix. 'e models were transformed into Geomagic
software before importing in Ansys software. 'e upper side
of the maxilla was fixed. Once, 250N static load was ver-
tically applied to the incisal edge of the tooth, the implant
crown, and the pontic. 'e next time, a 200N static load was
obliquely applied to the cingulum of the tooth, implant
crown, and pontic (45° to the long axis). 'ere were 10074
tetrahedral elements and 182373 nodes in the models. 'e
elasticity modulus and Poisson’s ratio of the pieces were
defined according to the literature (Table 1) [5]. 'e com-
ponents were considered to be homogenous, isotropic, and
linear.

'e models were analyzed by Ansys 2020 software, and
the applied stress to the components and the vertical
displacement of the natural teeth were measured and
converted into color graphics.

3. Results

(i) Model 1: a 3-unit PFM bridge in which the implant
is rigidly connected to the natural tooth.'e applied
stress to the different parts of the model under
vertical and oblique loadings are shown in
Figures 3(a) and 4(a).
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(ii) Model 2: a 3-unit PFM bridge in which an NRC is
located on the implant side.'e applied stress to the
different parts of the model under vertical and
oblique loadings is shown in Figures 3(b) and 4(b).

(iii) Model 3: a 3-unit PFM bridge in which an NRC is
located on the tooth side. 'e applied stress to
the different parts of the model under vertical
and oblique loadings is shown in Figures 3(c) and
4(c).

'e von-Mises stress and vertical displacement distri-
bution of the models under vertical and oblique loadings are
shown in Figures 3 and 4, subsequently.

'e maximum applied von-Mises stresses to different
components of the models are also given in Table 2.

'e natural tooth vertical displacement in all of the
models are shown in Figures 3 and 4, and maximum values
of it in the apical area under both vertical and oblique
loadings are given in Table 3.

Figure 1: CT scan.

Figure 2: 3D FEA models.

Table 1: Materials’ elasticity modulus (E) and Poisson’s ratio (v).

Material properties Elasticity modulus (E) (GPa) Poison proportion (v)
Dentin 18.6 0.31
Implant 110 0.33
Cortical bone 15 0.30
Ni–Cr alloy 218 0.33
Enamel 84 0.33
Periodontal membrane 2 0.45
Porcelain 69 0.28
Spongiose bone 1.5 0.30
Nonrigid attachment 110 0.33
Zinc phosphate cement 22.4 0.35
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: (a) Color spectrums manifest stress distribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious
bone and natural tooth (MPa) and the tooth vertical displacement (mm) under vertical loading in the first model. (b) Color spectrums
manifest stress distribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious bone, matrix, patrix and natural
tooth (MPa) and the tooth vertical displacement (mm) under vertical loading in the second model. (c) Color spectrums manifest stress
distribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious bone, matrix, patrix and natural tooth (MPa) and
the tooth vertical displacement (mm) under vertical loading in the third model.
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Figure 4: Continued.
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Figure 4: Continued.
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347.14 Max
62.769
10.732
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Figure 4: (a) Color spectrums depict stress distribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious bone
and natural tooth (MPa) and the tooth vertical displacement (mm) under oblique loading in the first model. (b) Color spectrums depict
stress distribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious bone, patrix, matrix and natural tooth
(MPa) and the tooth vertical displacement (mm) under oblique loading in the second model. (c) Color spectrums manifest stress dis-
tribution of the entire model, implant, porcelain, metal frame, cortical bone, spongious bone, matrix, patrix and natural tooth (MPa) and the
tooth vertical displacement (mm) under oblique loading in the third model.
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4. Discussion

'e present biomechanical study sets out with the aim of
assessing the importance of using NRCs and their location in
the success of the tooth-and-implant-supported fixed partial
prostheses. Since previous studies have shown contradictory
results and none of them have investigated this issue in the
anterior region, this study evaluated the issue in this area.

As given in Table 2, under vertical load to the crowns’
incisal edges, less stress was applied to the prosthesis (metal
frame and porcelain), bone (cortical and spongious), im-
plant, and natural tooth in the nonrigid models. 'e applied
stress to the implant, natural tooth, and bone (cortical and
spongious) were approximately equal in both of the models
containing an NRC. Still, when the NRCwas located near the
natural tooth, less stress was applied to the prosthesis (metal
frame and porcelain) and the NRC (matrix and patrix).

Additionally, under oblique loading to the crown’s
cingula, presence of the NRC caused a remarkable decrease
in the applied stress to the prosthesis (metal frame and
porcelain) and implant (Table 2). 'e von-Mises stress
values of the spongious bone and the natural tooth in the
rigid model were almost equal to the model with an NRC on
the implant side and slightly more than the model in which
the NRC was located in the tooth side. 'e maximum values
of stress in the cortical bone were seen in the second model
with an NRC attached to the implant, and the least one was
seen in the third model with an NRC attached to the tooth.
As the second and the third models were compared, all of the
third model components tolerated less stress except for the
porcelain and the patrix.

Applying stress to the natural tooth makes it intrude into
the bone, as a result of periodontal ligaments presence, but
the rigid ankylosed implant does not show this vertical
displacement [5]. 'is difference in the movement between
the tooth and implant may cause bending stress in the rigid
prostheses. 'e remarkable decrease in the applied stress to
the prosthesis, implant, and tooth is under both vertical and

oblique loadings in the nonrigid models, and the concen-
tration of stress in the NRC confirms the stress-absorbing
character of the slide-type NRC which compensates the
mobility difference between the implant and natural tooth.
'is result differs from previous studies that showed a re-
markable increase in the prosthesis stress, when an NRC was
used [19, 26]. 'e results also revealed that placing the NRC
in the mesial side of the pontic is more efficient in decreasing
the applied stress to the components under oblique loading.
'ese findings do not support the previous research studies,
which demonstrated that in the models, in which the NRC
was placed on the implant side, the least amount of stress was
observed [5, 12]. A possible explanation for this result might
be that the NRC makes the prosthesis role as two different
parts: a single crown on the central incisor and a cantilever
on the implant (canine). According to the position of the
central incisor in the maxillary arch, under oblique loading
to the cingula, it has more anterior displacement in com-
parison to the canine. As a result, more stress may be seen in
the prosthesis attached to the central incisor.

As given in Table 3, under vertical loading, the maximum
vertical displacement of the apical area is almost equal in
both of the nonrigid models and slightly less than the rigid
one. Under oblique loading, maximum amount of vertical
displacement of the apical area is nearly equal in all of the
models. 'is result is consistent with those of Breeding et al.
[13], Garcia and Oesterle [23], and Ormianer et al. [24] who
declared that the intrusion is seen regardless of using NRCs
or not.

'e applied stress to the natural tooth is significantly less
than the applied stress to the implant in all of the models,
which confirms the stress-absorbing character of the peri-
odontal ligament. On the other side, the stress distribution
around the natural tooth-and-implant decrease from cor-
onal to apical in all of the models, and the most amount of
stress is applied to the cervical region of the tooth and the
implant neck (Figures 3 and 4). 'is might be because of the
loading location. As we take distance from the loading lo-
cation, the stress values decrease. Another possible expla-
nation for the stress concentration in the cervical area may
be the difference in the elasticity modulus of the cortical and
spongious bones [5].

Tooth-and-implant-supported fixed prostheses are dif-
ficult to evaluate because of their different and complicated
elements, and their success rate is dependent on their
biomechanical aspects [5]. 'ese biomechanical aspects

Table 2: Maximum values of von-Mises stress (MPa) in the models with vertical incisal loading and oblique loading to the cingula.

Vertical loading

Porcelain Metal frame Cortical bone Spongious bone Implant Natural tooth Nonrigid
connector matrix

Nonrigid
connector patrix

Model 1 182.93 454.02 85.967 0.27093 444.85 5.9558 — —
Model 2 131.96 385.16 81.224 0.21543 355.1 4.7977 21.043 28.534
Model 3 122.16 300.21 81.09 0.21532 354.74 4.7865 6.5591 7.5934

Oblique loading
Model 1 267.94 664.97 109.51 0.35334 674.97 8.3127 — —
Model 2 177.6 337.46 129.98 0.35218 427.63 8.3473 12.64 18.021
Model 3 198.44 301.58 75.477 0.32619 367.14 7.8435 11.364 26.533

Table 3: Maximum values of natural tooth vertical displacement in
the apical area (mm).

Under vertical loading Under oblique loading
Model 1 0.08098 0.12422
Model 2 0.065112 0.12712
Model 3 0.065902 0.1234
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were analyzed by finite element analysis in this study. FEA
can predict stress distribution around the different parts of
the prosthesis under applied forces [25]. 'ese data must be
interpreted with caution because in vivo studies may show
different results because of the complicated conditions in the
oral environment. Although the ideal situation is when only
vertical forces are applied to the tooth-and-implant long
axis, the mastication forces are not only in one direction,
neither are static [5]. Simulation of all of the applied forces to
the prosthesis in the oral environment is not possible.
Biomechanical features of the prosthesis under a vertical
force to the tooth-and-implant long axis and an oblique one
were analyzed in this study.'e numerical values of this FEA
study do not have a mathematical value and may differ in
other models and under different forces.

Future studies on the current topic are therefore rec-
ommended. In future investigations, it may be possible to
compare cantilevers with the rigid and nonrigid prostheses,
using FEA. More in vivo studies on the subject are also
recommended.

5. Conclusion

'e present study was designed to determine the effect of
using NRCs and their location in the success of tooth-and-
implant-supported fixed prostheses treatment plan in the
maxillary anterior region. Within the limitations of the
study, the following conclusions can be drawn from it:

(1) Using NRCs in the tooth-and-implant-supported
fixed prostheses in the maxillary anterior region can
significantly decrease the applied stress to the
prosthesis, implant, natural tooth, and the bone

(2) Putting the NRC on the tooth side is more efficient
than placing it on the implant side in reducing stress
values in the tooth-and-implant-supported fixed
prostheses in the maxillary anterior region

(3) Maximum values of the natural tooth movement and
intrusion in the apical area are approximately equal
in the prostheses with and without NRCs. 'e NRC
location is not determinant either.

'ese findings provide further support for the hypoth-
esis that prostheses with NRCs may be better choices
compared to the prostheses in which the implant and the
tooth are rigidly connected [27].
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