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Abstract

Context: PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-
ASARM-motif to form a complex with a5b3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by
disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to
study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially
other bone-mineral disorders.

Design: Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice
(WT) and HYP-mice (PHEX mutation) for 4 weeks.

Results: SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained
high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23
and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 606 and corrected HYP-mice hyperglycemia and
hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but
not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and
WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in
HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE
mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice.
Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and
sclerostin in HYP and WT mice.

Conclusions: ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-a5b3-
integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy
metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may
have utility for treating familial rickets, osteoporosis, obesity and diabetes.
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Introduction

Studies carried out by the Centers for Disease Control (CDC)

confirm that approximately 70% of US adults were obese or

overweight from 2009 to 2010. Of these nearly 40% were classed

as overtly obese. Osteoporosis, a component of the metabolic

syndrome that is associated with dyslipidemia and obesity [1], is

also a major health issue for more than 44 million Americans. The

cost for osteoporosis and related fractures total $14 billion per

year. The social and financial cost to society is incalculable and

growing at an exponential rate. Several genome wide association

studies have confirmed MEPE as a major gene locus for bone

mineral density and osteoporosis [2–6]. Also, serum levels of

MEPE in normal humans correlates with serum phosphorus,

parathyroid hormone and bone mineral density (BMD) [7,8]

Recent research has begun to unravel the intricacies of the

molecular and physiological pathways linking energy metabolism

and bone-renal mineral metabolism. This novel approach has

exploited transgenic mice models and the new paradigm has been

heralded as integrative physiology [9]. Thus far, three key

physiological pathways have emerged. First, bone formation and

resorption are proposed to regulate blood glucose via a feedback

loop controlled by insulin and a bone matrix protein osteocalcin.

Second, this pathway is also impacted by an adipokine leptin that

can traverse the blood brain barrier and regulate biosynthesis of a

neurotransmitter serotonin. The serotonergic signaling in the

brainstem is proposed to affect sympathetic tone in the arcuate

nucleus (AN) and ventrolateral medial nucleus (VMN) of the

hypothalamus. Thus, AN serotonergic signaling increases appetite

and VMH serotonergic-signaling decreases ‘‘bone resorption’’ and
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Figure 1. Percentage difference serum chemistry comparisons between wild type (WT) and HYP mice and mice infused with vehicle
or SPR4-peptide. For absolute measurements in tabulated form see Table 1. Mice were sacrificed on day 28 and sera prepared from 16 hour
fasted mice housed in metabolic cages. Values are means of percentage difference and are significant (* = P,0.05) unless indicated by NS (unpaired t
test, confidence interval = 95%; see Table 2 for absolute numbers). Column headings represent: WT = wild type mice; HYP = X-linked
hypophosphatemic rickets mice; SPR4 = infused SPR4-peptide; Vehicle = Saline infused; NS = not significant; ND = not done; * = P,0.05.
Histogram bars to the left of zero on the axis indicate down regulation and to the right up regulation.
doi:10.1371/journal.pone.0097326.g001

Figure 2. Percentage difference urine chemistry comparisons between wild type (WT) and HYP mice and mice infused with vehicle
or SPR4-peptide. For absolute measurements in tabulated form see Table 2. Mice were sacrificed on day 28 and urine collected from 16 hour
fasted mice housed in metabolic cages. Values are means of percentage difference and are significant (* = P,0.05) unless indicated by NS (unpaired t
test confidence, interval = 95%; see also Table 3 for absolute numbers). Column headings represent; WT = wild type mice, HYP = X-linked
hypophosphatemic rickets mice, SPR4 = infused SPR4-peptide and Vehicle = Saline infused. Histogram bars to the left of zero on the axis indicate
down regulation and to the right up regulation. Index: FE Uric Acid = percentage change fractional Excretion of uric acid; creatinine clearance
= percentage change creatinine clearance; ASARM/Cre = percentage change in ASARM/creatinine; Ca/Cre = percentage change in calcium/
creatinine ratio; Fe Ca = percentage change in the fractional excretion of calcium; FEP = percentage change in the fractional excretion of
phosphate; NS = not significant; * = P,0.05. Histogram bars to the left of zero on the axis indicate down regulation and to the right up regulation.
doi:10.1371/journal.pone.0097326.g002
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increases ‘‘bone formation’’ via sympathetic activation of osteo-

blast b-adrenergic receptors. Third, additional complexity has

arisen with the discovery that circulating gut derived serotonin

whose biosynthesis is regulated by Lrp5 negatively regulates bone

formation. Serotonin does not cross the blood-brain barrier so the

two distinct central and peripheral pools of serotonin are proposed

to have opposite effects on bone turnover. Other neuropeptides

also play key roles. For example brain expressed Cocaine

Amphetamine Related Transcript (CART) is an inhibitor of bone

resorption. The evidence for these pathways is compelling and the

experimental science used to formulate the hypotheses elegant

[10–20]. However, recent equally compelling and scientifically

rigorous studies contradict all three pathways and so the models

remain controversial [21–34].

Two new broad areas of study that ostensibly have arisen

separately may provide answers to the contradictions and differing

observations. First, the unraveling of novel molecular mechanisms

regulating phosphate bone-mineral metabolism and the discovery

of key genes involved in several inherited bone mineral loss

disorders. A group of these genes are responsible for several

inherited diseases causing hypophosphatemic rickets [35]. These

diseases are unified further by dis-regulated FGF23 expression and

profound changes in energy metabolism. Second, the wealth of

phylogenetic information from differing species, evolutionary

paleoanthropological studies, reconstruction of ancient geological

landscapes, climates and associated flora and fauna. For example,

the discovery that two energy metabolism genes, uricase and L-

gulono lactone oxidase that are expressed in all mammals were

selectively knocked out in ancient primates in the Miocene and

Eocene epochs provides a clue [36]. Specifically, uric acid,

(degraded by uricase) and vitamin C (synthesized by L-gulono

lactone oxidase) have been shown to be closely associated with

osteoporosis, chronic kidney disease, cardiovascular-disease, met-

abolic syndrome, diabetes and energy-metabolism in man [37–

47].

In these studies we have used mice with a defect in the PHEX

gene (HYP-mice) [48]. These mice are murine homologs for X-

linked hypophosphatemic rickets (HYP) and are also hyperglyce-

mic, hypoinsulinemic with altered energy metabolism [49–53].

The physiological substrate for PHEX is free ASARM-peptide or

the ASARM-motif [54–66]. The ASARM-motif is an integral

peptide sequence motif that is present in a group of extracellular

matrix proteins called SIBLINGs. These SIBLINGs include

DMP1, MEPE, DSPP, Osteopontin, Statherin and BSP [67].

Mutations in DMP-1 are responsible for autosomal recessive

hypophosphatemic rickets (ARHR-1) a disease that has an

overlapping pathophysiology with HYP [68,69]. In both ARHR-

1 and HYP increased circulating ASARM-peptides contribute to

the mineralization defect and hyperosteoidosis [7,54,55,58–

66,70,71]. Compelling evidence indicates osteocyte membrane-

bound PHEX binds to DMP1-ASARM-motif to form a hetero-

complex with a5b3 integrin that suppresses FGF23 expression

[67]. In our previous studies we designed a small 4.2 kDa PHEX

related peptide (SPR4) that specifically binds to ASARM-peptide

and ASARM-motif to study PHEX, DMP1, integrin and

ASARM-peptide interactions and activities [56,66]. This peptide

(SPR4) has potent biological activity in vitro and is both a

competitive inhibitor of PHEX activity and also neutralizes

ASARM-peptide activity (inhibitor of mineralization) [56,66]. In

this study we used osmotic pumps to infuse SPR4-peptide into

HYP and WT male mice for 4 weeks. SPR4 partially corrected

HYP mice hypophosphatemia and increased 1.25(OH)2D3.

FGF23 however, remained abnormally high and although a trend

of serum PTH suppression was measured this was not significant.

WT-SPR4 mice developed hypophosphatemia and hypercalcemia

with increased PTH, FGF23 and 1.25(OH)2D3. Also, SPR4

increased GAPDH bone expression 606 fold and corrected HYP-

mice hyperglycemia and hypoinsulinemia. Vehicle treated HYP

mice (HYP-VE) serum uric acid levels (UA) were reduced

markedly relative to WT-VE mice. SPR4 infusion however,

suppressed uric-acid levels in WT-SPR4 mice but not HYP-SPR4

mice. Also, SPR4 induced major changes in leptin, adiponectin,

sympathetic tone and increased the fat mass/weight ratio for both

HYP and WT mice. Expression of perlipin-2 (Plin-2) a gene

involved in diet induced obesity and adipose inflammation was

reduced in HYP-VE and WT-SPR4 mice but increased in HYP-

SPR4 mice. Also, increased expression of two genes that inhibit

insulin signaling, Ectonucleotide Pyrophosphatase Phosphodies-

terase (ENPP1) and Osteotesticular Protein Tyrosine Phosphatase

(OST-PTP or ESP) occurred with control vehicle HYP mice

(HYP-VE) relative to control vehicle WT mice (WT-VE). In

contrast, SPR4 infusion reduced expression of both ENPP1 and

ESP in WT mice and suppressed ENPP1 in HYP mice. An

increase in FAM20C kinase expression, a bone ‘‘ASARM-motif’’

specific kinase responsible for a form of autosomal recessive

hypophosphatemic rickets (ARHR 2) [72–75] and sclerostin

occurred with HYP mice relative to WT mice. SPR4 treatment

of both HYP and WT mice markedly suppressed expression of

FAM20C and sclerostin (protein and mRNA). These SPR4-

peptide induced changes coincided with improved and corrected

energy metabolism with WT and HYP mice respectively. This

approach for the first time demonstrated the in vivo effects of the

competitive inhibition of PHEX (WT-mice) and the sequestration

of ASARM-peptide PHEX-substrate (HYP mice) in WT and HYP

mice respectively.

We conclude that PHEX signaling orchestrates energy metab-

olism and interactions between the ASARM-motif of DMP1 and

ASARM-peptides play a major role. These interactions in turn

likely involve PHEX, DMP1 and a5b3 integrin cell surface

regulation and signaling of FGF23. Chronic infusion of SPR4-

peptide over 4 weeks produced marked improvements in mineral

and energy metabolism in HYP mice. Specifically, SPR4

treatment induced a correction of the HYP mice hyperglycemia,

hypoinsulinemia, hypoleptinemia, adiponectinemia and increased

the percentage fat mass weight ratio with HYP and WT mice. This

was accompanied by a marked suppression ENPP1 and FAM20C

expression in SPR4 treated HYP and WT mice and ESP in WT

mice. Our experiments also show SPR4-peptide infusion induces

changes in Wild type mice that mimic aspects of the HYP mice

phenotype (suppressed FGF23, PTH with hypophosphatemia).

This pharmacologic bimodality likely reflects the dual nature and

kinetics of SPR4-peptide activity. Specifically: (1) the competitive

inhibition of PHEX-DMP1-integrin binding and commensurate

altered FGF23 expression, and (2) the direct sequestration of the

PHEX substrate, ASARM-peptide. The SPR4-peptide mediated

suppression of sclerostin and improvement in energy metabolism

may have therapeutic utility for osteoporosis, obesity and diabetes.

Results

Bone-renal biomarkers: vehicle treated HYP mice versus
WT mice and increased sclerostin

HYP mice were hypophosphatemic with significantly increased

circulating levels of FGF23, PTH, and ASARM-peptides. Of note,

HYP mice also displayed increased circulating sclerostin (SOST),

an inhibitor of the canonical Wnt/bCatenin pathway (Figures 1A,

2A and Tables 1, 2). Also consistent, an increase in renal and bone

sclerostin (SOST) mRNA expression occurred in HYP mice
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relative to wild type (Figures 3A, 4A and Tables 3, 4). Intriguingly,

as reported by other workers [76–79] HYP mice circulating

1.25(OH)2D3 remained inappropriately normal despite the hypo-

phosphatemia (Figure 1A and Table 1) but HYP mRNA

expression of renal 1-a hydroxylase was significantly increased

(Figure 3A and Table 3). Also, consistent with previous reports (but

counter intuitive to the increased FGF23), HYP renal mRNA

expression of 24 renal hydroxylase was not significantly different to

WT mice (Figure 3A and Table 3). Since FGF23 suppresses renal

1-a hydroxylase and induces 24 renal hydroxylase in WT mice,

HYP mice likely have a post translational defect in Vitamin D

metabolism [76–79]. The HYP mice hypophosphatemia was

associated with a renal phosphate leak as deduced from an

increased Fractional Excretion of Phosphate (FEP) (Figure 2A and

Table 2). Also, as reported previously, a decreased renal

expression of the Na+ dependent phosphate co transporters

(NPT2a and NPT2c) occurred (Figures 3A, 5 and Table 3).

Energy metabolism, HYP versus WT: hyperglycemia,
hypoinsulinemia, hypoleptinemia & hypouricemia

HYP mice were significantly hyperglycemic, hypoinsulinemic

and hypouricemic (uric acid) with reduced circulating leptin and

adiponectin levels. Also, circulating adrenaline a marker of

sympathetic tone was significantly reduced in HYP mice

(Figure 1A and Table 1). In contrast, circulating osteocalcin

(BGLAP) and bone mRNA expression showed no significant

difference between wild type and HYP mice (Figures 1A, 4A and

Tables 1, 4). Of note, a significant decrease in bone (-6X) and

renal (-2X) glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

mRNA expression occurred in HYP mice compared to WT mice

(Figures 3A, 4A and Tables 3, 4). Thus, this gene (GAPDH) was

assessed as unsuitable for use as a house keeping control with HYP

mice. This was confirmed by cross referencing with cyclophilin

and transferrin house-keeping genes (data not shown). Transferrin

was therefore used as a house keeping gene for all quantitative

RT/PCR experiments (see materials and methods). Since

GAPDH is a glycolytic enzyme the reduction in bone-renal

expression and hypoinsulinemia is consistent with the significant

hyperglycemia measured in HYP mice. A significant increase in

HYP vascular endothelial growth factor (VEGF) mRNA occurred

in kidney with no change in bone (Figures 3A, 4A and Tables 3, 4).

VEGF is a vasculogenic and angiogenic factor with abnormal

expression in diabetes [80,81]. A marked increased expression of

two genes recently associated with two newly characterized

inherited forms of autosomal hypophosphatemic rickets occurred

in HYP mice bone. Specifically, increased FAM20C a bone

ASARM-motif specific kinase) [72–75] and Ectonucleotide Pyro-

phosphatase Phosphodiesterase 1 (ENPP1) [82–84] occurred

(Figure 4A and Table 4). Increased bone expression of

osteotesticular protein tyrosine phosphatase (ESP or OST-PTP)

also occurred with HYP mice consistent with the observed

hyperglycemia and abnormal insulin/leptin levels (Figure 4A

and Table 4). Specifically, both ESP and ENPP1 mutations and

over expression are associated with abnormalities in glucose

metabolism, insulin sensitivity, obesity and diabetes [85–89].

Because of the association of uric acid with sugar metabolism,

serum and urine uric-acid levels were measured. A marked and

significant hypouricemia (2125%) occurred with HYP-VE mice

relative to WT-VE mice (Figure 1A and Table 1). This was

accompanied by an increased urinary fractional excretion of uric

acid (FE_UA) (Figure 2A and Table 2) that suggests an

abnormality in HYP-VE mice uric acid renal-handling. The

Figure 3. Whole kidney gene expression (mRNA) comparisons as measured by quantitative RT/PCR (qRT-PCR) for wild type (WT)
and HYP mice infused with vehicle or SPR4 peptide for 28 days. Column headings represent; WT = wild type mice, HYP = X-linked
hypophosphatemic rickets mice, SPR4 = infused SPR4-peptide and Vehicle = Saline infused. For gene analysis mRNA was prepared from whole
kidneys snap frozen in LN2 and homogenized. For qRT-PCR gene analysis fold differences in expression calculated by the Pfaffl method [163] were
statistically analyzed for significance using the One Sample t-test and the Wilcoxon Signed rank-test with theoretical means set to 1. Results are
significant (* = p,0.05) unless indicated by NS (see also Table 3 for detailed statistics). ND = Not done, NS = Not Significant Index: Cyclophilin =
cyclophilin; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase; SOST = Sclerostin; VEGF = Vascular Endothelial Growth factor; 24-
Hydroxylase = 1,25-hydroxyvitamin D3 24-hydroxylase (CYP24A1); 1-a-Hydroxylase = 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1);
NPT2c = Sodium-dependent phosphate co-transporter (Slc34a3); NPT2a = Sodium-dependent phosphate co-transporter (Slc34a1); NS = not
significant; * = P,0.05. Histogram bars to the left of zero on the axis indicate down regulation and to the right up regulation.
doi:10.1371/journal.pone.0097326.g003
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Figure 4. Bone (femur) gene expression (mRNA) comparisons as measured by quantitative RT/PCR (qRT-PCR) for wild type (WT)
and HYP mice infused with vehicle or SPR4-peptide for 28 days. Mice were sacrificed on day 28 and femurs collected for RNA purification as
described in methods. Column headings represent; WT = wild type mice, HYP = X-linked hypophosphatemic rickets mice, SPR4 = infused SPR4-
peptide and Vehicle = Saline infused. For gene analysis mRNA was prepared from bone marrow stromal cell ‘‘depleted’’ femurs as detailed in
methods. For qRT-PCR gene analysis fold differences in expression calculated by the Pfaffl method [163] were statistically analyzed for significance
using the One Sample t-test and the Wilcoxon Signed rank-test with theoretical means set to 1. Results are significant (* = p,0.05) unless indicated by
NS (see also Table 4 for detailed statistics). Index: FAM20C = Family with sequence similarity 20, member C Kinase also known as DMP4; ENPP1 =
Ectonucleotide Pyrophosphatase Phosphodiesterase 1; ESP = Osteotesticular protein tyrosine (OST-PTP); Plin-2 = Perlipin-2; phosphatase;
Cyclophilin = peptidylprolyl isomerase A (cyclophilin A); BGLAP = Osteocalcin or Bone Gamma-Carboxyglutamate (gla) protein; PHEX =
Phosphate-regulating gene with Homologies to Endopeptidases on the X chromosome; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase;
VEGF = Vascular Endothelial Growth factor; DMP1 = Dentin Matrix Protein 1; SOST = Sclerostin; MEPE = Matrix Extracellular
Phosphoglycoprotein with ASARM -motif; FGF23 = Fibroblast Growth Factor 23; NS = not significant; NA = not applicable, PHEX mutated in
HYP; * = P,0.05. Histogram bars to the left of zero on the axis indicate down regulation and to the right up regulation.
doi:10.1371/journal.pone.0097326.g004

Table 3. Whole kidney gene expression (mRNA) as measured by quantitative RT/PCR (qRT-PCR) for wild type and HYP mice
infused with vehicle or SPR4-peptide (see also Figure 3).

Kidney

mRNA WT versus HYP Vehicle versus SPR4

Vehicle WT HYP

Mean Std Error Mean Std Error Mean Std Error

NPT2a 22.9* 60.25 25.2* 60.65 22.9* 60.67

NPT2c 21.5* 60.06 22.2* 60.29 23.6* 61.07

1-a-Hydroxylase 2.4* 60.91 2.8* 60.54 2.7* 60.92

24-Hydroxylase NS _ 24.9* 61.97 NS _

VEGF 3.3* 60.71 22.9* 60.65 21.9* 60.16

SOST 3.2* 60.32 24.8* 61.1 24.7* 60.74

GAPDH 22.0* 60.28 2.4* 60.89 NS _

Cyclophilin NS _ NS _ NS _

Column headings represent; WT = wild type mice, HYP = X-linked hypophosphatemic rickets mice, SPR4 = infused SPR4-peptide and Vehicle = Saline infused. For
gene analysis mice were sacrificed on day 28 and mRNA prepared from whole kidneys as detailed in methods (N = 6). For qRT-PCR gene analysis fold differences in
expression calculated by the Pfaffl method [163] were statistically analyzed for significance using the One Sample t-test and the Wilcoxon Signed rank-test with
theoretical means set to 1. Results for all tests were considered to be significantly different at p,0.05 and are denoted with an asterisk (*) superscript. The fold changes
in expression and standard error of the means (SEM) of WT-VE versus HYP-VE, WT-VE versus WT-SPR4 and HYP-VE versus HYP-SPR4 are shown in columns 1, 2 and 3 as
indicated in the headings. ND = Not done, NS = Not Significant. Index: NPT2a = Sodium-dependent phosphate co-transporter (Slc34a1); NPT2c = Sodium-
dependent phosphate co-transporter (Slc34a3); 1-a-Hydroxylase = 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27B1); 24-Hydroxylase = 1,25-hydroxyvitamin
D3 24-hydroxylase (CYP24A1); VEGF = Vascular Endothelial Growth factor; SOST = Sclerostin; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase; Cyclophilin
= peptidylprolyl isomerase A (cyclophilin A).
doi:10.1371/journal.pone.0097326.t003
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hypouricemia is also consistent with the hyperglycemia and

observed changes in insulin, leptin and adiponectin. In summary,

HYP mice showed significant defects in glucose and fat

metabolism markers

SPR4-peptide alters serum/urine chemistry and
suppresses sclerostin (SOST) in WT & HYP mice

SPR4 peptide infusion induced hypophosphatemia in WT mice

(WT-SPR4) but in contrast caused a marked 27% increase in

serum phosphorus in HYP mice (HYP-SPR4) (Figure 1B; Table 1).

This was reflected by a 100% increase in WT-SPR4 mice

fractional excretion of phosphate (FEP) and a contrasting 38%

decrease in HYP-SPR4 mice FEP (Figure 2B; Table 2). FGF23

levels increased by 50% in WT mice infused with SPR4 (Figure 1B;

Table 1) and this was accompanied by a significant 1.6 fold

increase in bone FGF23 mRNA expression (Figure 4B; Table 4).

In contrast, HYP mice SPR4-treatment did not affect FGF23

mRNA expression (Figure 4B and Table 4) but circulating FGF23

was increased on a background of markedly elevated FGF23

(Figure 1B and Table 1). This was despite the SPR4 induced

improvement in HYP mice serum phosphorus. Intriguingly, a

similar FGF23 mRNA expression (decrease) and full length FGF23

protein expression (increase) occurs with HYP mice treated with

an inhibitor of a proprotein-convertase (SPC2) coactivator protein,

7B2 [77]. Of note, SPR4 treated HYP mice serum PTH was

decreased but this did not reach statistical significance (Figure 1B;

Table 1). In contrast to HYP-SPR4 treated mice, WT-SPR4 mice

exhibited a significant increase in serum PTH (114%) relative to

Table 4. Bone (femur) gene expression (mRNA) as measured by quantitative RT/PCR (qRT-PCR) for wild type and HYP mice infused
with vehicle or SPR4-peptide (see also Figure 4).

Bone

mRNA WT versus HYP Vehicle versus SPR4

Vehicle WT HYP

Mean Std Error Mean Std Error Mean Std Error

FGF23 107.7* 630.39 1.6* 60.25 NS _

MEPE 6.2* 61.41 23.5* 61.01 NS _

DMP1 5.2* 61.61 NS _ 24.4* 60.65

SOST 6.1* 61.80 23.6* 60.96 211.6* 62.33

VEGF NS _ NS _ NS _

GAPDH 26.2* 61.72 5.6* 61.02 59.7* 617.91

Osteocalcin NS _ 23.6* 60.76 NS _

Cyclophilin NS _ NS _ NS _

Plin-2 22.1* 60.33 21.8* 60.25 1.8* 60.22

ESP 2.7* 60.81 21.9* 60.17 NS _

FAM20C 2.9* 60.30 23.0* 60.68 22.9* 60.59

ENPP1 2.3* 60.36 22.0* 60.18 21.9* 60.20

Column headings represent; WT = wild type mice, HYP = X-linked hypophosphatemic rickets mice, SPR4 = infused SPR4-peptide and Vehicle = Saline infused. For
gene analysis mice were sacrificed on day 28 and mRNA prepared from bone marrow stromal cell depleted femurs as detailed in methods (N = 6). For qRT-PCR gene
analysis fold differences in expression calculated by the Pfaffl method [163] were statistically analyzed for significance using the One Sample t-test and the Wilcoxon
Signed rank-test with theoretical means set to 1. Results for all tests were considered to be significantly different at p,0.05 and are denoted with an asterisk (*)
superscript. The fold changes in expression and standard error of the means (SEM) of WT-VE versus HYP-VE, WT-VE versus WT-SPR4 and HYP-VE versus HYP-SPR4 are
shown in columns 1, 2 and 3 as indicated in the headings. ND = Not done, NS = Not Significant. Index: FGF23 = Fibroblast Growth Factor 23; MEPE = Matrix
Extracellular Phosphoglycoprotein with ASARM -motif; DMP1 = Dentin Matrix Protein 1; SOST = Sclerostin; VEGF = Vascular Endothelial Growth factor; GAPDH =
Glyceraldehyde 3-phosphate dehydrogenase; PHEX = Phosphate-regulating gene with Homologies to Endopeptidases on the X chromosome; Osteocalcin = Bone
gamma-carboxyglutamate (gla) protein; Cyclophilin = peptidylprolyl isomerase A (cyclophilin A); Plin-2 = Perlipin-2; ESP = Osteotesticular protein tyrosine
phosphatase (OST-PTP); FAM20C = Family with sequence similarity 20, member C Kinase also known as DMP4; ENPP1 = Ectonucleotide Pyrophosphatase
Phosphodiesterase 1.
doi:10.1371/journal.pone.0097326.t004

Figure 5. Immunohistochemistry of kidney sections confirm
changes in protein expression for Na dependent phosphate co-
transporter (NPT2A; Slc34a1). NPT2a protein-expression (purple-
stain) in renal cortex sections is markedly decreased in HYP mice
(compare photos 1 and 3). SPR4 peptide suppresses NPT2a expression
in WT mice (compare photos 1 and 2) but increases NPT2a expression in
HYP mice (compare photos 3 and 4). Staining is localized to proximal
convoluted tubules with little glomerular staining. Magnifications are
206 and are from representative sections (matched regions).
doi:10.1371/journal.pone.0097326.g005
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WT vehicle mice, (Figure 1B; Table 1). A marked and significant

suppression of circulating sclerostin (WT-SPR4 = 240% HYP-

SPR4 = 230%), bone mRNA expressed sclerostin (WT-SPR4

= 23.6; HYP-SPR4 = 211.6) and renal mRNA expressed

sclerostin (WT-SPR4 = 24.8; HYP-SPR4 = 24.7) occurred with

both WT and HYP mice treated with SPR4-peptide (Figures 1B,

3B & 4B and Tables 1, 3 and 4).

Corrected Energy metabolism (glucose, insulin,
osteocalcin, ENPP1 & FAM20C), SPR4 treated HYP mice

The significant and marked HYP-mice fasting hyperglycemia

and hypoinsulinemia were corrected by infusion with SPR4

peptide (Figure 1A & B; Table 1). Specifically, there were no

significant differences between HYP SPR4 treated mice and WT

vehicle mice with glucose and insulin serum metrics (Table 1).

SPR4 peptide induced a major and significant reduction (260%)

in WT type but not HYP serum leptin. Notably, a non-significant

trend towards an increase in serum leptin with HYP SPR4 treated

mice occurred (Figure 1B and Table 1). Indeed, vehicle and SPR4-

treated ‘‘HYP-mice’’ leptin serum levels remained dramatically

reduced (273%) compared to WT vehicle mice (Table 1).

Intriguingly circulating adiponectin levels showed the same

pattern with a significant reduction in SPR4 treated WT mice

but not SPR4 treated HYP mice (Table 1). Sympathetic tone as

represented by circulating adrenaline was significantly reduced in

WT mice treated with SPR4 (Figure 1B and Table 1). Circulating

and bone osteocalcin (BGLAP) levels of HYP and WT vehicle

mice were not significantly different. In contrast, SPR4 peptide

treatment induced a pronounced and significant increase (+48%)

in HYP mice circulating osteocalcin that was not reflected by

increased bone mRNA expression (Figures 1B, 4B and Tables 1,

4). Thus, more studies are required to determine whether the

transcription independent SPR4 induced changes in HYP mice

osteocalcin circulating levels are because of increased mRNA

stability, decreased proteolysis or changes in post translational

processing. Of note, the ELISA we used to measure circulating

osteocalcin detects both inactive ‘‘c-carboxylated’’ and active ‘‘c-

decarboxylated’’ forms. It is therefore possible that SPR4

Figure 6. SPR4-peptide induces a dramatic increase in fat mass/weight in HYP and WT mice. Dual Energy X-ray Absorptiometry (DEXA)
measurements using a Lunar PIXImus system were carried out as described previously and discussed in methods [140]. Measurements are shown for
mice prior to pump implantation and after sacrifice 28 days later. The temporal percentage change measurements are shown in Figure 7 and Table 5.
(A) Percentage Fat Mass (% FAT Mass). HYPVE %-Fat-Mass was significantly less than WTVE %-Fat-Mass at all time-points. SPR4 peptide
treatment significantly increased time-dependent gain in %-Fat-Mass for HYP mice (HYPSPR4) but not WT mice (WTSPR4) relative to respective
vehicle groups. Following 2-way ANOVA analysis, phenotypic variation (including SPR4-treatment) was highly significant accounting for 31.86% of the
total variance (F = 46.72, DFn = 3, Dfd = 32 and P,0.0001). Also, time-changes were highly significant accounting for 53.69% of the total variance
(F = 236.22, DFn = 1, Dfd = 32 and P,0.0001). The phenotype/time interaction was also significant accounting for 7.18% of the total variance (F = 10.52,
DFn = 3, Dfd = 32 and P,0.0001). (B) Total Weight (gm). HYPVE-mice weight was significantly less than WTVE-mice weight at all time-points. SPR4
peptide treatment significantly decreased time-dependent gain in weight for both HYP mice (HYPSPR4) and WT mice (WTSPR4) relative to respective
vehicle groups. Following 2-way ANOVA analysis, phenotypic variation (including SPR4-treatment) was highly significant accounting for 64.65% of the
total variance (F = 40.6, DFn = 3, Dfd = 32 and P,0.0001). Also, time-changes were highly significant accounting for 13.64% of the total variance
(F = 25.69, DFn = 1, Dfd = 32 and P,0.0001). The phenotype/time interaction was significant accounting for 4.73% of the total variance (F = 2.97,
DFn = 3, Dfd = 32 and P = 0.0463). (C) Ratio of Fat mass/Weight (% Ratio). No significant differences in fat-mass/weight ratios were observed
between groups at 0 weeks (baseline, prior to pump implantation). In contrast, SPR4 peptide treatment significantly increased time-dependent gain
in fat-Mass/weight ratio for both HYP mice (HYP-SPR4) and WT mice (WTSPR4) relative to respective vehicle groups. The gain in HYP-SPR4 fat-Mass/
weight ratio was more marked and significantly greater than the WT-SPR4 mice. Following 2-way ANOVA analysis, phenotypic variation (including
SPR4-treatment) was highly significant accounting for 30.60% of the total variance (F = 9.86, DFn = 3, Dfd = 32 and P,0.0001). Also, time-changes were
highly significant accounting for 17.14% of the total variance (F = 16.58, DFn = 1, Dfd = 32 and P = 0.0003). The phenotype/time interaction was
significant accounting for 19.17% of the total variance (F = 6.18, DFn = 3, Dfd = 32 and P = 0.002). Index: WTVE = wild type mice infused with vehicle
(0.9% physiological saline); HYPVE = X-linked hypophosphatemic rickets mice infused with vehicle (0.9% physiological saline); WTSPR4 = wild
type mice infused SPR4-peptide; HYPSPR4 = X-linked hypophosphatemic rickets mice infused SPR4-peptide.
doi:10.1371/journal.pone.0097326.g006
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treatment also induces a dynamic shift in the levels of active

unbound osteocalcin (c-decarboxylated) and inactive bound osteo-

calcin (c-carboxylated osteocalcin has high affinity for hydro-

xyapaptite). In contrast to HYP mice, SPR4 peptide induced a

major and significant reduction of both circulating osteocalcin and

mRNA osteocalcin (BGLAP) expression in wild type mice bone

(Figures 1B, 4B and Tables 1, 4). SPR4 treatment of both WT and

HYP mice caused a striking and significant increase in bone and

kidney GAPDH expression. Specifically, SPR4 treated mice

induced a significant 660 fold and 66 fold increases in GAPDH

bone expression for HYP and WT mice respectively (Figure 4B;

Table 4) and a 62.5 fold increase in WT kidney (Figure 3B;

Table 3). For both HYP and WT mice, SPR4 treatment

suppressed VEGF renal mRNA expression by 62 and 63 fold

respectively with no significant differences in bone VEGF

expression (Figures 3B, 4B and Tables 3, 4). SPR4 infusion also

reduced bone expression of both ENPP1 and ESP in WT mice

and suppressed ENPP1 in HYP mice (Figure 4B and Table 4). A

marked and significant reduced expression of bone FAM20C

mRNA occurred with both HYP and WT mice treated with

SPR4-peptide (Figure 4B and Table 4). Thus the abnormal

increased expression of FAM20C and ENPP1 observed in HYP-

VE mice relative to WT-VE mice was reversed by SPR4-

treatment.

SPR4 treatment induced a significant and marked decrease in

WT serum uric acid levels (Figure 1B and Table 1). This was

mirrored by an increase in the fractional excretion of uric acid

(Figure 2B and Table 2). Although SPR4 induced a marked and

significant change with WT-SPR4 mice uric acid levels, the

hypouricemia present in HYP-VE mice was not corrected or

exacerbated by SPR4 treatment (Figures 1A, 1B and Table 1).

Also of note, although SPR4 did not induce any measureable

effects on HYP mice hypouricemia (Figures 1B and Table 1) the

SPR4 treatment did significantly reduce HYP-mice fractional

excretion of uric acid (Figures 2B and Table 2).

Fat Mass (DEXA) vehicle treated: HYP mice have markedly
reduced fat mass and fat/mass ratios

A decrease in overall fat mass of HYP vehicle mice relative to

WT vehicle mice occurred at all time-points (Figure 6A). When

corrected for weight (Figure 6B), the HYP-VE mice fat-mass/

weight ratio was not significantly different to WT-VE mice at the

start or after 4 weeks (Figure 6C). This was contrasted by

significant decreases in time-dependent, dynamic measurements of

fat-mass, fat-mass/weight ratios and weight that occurred with

HYP vehicle mice compared to WT vehicle mice over 4 weeks

(Figure 7A and Table 5). Intriguingly, a significant reduction in

perilipin-2 (Plin-2) bone expression occurred with HYP-VE mice

(Figure 4A and Table 4). Plin-2 is expressed in multiple non-

adipose tissues and is thought to play a role in regulating lipid

storage properties. Since Plin-2 null mice are protected against diet

induced obesity[90], the decreased fat mass in HYP-VE mice is

consistent with the reduced expression of Plin-2. There were no

significant differences in feeding rates between any of the mice

groups in the study (data not shown).

Figure 7. Temporal changes in (Weight, fat mass and fat mass/weight ratio) as measured by Dual Energy X-ray Absorptiometry
(DEXA) for wild type and HYP mice infused with vehicle or SPR4-peptide for 28 days (See Figure 6 for static changes). The mean
percentage change over the 28 days for each metric was calculated and the percentage differences between the groups plotted as a histogram (see
also Table 5). Values are mean percentage differences and are significant (* = P,0.05) unless indicated by NS (unpaired t test confidence interval
= 95%). Column headings represent; WT = wild type mice, HYP = X-linked hypophosphatemic rickets mice, SPR4 = infused SPR4-peptide and
Vehicle = Saline infused. Histogram bars to the left of zero on the y-axis indicate down regulation and to the right up regulation. DEXA
measurements using a Lunar PIXImus system were carried out as described previously and discussed in methods [140]. Index: Weight (Wt) =
percentage difference in weight change over 4 weeks; Fat-Mass = percentage difference in total fat-mass change over 4 weeks; Fat/Wt Ratio =
percentage difference in total fat-mass/weight change over 4 weeks.
doi:10.1371/journal.pone.0097326.g007
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Fat Mass (DEXA): SPR4 infusion of HYP and Wild Type
mice increases the fat mass/weight ratio

As stated earlier, there were no significant differences in food

intake between all mice groups (data not shown). However, SPR4-

treatment significantly reduced weight gain in HYP and WT mice

treated with SPR4 (Figure 6B and 7B; Table 5). Notably, SPR4-

treatment induced a marked and significant increase in % Fat

Mass for HYP mice but not WT treated mice (Figure 6A). When

corrected for weight, SPR4 treatment induced a significant

increase in the ‘‘fat-mass/weight’’ ratio for both WT (WT-

SPR4) and HYP (HYP-SPR4) treated mice (Figure 6C). The

SPR4-peptide induced static changes were mirrored by significant

dynamic/temporal increases in fat -mass/weight over the 4 weeks

of infusion (Figure 7B; Table 5). Also, the induced static and

temporal increases were significantly greater with HYP-SPR4

mice compared to WT-SPR4 mice. Of note, a suppressed dynamic

and static fat-mass and fat-mass/weight ratio occurred with HYP-

VE mice compared to WT-VE mice and this was accompanied by

a marked suppression of bone Plin-2 gene-expression (Figures 4A,

6A, 6C, 7A and Tables 4 and 5). In contrast, SPR4-treatment had

an opposite effect on HYP-mice. Specifically, HYP-SPR4 mice

had a significant increase in Plin2 expression (Figure 4B and

Table 4) and an increase in static and dynamic % fat-mass/weight

(Figures 6A, 6C and 7B; Table 5). Remarkably, SPR4 treatment of

WT mice (WT-SPR4) reduced Plin2 expression mimicking the

HYP phenotype (Figure 4B and Table 5) but these mice also

exhibited a significant increase in static and dynamic % fat-mass/

weight ratio relative to WT-VE mice (Figures 6C and 7B; Table 5).

Since Plin-2 null mice are protected against diet induced obesity

[90], these changes indicate SPR4 may influence fat-mass by; (1)

inhibiting PHEX activity in WT mice and/or (2) sequestering and

neutralizing excess ASARM-peptides in PHEX defective HYP-

mice.

Discussion

Although phosphate levels are not the sole mediator of

mineralization defects in familial hypophosphatemic disorders it

is well documented that hypophosphatemia or systemic phosphate

status correlates with changes in glucose production, energy

metabolism and oxygen consumption [50,53,91–99]. More

recently, the familial hypophosphatemic rickets disorders all show

changes in glucose, insulin sensitivity and fat metabolism [50–

53,92–94,100–102]. Hypophosphatemia is also associated with

metabolic syndrome and because phosphate is involved in

carbohydrate metabolism low serum phosphate compromises

utilization of glucose, increases insulin resistance and induces

hyperinsulinemia [96,98,103]. Also, patients with primary hyper-

parathyroidism have impaired glucose-tolerance, hyperglycemia

and reduced insulin sensitivity [104]. Our studies and others show

HYP mice have increased serum PTH with hyperglycemia and

hypoinsulinemia [50–53,102]. Also, consistent with the HYP mice

hypoinsulinemia and hyperglycemia a complete loss of insulin with

hyperglycemia in diabetes type 1 patients (DM1) is associated with

a loss of bone mineral density [105]. Of relevance, a recent

microarray study showed major up-regulation of genes belonging

to the PPAR-c family (notably adiponectin, a marker of insulin

resistance [106]) and PHEX during mineralization of osteoblast

cultures over 27 days [107]. Adiponectin stimulates the prolifer-

ation, differentiation, and mineralization of osteoblasts via the

AdipoR1 and AMP kinase signaling pathways in autocrine and/or

paracrine fashions [108]. Thus the down regulation of adiponectin

in HYP-mice shown in this study may also contribute to the

abnormal bone phenotype. Moreover, there is an association of
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low serum phosphate levels with glucose intolerance, insulin

sensitivity and insulin secretion in non-diabetic healthy-subjects

[95] and a phosphate deplete diet impairs rat insulin secretion

(markedly reduced) by pancreatic islets ex vivo [109]. HYP mice

also have increased hepatic glucose-6-phosphatase activity [53]

and rats fed a phosphate deplete diet up-regulate expression and

activity of this enzyme [97,110]. Also, overexpression of glucose-6-

phosphatase in rats induces glucose intolerance, hyperglycemia

with changes in circulating free fatty acids and triglycerides [111].

Remarkably, targeted deletion of the renal proximal-tubule

insulin-receptor in mice promotes hyperglycemia, up regulation

of glucose 6 phosphatase and gluconeogenesis [112]. This is of

interest since the renal proximal tubule contains the Na-dependent

phosphate cotransporters (NPT2a and NPT2c) and hypophos-

phatemia negatively regulates insulin synthesis and sensitivity

[53,95,96,98,103,109,113,114]. Although the liver is traditionally

thought to be the major organ involved in glucose homeostasis the

kidney is now also well recognized as a major player [115–117].

There are also strong correlations with FGF23, obesity and insulin

resistance [118,119]. Indeed, cardiovascular disease (CVD) and

non-insulin-dependent diabetes mellitus (NIDDM) in obese

patients have been proposed to be directly caused by hypophos-

phatemia [113]. Specifically, low serum phosphate adversely

affects glucose metabolism resulting in hyperglycemia, with

increased risk of NIDDM, hypertension and increased risk of

stroke [113]. In obese individuals, a major role for phosphate in

regulatory thermogenesis and dysregulation of the basal metabolic

rate occurs [113,120]. Also, alterations in red cell glycolytic

intermediates and oxygen transport due to a striking increase in

red cell oxygen affinity occur in hypophosphatemic subjects [121].

These changes are accompanied by defective ATP synthesis and

reduced renal cortical ribonucleoside triphosphate pools

[122,123]. The alterations in oxygen-affinity and glucose-metab-

olism in hypophosphatemic subjects is due primarily to regulatory

abnormalities at the glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) step [121]. In line with this, defective ATP synthesis and

impaired thermoregulatory regulation with increased metabolic

rate and oxygen consumption also occurs with X-linked

hypophosphatemic rickets mice (HYP) [49,123]. Also, our study

shows that there is a major reduction in HYP renal and bone

GAPDH expression.

To investigate the underlying cause for the changes in glucose

metabolism in HYP mice we measured expression of key genes

known to play a bone-renal role in energy metabolism. The

control of glucose metabolism in mice involves regulation of

osteocalcin activity through a bimodal mechanism [85,124]: (1)

osteocalcin activity is regulated negatively by ESP, the gene for

osteotesticular protein tyrosine phosphatase (OST-PTP). OST-

PTP (ESP) dephosphorylates and inactivates the osteoblast insulin

receptor that results in increased c-carboxylation of osteocalcin

and reduced osteocalcin bioactivity [85]. This then leads to

hypoinsulinemia, reduced insulin sensitivity, hyperglycemia and

glucose intolerance [85] and; (2) bone resorption reduces

osteoclastic pH and increases acidity that then spontaneously

decarboxylates and activates osteocalcin [124]. This results in

increased insulin sensitivity and improved glucose tolerance.

Respective to mechanism 2 we do not have a serum assay that

differentiates between c-carboxylated or decarboxylated osteocal-

cin. However, although there were no changes in serum

osteocalcin with HYPVE mice we found decreased serum

osteocalcin with WT-SPR4 mice and increased serum osteocalcin

with HYP-SPR4 mice. With WT-SPR4 treated mice, a reduction

in serum uric acid, sympathetic tone, adiponectin, leptin and

serum phosphate with increased FGF23 and PTH occurred,

mimicking the changes in HYP-VE mice. However, in contrast to

HYPVE mice, WT-SPR4 mice had reduced osteocalcin and

sclerostin with markedly increased 1.25(OH)2D3 and hypercalce-

mia. Of note, 1.25(OH)2D3 is reported to inhibit the deleterious

effects of high glucose on osteoblasts through undercarboxylated

osteocalcin and insulin signaling [100,125]. Thus with WT mice

treated with SPR4-peptide (binds to and inactivates ASARM-

motif and peptide), the dramatic increase in 1.25(OH)2D3,

hypercalcemia and reduced sclerostin may have helped to

counteract the reduced osteocalcin resulting in normal glucose

and insulin levels. Also, from these findings it is possible that

despite decreased osteocalcin expression in WT-SPR4 mice, an

increase in decarboxylated, active-osteocalcin occurred. Indeed,

others have shown the ratio of undercarboxylated to total

osteocalcin is a more reliable marker of osteocalcin activity than

the total level of undercarboxylated osteocalcin [126]. In contrast,

with HYP-VE mice, osteocalcin levels remained unchanged and

the abnormal bone turnover likely contributed to an increase in

the c-carboxylated/decarboxylated osteocalcin ratio and thus

reduced active osteocalcin. In further support of this model, HYP-

VE mice showed increased ESP bone expression, the gene coding

for osteotesticular protein tyrosine phosphatase (OST-PTP). ESP

or OST-PTP phosphatase dephosphorylates and inactivates the

osteoblast insulin receptor and inhibits the metabolic function of

osteocalcin, resulting in reduced insulin secretion, hyperglycemia

and reduced glucose tolerance [124]. Also, HYP-VE bone

Ectonucleotide-Pyrophosphatase-Phosphodiesterase-1 (ENPP1)

was markedly increased relative to WT-VE mice. ENPP1

mutations cause autosomal recessive hypophosphatemic rickets

(ARHR2; MIM 173335) in mice and man [82,83,127–129] and

over expression induces hyperglycemia, insulin resistance and

diabetes [86–89,130–134]. Like ESP, ENPP1 is an inhibitor of

insulin signaling. It does this by interacting with the insulin

receptor (IR) and decreasing IR b-subunit auto-phosphorylation

[87,133,134]. Thus, our observed increased expression of both

Table 6. Table of primary antibodies used in the study:

Primers for gene expression by RT-qPCR

Antibody Reference/Company

rabbit anti-MEPE (ASARM) Bresler et al 2004 (8)

rabbit anti-MEPE (RGD) Bresler et al 2004 (8)

goat anti-NPT2a Santa Cruz Biotechnology, CA

rabbit anti-Transferrin Abcam International Canada

goat anti-GAPDH Santa Cruz Biotechnology, CA

doi:10.1371/journal.pone.0097326.t006
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these genes (ENPP1 and ESP) is consistent with the HYP mice

hyperglycemia and altered insulin sensitivity.

A marked and significant increased bone-expression of

FAM20C kinase occurred in HYP mice relative to WT-mice. Of

relevance, targeted deletion of FAM20C in mice results in

autosomal hypophosphatemic rickets (ARHR 2) [72–75]. Recent

research has shown this kinase specifically phosphorylates

ASARM-motifs derived from SIBLING proteins (MEPE,

DMP1, osteopontin etc.) [75,135]. This is consistent with previous

studies that show phosphorylation of the ASARM-motif is

important for specific interaction, binding and substrate hydrolysis

by PHEX, a Zn-metalloendopeptidase responsible for X-linked

hypophosphatemic rickets [55,56,59–61,66]. Notably, a lack of

phosphorylation of this motif would be expected to result in

impaired [(PHEX)-(DMP1-ASARM)-(a5b3-integrin)] binding and

thus increased FGF23 mRNA expression and circulating FGF23

protein (as observed in ARHR2 and also HYP mice). Recent

elegant studies suggest that phosphorylation of FGF23 by

FAM20C also occurs and this renders FGF23 resistant to O-

glycosylation [136]. This is important because O-glycosylation

protects FGF23 from furin mediated proteolytic cleavage and

increases half-life of circulating full-length FGF23 [137]. Consis-

tent with this, mutations in N-acetylgalactosaminyltransferase

(GalNac-T3) that cause impaired O-glycosylation results in

tumoral calcinosis and hyperphosphatemia due to reduced half-

life of FGF23 [137]. Thus, mutations in FAM20C (ARHR2)

leading to reduced FGF23 phosphorylation and thereby increased

O-glycosylation may also play a role in maintaining increased

levels of furin resistant full-length active FGF23. In overview,

phosphorylation of ASARM by FAM20C is likely responsible for

the observed reduced expression and protein production of

FGF23, also, FAM20C phosphorylation of FGF23 is likely

responsible for the reduced stability and half-life of FGF23. As

mentioned earlier, in our HYP mice we observed over expression

of FAM20C. This suggests an attempted FAM20C feedback

mechanism in PHEX defective HYP-mice designed to correct the

massively increased expression and production of FGF23.

Unfortunately, the vastly increased FGF23 production in HYP

mice (Wild Type mice; 50 pg/mL and HYP mice; 5000 pg/mL)

clearly overwhelms the inhibitory effects (i.e. reduced half-life of

FGF23) induced by the increased HYP-mice FAM20C levels. Of

interest, infusion of SPR4-peptide in both WT and HYP mice

results in a marked suppression of bone FAM20C kinase. Since

these SPR4-treated mice have improved energy metabolism this

suggests a possible FAM20C, ATP, phosphate regulation and

mineral metabolism nexus.

As discussed earlier, HYP mice have increased oxygen

consumption and metabolic rate consistent with a defect in

aerobic metabolism [49]. The increased oxygen consumption is

not associated with abnormal thyroid hormone T4 levels, altered

body weight or surface to weight ratios. Also, the altered oxygen

consumption is reportedly independent of the hypophosphatemia

[49]. Strikingly, HYP mice have a marked increase in cardiac

output (blood flow) to liver, muscle and bone. Of direct relevance,

oxygen tension is an important mediator of the transformation of

osteoblasts to osteocytes [138]. Osteocytes are predominantly

exposed to low partial pressures of oxygen (pO2) levels within the

embedded lacuno-canalicular complex of bone [139]. A recent

study used an osteocyte cell line MC3T3-E1 to investigate the

effects of hypoxia in cell culture and showed major differences in

the expression of osteocyte expressed proteins DMP1, MEPE,

FGF23 and Cx43 [138]. Also, changes in osteocalcin and alkaline

phosphatase occurred under hypoxic conditions and this positively

influenced osteoblast to osteocyte transformation [138]. Thus, the

increased blood flow, increased oxygen-uptake and metabolism

may play a key role in the bone-mineralization and energy

metabolism abnormalities in HYP-mice. Of direct relevance, our

earlier studies using BaSO4 perfusion coupled with mCT showed

Table 7. Table of primers used for quantitative RT-PCR (qRT-PCR).

Primers for gene expression by RT-qPCR

Gene Forward Reverse

Esp 5’-GACTCTCAGAAGATTCACAGTTGC-3’ 5’-AAAGCCCAGGCTCAGGTT-3’

Phex 5’-TGCCAGAGAACAAGTGCAAA-3’ 5’-CTAATGGCACCATTGACCCTA-3’

Vegf 5’-AAAAACGAAAGCGCAAGAAA-3’ 5’-TTTCTCCGCTCTGAACAAGG-3’

Dmp1 5’-GGTTTTGACCTTGTGGGAAA-3’ 5’-TTGGGATGCGATTCCTCTAC-3’

FGF23 5’-ATCTCCACGGCAACATTTTT-3’ 5’-GTCCACTGGCGGAACTTG-3’

Plin2 5’-CTCCACTCCACTGTCCACCT-3’ 5’-GCTTATCCTGAGCACCCTGA-3’

Bglap (osteocalcin) 5’-AGACTCCGGCGCTACCTT-3’ 5’-CTCGTCACAAGCAGGGTTAAG-3’

Gapdh 5’-TGTCAAGCTCATTTCCTGGTATGA-3’ 5’-CTTACTCCTTGGAGGCCATGTAG-3’

Sost (Sclerostin) 5’-TCCTGAGAACAACCAGACCA-3’ 5’-GCAGCTGTACTCGGACACATC-3’

Mepe 5’-GATGCAGGCTGTGTCTGTTG-3’ 5’-TGTCTTCATTCGGCATTGG-3

Cyclophilin 5’-CAGACGCCACTGTCGCTTT-3’ 5’-TGTCTTTGGAACTTTGTCTGCAA-3’

24-hydroxylase 5’-AACTGTACGCTGCTGTCACG-3’ 5’-AATCCACATCAAGCTGTTTGC-3’

1 a-hydroxylase 5’-AGTGGGGAATGTGACAGAGC-3’ 5’-GGAGAGCGTATTGGATACCG-3’

NPT2c 5’-CAGCCCTGCAGACATGTTAAT-3 5’-GCACCAGGTACCACAGCAG-3’

NPT2a 5-GATTTGGTGTCACCCAGACA-3’ 5’-ATGGCCTCTACCCTGGACAT-3’

Transferrin 5’-GACTCCGAACAACCTGAAGC-3’ 5’-GCGTAGTAGTAGGTCTGTGGATGTT-3’

FAM20C 5’-TGAACAGCGACATCAGGTTT-3’ 5’-CGCCTTCAGCACCTTCAT-3’

ENPP1 5’-CGGACGCTATGATTCCTTAGA-3’ 5’-AGCACAATGAAGAAGTGAGTCG-3’

doi:10.1371/journal.pone.0097326.t007
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altered vasculature in MEPE transgenic mice[140]. Specifically,

increased blood vessel number occurred in the kidneys and bones

that was accompanied by increased expression of VEGF [140].

The MEPE-tgn mice like HYP mice have increased circulating

and urinary ASARM-epitopes as well as MEPE expression

[7,54,64,140,141].

Since GAPDH and defective ATP synthesis are implicated in

the abnormal an/aerobic and glucose metabolism found in

hypophosphatemia [49,121–123], we measured expression of

glyceraldehyd-3-phosphate dehydrogenase (GAPDH) in bone

and kidney. GAPDH is a key enzyme of the glycolytic pathway

and sits at the portal of the first and second stages of glucose

catabolism. The first stage of glycolysis consumes 2 molecules of

ATP and is thus energy expensive. The second stage generates 4

molecules of ATP, a net energy gain of 2 molecules of ATP. Of

relevance, insulin tightly regulates GAPDH activity and the

GAPDH gene contains a positive insulin response element (IRE)

[142,143]. Consistent with the reduced insulin, a major suppres-

sion of GAPDH occurs in bone and kidneys of HYP-VE mice.

The GAPDH gene is responsible for the conversion of glyceral-

dehyde-3-PO4 (G3P) to 3-phosphoglyceroyl phosphate (1,3-BPG),

the final step of stage 1 of glycolysis (energy expensive stage). As

discussed, stage 2 of glycolysis begins by the conversion of 1,3-BPG

to 3-phosphoglycerate and generates 2 molecules of ATP and this

in turn leads to the generation of another 2 molecules of ATP

downstream (a net gain of 2 ATPs). The suppression of GAPDH is

therefore expected to ‘‘bottleneck’’ stage 1 of glycolysis and reduce

flux through stage 2. This in turn will negatively impact the

generation of ATP, NADH and acetyl-CoA, the terminal

intermediate of glycolysis. Acetyl-CoA links glycolysis to the

tricarboxylic acid cycle (TCA) and so a reduction of this

intermediate will reduce further the availability of NADH for

mitochondrial oxidative-phosphorylation. Thus, suppressed

GAPDH activity in the HYP-VE mice is expected to severely

compromise the efficiency of glucose catabolism via glycolysis,

TCA and oxidative phosphorylation.

Our experiments provide compelling evidence for how the

above changes in HYP-mice induce a metabolic adaptive response

that compensates for the impaired anaerobic glucose catabolism.

Specifically, the TCA cycle is fed not only by glucose breakdown

(glycolysis) but also by fatty acid degradation and amino acid

catabolism. Also to be considered is the redirection of glyceral-

dehyde-3-PO4 degradation to the pentose phosphate pathway

(PPP) and purine degradation that in turn impacts uric acid

production. Of relevance, the PPP pathway is reportedly severely

impaired in HYP mice[50,123] with reduced ribonucleoside

triphosphate pools [123]. Also, increased gluconeogenesis occurs

in HYP-mice bone, kidney and liver [50,51,53,102,144]. Notably

a key gluconeogenic enzyme glucose-6-phosphatase is up regulated

in livers of HYP-mice resulting in hyperglycemia [53] and as

discussed our studies show down regulation of GAPDH a key

glycolytic enzyme. The fact that the suppressed PPP pathway and

the increased gluconeogenesis are evident in vivo and in vitro (bone

and kidney cell cultures) suggests intrinsic defects such as increased

acidic ASARM-peptides may play a role. In support of this the

substrate profile for the increased HYP glucose production is

similar to that described for the stimulatory effects of cAMP [145]

and acidic pH [52,146]. Also, the HYP-mice hypoinsulinemia

measured by us and others is consistent with the observed

hyperglycemia and increased gluconeogenesis particularly given

the regulatory link with hypophosphatemia and insulin secretion

and sensitivity [53,95,96,98,103,109,113]. Of note, a recent paper

reported a targeted deletion of the renal proximal-tubule insulin-

receptor in mice promoted hyperglycemia, up regulation of

glucose 6 phosphatase and gluconeogenesis [112]. Collectively,

this pattern is consistent with the stimulatory effects of acidic pH

[146] and HYP mice osteoblasts have decreased pH and increased

gluconeogenesis [52,53]. Indeed, the increased acidic ASARM-

peptide levels in HYP mice kidney, bone, teeth, urine and

circulation [7,54,55,58,59,62,64,66,70,71,140,141,147,148] likely

contributes to the lowered pH and thus plays a major pathophys-

iological role.

The marked suppression of GAPDH expression in HYP bone

and kidney (this study) with a suppressed Pentose Phosphate

Pathway (PPP) [50,123] is intriguing. Specifically, inactivation of

GAPDH by oxidants is reported to induce a temporal re-routing of

metabolic flux from glycolysis to the PPP pathway [149,150]. The

reduction in HYP mice PPP activity would be expected to

decrease the available reduced-NADPH for fatty acid synthesis

and also for cytochrome P450 hydroxylases. The latter is

consistent with the reduced HYP-VE fat mass and the former is

consistent with suppressed HYP-VE mice NADPH-dependent 1

a-hydroxylase activity and thus 1.25(OH)2D3 synthesis. As

discussed earlier, we and others show an increased 1 a hydroxylase

mRNA expression but reduced enzyme activity occurs with HYP

mice [76–79]. This is consistent with ASARM mediated poisoning

of 1 a hydroxylase enzyme activity with PPP suppression of

NADPH production (1 a hydroxylase enzyme cofactor). Detox-

ification of reactive oxygen intermediates (ROS) would also be

affected by the reduced NADPH availability leading to alterations

in fatty acid metabolism. Specifically, NADPH is needed by

several antioxidant-systems including glutaredoxin and thiore-

doxin as well as being essential for the recycling of glutathione,

fatty acid synthesis, steroid synthesis (vitamin D metabolic

enzymes; hydroxylases). Also, NADPH directly supplies electrons

for the removal of superoxide via hydrogen peroxide and

glutathione peroxidase.

The static and dynamic/temporal percentage change in fat-

mass of HYP-VE mice as discussed earlier was significantly and

markedly suppressed relative to WT-VE mice (Figures 6 and 7). In

contrast, although no significant fat-mass differences in SPR4-

treated WT-mice (WT-SPR4) relative to WT-VE mice occurred

(static and dynamic), a significant increase in the fat-mass/weight

ratio of WT-SPR4 mice did occur (static and dynamic). This

contrasted with HYP-SPR4 mice relative to HYP-VE mice; these

mice (HYP-SPR4) exhibited a marked and significant increase

both in static and temporal fat-mass change over the 28 day

treatment. These observations suggest a role for ASARM-peptides

in mediating an abnormal and reduced fat deposition in HYP-

mice. Of note, no significant differences in food uptake were

observed between the WT-mice, HYP-mice and SPR4-treated

mice of both groups (data not shown). Consistent with the

reduction in HYP-VE dynamic fat-mass, reduced levels of

Perilipin-2 (PLIN2) bone expression occurred with HYP-VE mice

and WT-SPR4 mice. Furthermore, the temporal increase in

dynamic fat-mass that occurred with HYP-SPR4 treated mice

relative to HYP-VE mice was also accompanied by increased

PLIN2 gene bone-expression. PLIN2 null-mice are reportedly

protected against diet-induced obesity, adipose inflammation and

fatty liver disease [90]. Missense mutations in humans affects

lipolysis and is associated with reduced triglyceride (TAG)

concentrations [151]. Increased expression of PLIN2 promotes

cellular lipid accumulation in humans and mice [152,153]. Also,

two pathways for production of glycerol phosphate occur in liver

and one in adipose tissue. Glycerol, in the form of glycerol

phosphate is the initial acceptor of fatty acids in triacylglycerol

(TAG) synthesis. TAGs are the major energy reserve of the body

and are stored within adipocytes as coalesced micelles. In adipose
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tissue, glycerol phosphate is synthesized from the glycolytic

intermediate dihydroxyacetone phosphate via NADH reduction

and the enzyme glycerol phosphate dehydrogenase. In the liver,

the same biosynthetic pathway occurs plus an additional route that

does not occur in adipose tissue. Specifically, this second pathway

involves the direct phosphorylation of glycerol using both ATP

and glycerol kinase. Of relevance, adipocytes can only take up

glucose in the presence of insulin. Therefore, the observed reduced

fat mass (and implied reduced TAG) in HYP mice is consistent

with the hypoinsulinemia, suppressed GAPDH (key glycolysis

enzyme) and reported reduced ATP. Furthermore, the low

circulating levels of insulin in the HYP-VE mice would also pre-

dispose to an increased active adipocyte hormone-sensitive lipase

(HSL), the enzyme responsible for release of fatty acids from TAG.

However, HYP-VE circulating epinephrine levels are also reduced

and in combination with reduced ATP this would predispose to

reduced cAMP-dependent protein kinase activation of HSL. Thus,

in combination, the reduced fat mass in HYP-VE mice is

consistent with the altered metabolic and hormonal biochemistry

that induces a reduced glycerol synthesis and altered fatty acid

release from TAG. The insulin, glucose, leptin and epinephrine

levels are completely corrected with HYP-SPR4 treated mice in

line with the increased fat mass and PLIN2 expression. Since WT

SPR4 treatment (PHEX inhibition) duplicates the changes found

with HYP-mice, the SPR4 mediated corrections in HYP-VE mice

(PHEX defective) are likely due to SPR4 sequestration of excess

ASARM-peptides.

ATP depletion due to dietary hypophosphatemia induces AMP

accumulation that is eventually degraded to uric acid that in mice

is degraded further to allantoin by uricase (primates including

humans lack functional uricase) [150]. HYP-mice however are

hypouricemic and hypophosphatemic. Of note, we measured a

major increase in the fractional excretion of uric acid and this may

have been responsible for the net reduction in circulating uric acid.

Also, since hyperinsulinemia has been shown to be associated with

impaired renal UA clearance [154,155] the suppressed HYP

insulin levels is consistent with the HYP hypouricemia we

observed. Furthermore, leptin is reported to positively correlate

with serum uric acid levels and is a prime regulator of uric acid

concentrations [156–158]. Thus, the hypoleptinemia we and

others measured in HYP mice is also consistent with the HYP-

mice suppressed uric acid levels. Our data also shows a marked

reduction in HYP-mice fat mass that is independent of food intake.

Since fatty acid (triglycerides) production and obesity are

associated with the de novo synthesis of purine and accelerated

UA production [40,159–161] the low fat mass HYP-phenotype is

congruent with the observed hypouricemia. Also, uric acid levels

are reported to have a positive correlation with bone health and

thus the HYP-mice hypouricemia is concordant with the impaired

bone phenotype [37–39]. The dynamic increase in fat mass and

corrected insulin, leptin and glucose in HYP mice treated with

SPR4-peptide with accompanying reduced fractional excretion of

uric acid is consistent with a role for ASARM-peptides. Of note,

the fact that SPR4-peptide induces a marked suppression in uric

acid levels in WT-VE mice is also of clinical interest given the well

documented positive association for increased risk of heart disease,

hypertension, kidney disease, metabolic syndrome, diabetes and

adverse outcomes in these patients [40]. This effect is likely

mediated through SPR4-peptide inhibition of WT PHEX activity.

Our study provides compelling support for a PHEX-DMP1-

Integrin pathway that regulates FGF23 production and bone-

energy mineral metabolism. The differential effect on select target

genes between HYP-vehicle mice (HYP-VE) and Wild-type or

HYP-Mice mice treated with SPR4-peptide (WT-SPR4 and HYP-

SPR4) provided a unique opportunity to illustrate the bimodal

nature of SPR4-peptide activity. Specifically SPR4-peptide is

proposed to: (1) competitively inhibit PHEX activity in WT mice

by binding to DMP1-ASARM motif and thus mimic key

phenotypic changes seen in HYP-mice, (2) SPR4 enhances PHEX

activity in WT-mice by binding to an endogenous inhibitor of

PHEX, ASARM-peptide, (3) SPR4 suppresses the pathologic

effects of increased ASARM-peptide levels that occur in HYP-

mice by binding to free ASARM-peptide. Identical changes in

serum uric-acid, sympathetic tone, adiponectin, leptin, serum

phosphate, FGF23 and PTH occur with both HYP vehicle mice

(HYP-VE) and WT mice infused with SPR4-peptide (WT-SPR4).

This suggests a direct or indirect inhibition of PHEX by SPR4 is

responsible for these alterations. Treatment of HYP-mice with

SPR4 peptide resulted in striking beneficial changes in serum

glucose, insulin, leptin, osteocalcin, sclerostin, fat mass,

1.25(OH)2D3, and calcium with a partial correction of the

hypophosphatemia. Also, HYP-SPR4 mice showed a correction

in uric acid renal handling, adiponectin and PTH. This was

accompanied by markedly suppressed ENPP1 and FAM20C

expression (both increased in HYP-VE mice). Since HYP-mice do

not have functional PHEX, SPR4 mediated sequestration and

neutralization of ASARM-peptide is likely responsible for these

changes. Some of these positive changes also occurred with SPR4-

peptide treated WT-mice (markedly suppressed sclerostin,

FAM20C, ENPP1 and ESP for example). This supports a role

for ASARM-peptides in normal physiology and points to a

possible therapeutic utility for SPR4-peptide in familial rickets,

diabetes, osteoporosis and obesity.

Methods

Animals, Procedures, Diets and Peptides
Ethics Statement. Mice (C57BL/6) were housed at the

University of Kansas Medical Center under the supervision of the

Department of Laboratory Animal Resources. The policies and

procedures of the animal laboratory are in accordance with those

detailed in the Guide for the Care and Use of Laboratory Animals

published by the US Department of Health and Human Services

(DHHS Publ. NIH 86–23, 1985). Procedural protocols were

approved by the University of Kansas Institutional Animal Care

and Use Committee.

Procedures, Diets and Peptides. Male (5-week) C57B/L6

mice that were wild-type (WT) or mutant X-linked Hypophospha-

temic Rickets mice (HYP) were used for the study. All mice were

maintained on a 1% phosphorus and 2.4 IU/g Vitamin-D3 diet

(Harlan Teklad Rodent Diet 8604, Indianapolis, IN). Mice (5 week)

were surgically implanted with Alzet osmotic pumps (Durect

Corporation, Cupertino, CA) as described previously [54] and

infused with SPR4-peptide (276 nmoles/hr/kg) or vehicle (0.9%

physiological Saline; VE) for 28 days. Specifically, Alzet pump model

#2004 with a constant infusion rate of 0.25 uL/h over 28 days was

used. Four groups were studied (n = 6/group); (1) Wild type mice

infused with vehicle (WT-VE), (2) HYP-mice infused with vehicle

(HYP-VE), (3) Wild type mice infused with SPR4 peptide (WT-

SPR4) and (4) HYP-mice infused with SPR4 peptide (HYP-SPR4).

The SPR4 peptide (4.2 kDa) (NH2-TVNAFYSASTNYPRSLSY-

GAIGVIVGHEFTHGFDNNGRGENIADNG-OH) was synthe-

sized using standard techniques by Polypeptide Laboratories (San

Diego, CA 92126) as described previously [56,66]. Peptide purity

was greater than 80% via HPLC, ion-exchange and also mass

spectrometry. SPR4-peptide was dissolved as follows; 100 uL/1 mg

of peptide of 25 mM acetic acid was first added to dissolve the

peptide, then 900 uL of 50 mM Tris pH 7.4/150 mM NaCl was
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added and after thorough mixing 20 uL of 1 mM ZnCl2. Note, it is

important to add the ZnCl2 last to maintain peptide solubility. The

final buffer composition was 44 mM Tris pH 7.4/132 mM NaCL/

19.6 mM ZnCl2.

Serum and Urine Analysis
At specific intervals throughout the experiment as detailed in

the results section tail blood-samples were collected in serum-

separator tubes and serum prepared as described previously [54].

On the final day of the infusion experiment (day 28) blood and

urine was collected from mice fasted overnight in metabolic cages

with full access to water (1 cage/mouse). The blood from the final

bleed was collected by cardiac exsanguination and serum

urinalysis carried out as described previously [54,55,64,140,162].

Briefly, Osteocalcin (Mouse Osteocalcin EIA Kit; BTI, Stoughton,

MA), alkaline phosphatase (Liquid Alkaline Phosphatase; Pointe

Scientific Inc, Canton, MI), 1.25(OH)2D3 (IDS Inc., Fountain

Hills, AZ) and FGF23 (Kainos Laboratories Inc., Tokyo, Japan)

were measured on serum samples. Inorganic phosphorus, calcium,

creatinine (Pointe Scientific Inc, Canton, MI) and Osteopontin

(Quantikine Mouse Osteopontin; R&D Systems, Minneapolis,

MN) levels were assessed both in serum and urine. A competitive

ELISA kit was used for the ASARM peptide measurement as

previously published for serum and urine samples [7,54,140,141].

Bone and Fat mass Analysis: Dual X-Ray Absorptiometry
(DEXA)

Dual X-Ray Absorptiometry (DEXA) using a PIXImus system

(LUNAR Corporation, Madison, WI) was carried out as described

previously [140]. A dual energy X-ray PIXImus densitometer

(LUNAR Corporation, Madison, WI) was used for measuring fat

mass, bone mineral density (BMD) and bone mineral content.

Four different sites were determined by adjusting the region of

interest (ROI): entire humerus, entire femur, entire tibia and L1 to

L5 vertebrae. ROI was adjusted on each bone length and width.

In addition, abdominal fat mass was evaluated in a ROI

delineated by L1 and L5 vertebrae and including the whole body

width a described previously [140]. Measurements were taken at

baseline prior to treatment and at 4 weeks prior to sacrifice.

RNA Isolation, tissue extraction, Real Time PCR,
Immunohistochemistry (IHC) & Western Blotting

The above methods were performed as described previously for

femurs and kidneys [54,66,140] with specific polyclonal primary

antibodies and primers shown in Tables 6 and 7 respectively.

Transferrin was used as an internal reference for all protocols

(RNA and protein) since GAPDH was markedly suppressed in

HYP-mice bone (-66.2) and kidney (-62.0). The Pfaffl mathe-

matical model for the relative quantification of real-time PCR data

was used to measure relative gene expression [163]. Immunohis-

tochemistry on renal sections was carried out as described

previously [7,66,140].

Statistical analyses
Statistical analysis was performed using statistical software

STATISTICA (StatSoft Inc., Tulsa, OK, USA) or PRISM5

(GraphPad Software inc., La Jolla, CA USA). Differences between

groups were initially analyzed by two-way ANOVA. When F

values for a given variable were found to be significant, the

sequentially rejecting Bonferroni-Holm test was subsequently

performed using the Holm’s adjusted p values. For qRT-PCR

gene analysis fold differences in expression calculated by the Pfaffl

method [163] were statistically analyzed for significance using the

One Sample t-test and the Wilcoxon Signed rank-test with

theoretical means set to 1. Results for all tests were considered to

be significantly different at p,0.05.
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