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White matter alterations in Alzheimer’s disease without concomitant pathologies

Aims: Most individuals with AD neuropathological

changes have co-morbidities which have an impact on

the integrity of the WM. This study analyses oligoden-

drocyte and myelin markers in the frontal WM in a

series of AD cases without clinical or pathological co-

morbidities. Methods: From a consecutive autopsy ser-

ies, 206 cases had neuropathological changes of AD;

among them, only 33 were AD without co-morbidities.

WM alterations were first evaluated in coronal sections

of the frontal lobe in every case. Then, RT-qPCR and

immunohistochemistry were carried out in the frontal

WM of AD cases without co-morbidities to analyse the

expression of selected oligodendrocyte and myelin

markers. Results: WM demyelination was more marked

in AD with co-morbidities when compared with AD

cases without co-morbidities. Regarding the later,

mRNA expression levels of MBP, PLP1, CNP, MAG,

MAL, MOG and MOBP were preserved at stages I–II/0–

A when compared with middle-aged (MA) individuals,

but significantly decreased at stages III–IV/0–C. This

was accompanied by reduced expression of NG2 and

PDGFRA mRNA, reduced numbers of NG2-, Olig2- and

HDAC2-immunoreactive cells and reduced glucose

transporter immunoreactivity. Partial recovery of some

of these markers occurred at stages V–VI/B–C. Conclu-

sions: The present observations demonstrate that co-

morbidities have an impact on WM integrity in the

elderly and in AD, and that early alterations in oligo-

dendrocytes and transcription of genes linked to myelin

proteins in WM occur in AD cases without co-morbidi-

ties. These are followed by partial recovery attempts at

advanced stages. These observations suggest that oligo-

dendrocytopathy is part of AD.
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Introduction

Reduced white matter (WM) volume, WM lesions and

altered WM integrity and cortical disconnection occur

in the ageing human brain [1-10]. Age-related WM

decay is associated with memory impairment and

symptoms of depression in an anatomically specific

manner [1-14]. Reduced myelin basic protein (MBP)

and 2’,3’-cyclic nucleotide 3’ phosphodiesterase (CNP)

levels [15], and alterations in the number of oligoden-

drocytes and oligodendroglial precursor cells (OPCs/

NG2-positive cells), have been reported in aged pri-

mates and rodents [16].

Reduced WM size, WM hyper-lucencies and myelin

and axon damage are common in sporadic Alzheimer’s

disease (AD), as revealed by neuroimaging methods,

mainly magnetic resonance imaging (MRI), and
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particularly diffusion tensor imaging (DTI) and func-

tional MRI (fMRI) [3-4,12,14,17-22]. Patients with

moderate cognitive impairment (MCI) of AD-type exhi-

bit alteration of the WM integrity which further deteri-

orates with disease progression [5,23-27]. WM

alterations appear before the appearance of clinical

symptoms [28]. Atrophy of WM, decreased myelin den-

sity and demyelination and predominant WM vulnera-

bility of the frontal and parietal lobes are also observed

in post mortem neuropathological studies [2,29-32].

Myelin loss mainly involves areas that are myelinated

late in the development [8,33,34]. Breakdown of WM

integrity is considered a principal component of AD,

contributing to neural disconnection and progression of

clinical symptoms and dementia [13].

However, most studies of WM in the human ageing

brain have not considered that in the elderly, most

individuals have AD pathology that cannot be visual-

ized with current neuroimaging methods. Therefore, we

cannot be certain that a reasonable percentage of aged

individuals subjected to neuroimaging studies suffer

concomitant AD pathology. Moreover, the presence of

a certain number of b-amyloid plaques and neurofibril-

lary tangles (NFTs) in the elderly have been considered

until recently to be normal brain ageing; these cases

might have been classified at post mortem as normal

aged individuals.

Furthermore, co-morbidities are common in the age-

ing brain and in AD. Vascular cognitive impairment

and dementia are prevalent in old age [35-42]. The

combination of AD and cerebrovascular disease is very

common [43-49]. Other clinical co-morbidities include

arterial hypertension (HTA), type II diabetes, cardiac,

hepatic and renal failure and respiratory insufficiency;

pathological co-morbidities include neurodegenerative

disorders with abnormal protein aggregates such as

other tauopathies, Lewy body diseases and TDP-43 pro-

teinopathies, among others and hippocampal sclerosis

[50-56].

This study was designed to analyse molecular alter-

ations in the WM linked to oligodendrocytes and mye-

lin in cases with AD pathological changes without

clinical or pathological co-morbidities. These cases were

first selected from a consecutive series of autopsies in a

general hospital in which AD was one of the post mor-

tem neuropathological diagnoses. Cases with clinical

and pathological co-morbidities were not included in

the second part of the study.

In the second part of the study, gene transcription

was assessed with targeted RT-qPCR, and protein

expression of altered genes by immunohistochemistry in

the WM of the centrum semi-ovale of the frontal lobe in

cases with AD pathology without clinical and pathologi-

cal co-morbidities at different Braak stages of disease

progression. Selected genes for analysis included mark-

ers of the oligodendrocyte lineage, genes encoding struc-

tural proteins of myelin and genes involved in energy

metabolism and axon maintenance. Adult NG2-glia

have the capacity to produce myelinating oligodendro-

cytes [57,58] thus contributing to oligodendrocyte and

myelin turnover and regeneration in the adult CNS

[59]. Stages of oligodendrocyte lineage are identified by

the expression of platelet-derived growth factor receptor

a polypeptide (PDGF-Ra), SRY-Box-10 (Sox10), NK2

homeobox 2 (Nkx2.2), oligodendrocyte transcription

factor 1 (Olig1) and oligodendrocyte lineage transcrip-

tion factor 2 (Olig2), among others [60]. After oligoden-

drocyte differentiation, myelination is triggered by

myelin regulatory factor (MYRF) which is expressed in

postmitotic oligodendrocytes [61]. Myelination is linked

to increased expression of myelin basic protein (MBP),

myelin-associated glycoprotein (MAG), proteolipid pro-

tein 1 (PLP1), myelin oligodendrocyte glycoprotein

(MOG) and 20, 30-cyclic nucleotide 30 phosphodiesterase
(CNP), among others [62-68]. Finally, blood-derived

glucose is taken up by oligodendrocytes through glucose

transporter 1 (GLUT1) encoded by SLC2A1. Glucose is

metabolized via glycolysis to produce pyruvate and lac-

tate which are delivered to the axons through specific

solute carriers, the monocarboxylate transporters (MCT)

located in cell membranes [69,70]. MCT1 is mainly

expressed in oligodendrocytes [71,72]. Thus, both

GLUT1 and MCT1 produced in oligodendrocytes are

involved in axon maintenance independently of the

complementary myelin/axon trophic alliance. These

markers were analysed in this study.

Finally, histone deacetylases (HDACs) remove specific

acetyl groups on a histone enabling it to interact with

DNA thereby modulating gene transcription. HDAC1

and HDAC2 are expressed in oligodendrocytes [73,74].

HDAC1 immunoreactivity was also assessed in the

nuclei of glial cells in the WM.

Our aim was to discern which alterations in the WM

in the general population affected by AD pathological

changes were linked to AD and not to concomitant

clinical and pathological co-morbidities.
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Material and methods

Selection of samples

First series Cases for study were obtained at the

Bellvitge University Hospital following the guidelines of

the Spanish legislation (Real Decreto 1716/2011) and

the approval of the local ethics committee. Clinical

parameters were retrieved after the revision of the

complete clinical history in every case. Only cases with

comprehensive clinical information were separated for

further analysis. The first series of cases was chosen

from consecutive autopsies carried out from 2009 to

2015. The current protocol for the autopsies in adult

donors was as follows: one hemisphere was

immediately cut in coronal sections, 1 cm thick and

selected areas of the encephalon were rapidly dissected,

frozen on metal plates over dry-ice, placed in individual

air-tight plastic bags and stored at �80°C until use for

biochemical studies. The other hemisphere was fixed by

immersion in 4% buffered formalin for 3 weeks for

morphological studies. For the current

neuropathological study, 4-µm-thick sections from 20

representative brain regions were stained with

haematoxylin and eosin, periodic acid-Schiff (PAS) and

Kl€uver–Barrera, or processed for

immunohistochemistry for microglia Iba1, glial

fibrillary acidic protein (GFAP), b-amyloid, phospho-tau

(clone AT8), a-synuclein, TDP-43 and ubiquitin, using

EnVision + System peroxidase (Dako), and

diaminobenzidine and H2O2. In addition, 1-cm-thick

coronal sections of the frontal lobe at the level of the

head of the caudate and putamen were obtained in

every case. Blocks were embedded in paraffin, cut at a

thickness of 7 µm, de-waxed and stained with

haematoxylin and eosin, and with Kl€uver–Barrera.

Details of the 20 selected regions and the

methodological protocols for current neuropathological

studies are described elsewhere [75]. From among

autopsies following this procedure, including the

availability of appropriate clinical information and

suitability of white matter sections stained with

Kl€uver–Barrera for densitometric studies, 470 of 713

autopsies were initially selected. Three groups were

defined. First, all cases with NFT pathology and/or with

cerebral b-amyloid deposition, covering NFT pathology

stages I–VI of Braak and b-amyloid deposition in the

form of diffuse and/or neuritic plaques Braak stages 0

(no deposits) to C [76], were chosen for further

classification. These were 128 men and 78 women

(total n = 206); mean age (�SEM): 73.3 � 9.6 years.

AD cases were categorized as ADI–II/0-A (n = 113,

men: 83, women: 30; age: 69.1 � 8.9 years); ADIII–

IV/0–C (n = 70, men: 36, women: 34; age:

78.4 � 7.6 years) and ADV–VI/B–C (n = 23, men: 9,

women: 14; age: 78.5 � 8.5 years). Most of these

cases encompassed a diversity of co-morbidities

including metabolic disorders such as HTA, type II

diabetes, hyperlipaemia, renal or liver failure and

chronic respiratory failure; peripheral and central

vascular pathology; age-related neurodegenerative

diseases, such as other tauopathies, Lewy body

pathology and TDP-43 proteinopathy, among others;

hippocampal sclerosis and long agonic state, or

vegetative state. Regarding cerebrovascular pathology,

cases with cerebral infarcts, including micro-infarcts,

lacunes, infarcts in the watershed areas, vascular

leucoencephalopathy, hippocampal sclerosis and status

cribosus; and cases with severe atherosclerosis,

moderate or severe artheriolosclerosis, hypertensive

angiopathy, inflammatory vascular diseases and

vascular malformations were considered as AD with

vascular co-morbidity. This group was classified as AD

with concomitant pathology, AD-Co, and was made up

of 173 cases, categorized as ADI–II/0–A (n = 104),

ADIII–IV/0–C (n = 63) and ADV–VI/B–C (n = 7).

Only 33 of the 206 were classified as cases with AD

without co-morbidities. Cases with concomitant mild

small blood vessel disease were included in this series.

This group was made up of by 15 men and 18 women;

age: 76.3 � 8.6 years. AD cases without co-morbidities

were categorized as follows: ADI–II/0–A (n = 9, men:

5, women: 4; age: 68.5 � 11.3 years); ADIII–IV/0–C

(n = 8, men: 2, women: 6; age: 77.7 � 4.8 years);

ADV–VI/B–C (n = 16, men: 8, women: 8; age:

80.7 � 5.6 years). All these cases were sporadic; famil-

ial AD was not included in this study.

The third group (n = 20) was made up of young

cases (middle-aged: MA) chosen at random among the

remaining 264 cases (470 minus 206). This group

consisted of 10 men and 10 women; age:

48.1 � 7.7 years. MA did not have the clinical risk

factors and co-morbidities mentioned in previous para-

graphs; they did not have neurological or mental
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diseases, and the neuropathological study did not show

abnormalities. The control group must be not inter-

preted as an age-matched control group, but as a con-

trol group of normal WM in MA individuals.

Second series Only cases with AD pathology without

co-morbidities were the focus of this part of the study.

These cases were the same as those of the second

group of the first series. In addition, 10 MA cases (6

men, 4 women; age: 51.7 � 4.7 years) from the third

group of the first series were included and processed in

parallel. The total number of MA and AD cases in this

series is detailed in Table 1. All these cases were used

for specific immunohistochemical studies. However,

frozen samples were available for 24 AD cases and 10

controls. In these cases, the brain pH at the time of the

autopsy was between 6.2 and 6.4, and the RNA

integrity number (RIN) higher than 6 (excepting one

case). AD cases at stages I–II/0-A had no neurological

symptoms; AD cases at stages III–IV/0–C had no

neurological symptoms nor were they affected by mild

cognitive impairment; AD cases at stages V–VI/B–C

had severe cognitive impairment or dementia.

Quantitative densitometric studies of the WM
stained with Kl€uver–Barrera

Photomicrographs of the centrum semi-ovale of Kl€uver–

Barrera-stained sections, at the level of the head of the

caudate and putamen as described above, were obtained

at a mid-distance between the inferior frontal sulcus

and the cingulate sulcus, approximately at 0.7–1 cm

from the external vertex of the lateral ventricle. Figures

were obtained at a magnification of 9 200, covering an

area of 0.126 mm2, using a DP25 camera adapted to

an Olympus BX50 light microscope. The pictures, two

areas per case in every case, were analysed using Photo-

shop software. The density of myelin was calculated as

the intensity of blue normalized for the total area and

expressed as arbitrary units per area. The normality of

distribution was analysed with the Kolmogorov–Smir-

nov test. Results were analysed with one-way ANOVA and

post hoc Tukey. Differences between MA and the two

groups of AD, and between the different stages in pure

AD cases, were considered statistically significant at

*P < 0.05, **P < 0.01, ***P < 0.001 when comparing

MA with AD and AD-Co, and ##P < 0.01 when com-

paring AD-Co with ‘pure’ AD.

RNA purification and RT-qPCR

The WM was dissected from the grey matter in 34

cases, corresponding to 9 ADI–II/0–A, 8 ADIII–IV/0–C,

7 ADV–VI/B–C and 10 MA. WM samples at different

AD stages and MA cases were processed in parallel.

RNA from frozen WM was extracted following the

instructions of the supplier (RNeasy Mini Kit, Qiagen�

GmbH, Hilden, Germany). RNA integrity and 28S/18S

Table 1. Summary of cases of AD without concomitant co-mor-

bidities and pathologies

Case ID Diagnosis Sex Age PM delay RIN WM

1 AD I/0 M 56 07 h 10 min 7.80

2 AD I/A W 74 02 h 45 min 7.70

3 AD I/A W 57 05 h 00 min 6.50

4 AD I/A M 66 09 h 45 min 6.30

5 AD II/0 M 67 07 h 15 min 6.90

6 AD II/0 M 57 04 h 30 min 7.10

7 AD II/A W 88 08 h 00 min 6.90

8 AD II/A M 66 04 h 55 min 7.50

9 AD II/A W 86 02 h 15 min 8.30

10 AD III/0 M 81 01 h 30 min 7.60

11 AD III/0 M 66 05 h 45 min 7.50

12 AD III/0 W 79 03 h 35 min 7.40

13 AD III/A W 82 02 h 00 min 7.20

14 AD III/A W 77 03 h 10 min 6.40

15 AD III/B W 76 03 h 50 min 7.20

16 AD IV/A W 80 02 h 45 min 5.40

17 AD IV/C W 81 05 h 00 min 7.30

18 AD V/B W 74 05 h 30 min 7.70

19 AD V/B M 86 04 h 15 min 7.90

20 AD V/B M 73 04 h 30 min 6.90

21 AD V/B W 82 01 h 45 min –
22 AD V/B M 75 11 h 30 min –
23 AD VI/C W 72 09 h 30 min 6.40

24 AD VI/C W 85 16 h 15 min 8.20

25 AD V/C M 85 03 h 45 min 7.80

26 AD V/C M 77 16 h 00 min 7.10

27 AD VI/C W 82 10 h 00 min –
28 AD V/C W 86 10 h 00 min –
29 AD V/C W 85 12 h 10 min –
30 AD V/C M 77 08 h 00 min –
31 AD V/C M 79 07 h 30 min –
32 AD V/C M 93 03 h 00 min –
33 AD VI/C W 81 05 h 15 min –
34 MA W 62 11 h 00 min 8.40

35 MA W 53 03 h 00 min 7.70

36 MA M 55 05 h 40 min 8.30

37 MA M 39 09 h 15 min 7.10

38 MA W 46 14 h 05 min 7.20

39 MA W 66 04 h 15 min 7.80

40 MA M 57 03 h 00 min 8.20

41 MA M 50 17 h 15 min 8.00

42 MA W 54 06 h 45 min 7.20

43 MA M 35 17 h 00 min 6.80
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ratios were determined with the Agilent Bioanalyzer

(Agilent Technologies Inc, Santa Clara, CA, USA). RIN

values are shown in Table 1. Samples were treated

with DNase digestion, and RNA concentration was

evaluated using a NanoDropTM Spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA).

TaqMan RT-qPCR assays were performed in dupli-

cate for each gene on cDNA samples in 384-well opti-

cal plates using an ABI Prism 7900 Sequence

Detection system (Applied Biosystems, Life Technolo-

gies, Waltham, MA, USA). For each 10 ll TaqMan

reaction, 4.5 ll cDNA was mixed with 0.5 ll 20 9

TaqMan Gene Expression Assays and 5 ll of 2 9 Taq-

Man Universal PCR Master Mix (Applied Biosystems).

TaqMan probes used in the study are detailed in

Table 2. Values of GUS-b were used as internal con-

trols for normalization [77]. The parameters of the

reactions were 50°C for 2 min, 95°C for 10 min and

40 cycles of 95°C for 15 s and 60°C for 1 min. Finally,

capture of all TaqMan PCR data was made using the

Sequence Detection Software (SDS version 2.2.2,

Applied Biosystems). For the data analysis, threshold

cycle (CT) values for each sample were processed to

obtain the double delta CT (DDCT) values. First, delta

CT (DCT) values were calculated as the normalized CT

values for each target gene in relation to the CT of

endogenous controls GUS-b. Then, DDCT values were

obtained from the DCT of each sample minus the mean

DCT of the population of control samples.

The normality of distribution of fold-change values

was analysed with the Kolmogorov–Smirnov test. Pear-

son’s correlation coefficient was used to assess a possi-

ble linear association between two continuous

quantitative variables. To determine the relationship

between gene expression and RIN values according to

pathologic variables, we used the analysis of covariance

(ANCOVA) in the 16 probes. Statistical analysis of the

expression data between groups was made using one-

way analysis of variance (ANOVA) followed by Tukey

posttest, or Kruskal–Wallis test followed by Dunn’s post

hoc test when required using the SPSS software (IBM

Corp. Released 2013. IBM SPSS Statistics for Windows,

Version 21.0; Armonk, NY: IBM Corp). Outliers were

detected using the GraphPad software QuickCalcs

(P < 0.05). All data were expressed as mean val-

ues � SEM. Differences between MA and AD cases

were considered statistically significant at *P < 0.05,

**P < 0.01, ***P < 0.001 vs. MA; #P < 0.05,

##P < 0.01, ###P < 0.001 vs. ADI–II/0-A and
$P < 0.05 vs. ADIII–IV/0–C and ADV–VI/B–C.

Immunohistochemistry

Formalin-fixed, paraffin-embedded, de-waxed sections

4-µm thick of the frontal white matter of cases listed in

Table 1 were processed for specific immunohistochem-

istry. The sections were boiled in citrate buffer

(20 min) to retrieve protein antigenicity. Endogenous

peroxidases were blocked by incubation in 10% metha-

nol, 1% H2O2 solution (15 min) followed by 3% normal

horse serum solution. Then the sections were incubated

at 4°C overnight with one of the primary rabbit poly-

clonal antibodies: NG2 (used at a dilution of 1:200;

Sigma-Aldrich, Merck, Darmstadt, GE), Olig2 (used at a

dilution of 1:500, Sigma-Aldrich, Merck); HDAC2 (di-

luted 1:100, Abcam, Cambridge, UK); GLUT 1 (diluted

1:100, Abcam); or with one of the primary mouse

monoclonal antibodies: PLP1 (used at a dilution of

1:100, Lifespan Biosci, Seattle, WA, USA), CNPase

(used at a dilution of 1:100, Sigma-Aldrich, Merck),

MBP (diluted 1:1000, Abcam) and GFAP (diluted

Table 2. Taqman probes, gene names and identification

Gene Full name Reference

CNP 2’,3’-cyclic nucleotide 3’

phosphodiesterase

Hs00263981_m1

GUS-b b-glucuronidase Hs00939627_m1

MAG Myelin-associated glycoprotein Hs01114387_m1

MAL Mal, T-cell differentiation protein Hs00360838_m1

MBP Myelin basic protein Hs00921945_m1

MCT1 Solute carrier family 16

(monocarboxylic acid

transporters), member 1

Hs01560299_m1

MOBP Myelin-associated oligodendrocyte

basic protein

Hs01094434_m1

MOG Myelin oligodendrocyte

glycoprotein

Hs01555268_m1

MYRF Myelin regulatory factor Hs00973739_m1

NG2 Neural/glial antigen 2 Hs00426981_m1

NKX2-2 NK2 Homeobox 2 Hs00159616_m1

OLIG1 Oligodendrocyte transcription

factor 1

Hs00744293_s1

OLIG2 Oligodendrocyte lineage

transcription factor 2

Hs00377820_m1

PDGFRA Platelet-derived growth factor

receptor, alpha polypeptide

Hs00998018_m1

PLP1 Proteolipid protein 1 Hs00166914_m1

SLC2A1 Solute carrier family 2 (facilitated

glucose transporter), member 1

Hs01102423_m1

SOX-10 SRY-box 10 Hs00366918_m1
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1:1000, Diagnostic BioSyst, CA, USA). Following incu-

bation with the primary antibody, the sections were

incubated with EnVision + system peroxidase (Dako,

Agilent Technologies, Santa Clara, CA, USA) for

30 min at room temperature. The peroxidase reaction

was visualized with diaminobenzidine and H2O2. Con-

trol of the immunostaining included omission of the

primary antibody; no signal was obtained following

incubation with only the secondary antibody. Sections

were slightly counterstained with haematoxylin.

Quantification of NG2-, Olig2- and HDAC2-im-

munoreactive cells in the WM was done by counting

the number of positive cells in areas of the WM located

about 1 cm below the subcortical U fibres of the frontal

lobe at the level of the head of the caudate and puta-

men chosen at random. Microphotographs were

obtained at magnifications of 9 200 or 9 400, cover-

ing areas of 0.126 mm2 and 0.038 mm2, respectively,

in three nonconsecutive sections per case using a DP25

camera adapted to an Olympus BX50 light microscope.

The number of positive cells was counted directly on

the figures and expressed as the number of positive

cells per area (0.038 mm2 for NG2- and HDAC2-im-

munoreactive cells, and 0.126 mm2 for Olig2-positive

cells). The normality of distribution of fold-change val-

ues was analysed with the Kolmogorov–Smirnov test.

Results were analysed with one-way ANOVA and post

hoc Tukey; differences were considered statistically sig-

nificant at * MA vs. AD; #: ADI–II vs. ADIII–IV or

ADV–VI; $: ADIII–IV vs. ADV–VI; significance levels

were set at: *, # P < 0.05, **, ## P < 0.01, and ***,

###, $$$ P < 0.001. No attempts were made to quan-

tify the densitometry of GLUT1.

Densitometric quantification of PLP1 immunoreactiv-

ity was acquired in the same areas as those indicated

for NG2-, Olig2- and HDAC2-immunoreactive cells fol-

lowing a similar procedure to that described for

Kl€uver–Barrera-stained sections. Photomicrographs

were obtained at a magnification of 9 200, covering

an area of 0.126 mm2, using a DP25 camera adapted

to an Olympus BX50 light microscope. The pictures,

two areas per case in every case, were analysed using

Photoshop software. The density of PLP1 was calcu-

lated as the intensity of brown colour normalized by

the total area excluding white spaces of the nuclei and

expressed as arbitrary units per area. The normality of

distribution was analysed with the Kolmogorov–Smir-

nov test. Results were analysed with one-way ANOVA

and post hoc Tukey. Differences between MA and the

three stages of pure AD cases were considered statisti-

cally significant at: * MA vs. AD; #: ADI–II vs. ADIII–

IV or ADV–VI; $: ADIII–IV vs. ADV–VI. Significance

levels were set at: *, # P < 0.05, **, ## P < 0.01 and

***, ###, $$$ P < 0.001.

Results

White matter alterations in the general series

Representative examples of the diversity of WM

changes in cases with AD pathology without and with

co-morbidities (AD-Co) are shown in Figure 1. This

illustrates the variability in WM alterations which may

concur in cases with AD pathology.

Densitometric studies of the central myelin were car-

ried out in the AD series and in MA (Figure 2A). The

density of myelin was significantly reduced in AD with-

out co-morbidities and in AD-Co when compared with

MA (P = 0.000 and P = 0.000 respectively). Myelin

density was significantly lower in AD-Co when com-

pared with AD cases without co-morbidities

(P = 0.003) (Figure 2B).

Regarding AD cases without co-morbidities, no sig-

nificant differences, but rather a tendency to reduced

myelin density was seen in AD stages V–VI when com-

pared with AD stages I–II and AD stages III–IV (Fig-

ure 2C).

RNA expression of genes related to oligodendroglia
and myelin in WM of AD without co-morbidities

Results of RT-qPCR are summarized in Figure 3. The

expression of several genes linked to the oligodendrocyte

lineage was reduced at stages III–IV/0–C when com-

pared with MA and with AD stages I–II/0-A including

OLIG1 (P = 0.007, when compared with ADI–II/A–C)

and PDGFRA (P = 0.000 when compared with MA, and

P = 0.029 when compared with ADI–II/0-A). Levels of

PDGFRA were decreased at stages V–VI/B–C when com-

pared with MA (P = 0.000); PDGFRA and OLIG1 levels

were also significantly decreased at stages V–VI/B–C

when compared with levels at stages ADI–II/0-A

(P = 0.015 and P = 0.002 respectively). Curiously,

NG2 mRNA expression was reduced only at stages

ADV–VI/B–C when compared with levels of MA and AD

stages I–II/0-C (P = 0.006 and P = 0.027 respectively).
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However, other markers of oligodendrocyte differentia-

tion such as SOX10 and NKX-2, as well as OLIG2, were

not significantly altered, although OLIG2 showed a

trend to decrease at middle stages of AD.

Regarding genes involved in myelin synthesis, MYRF

mRNA expression, the product of which triggers myeli-

nation, was significantly increased in ADI–II/0-A and

ADV–VI/B–C when compared with MA (P = 0.002 and

P = 0.033 respectively). MYRF expression was tran-

siently reduced to normal levels at stages III–IV/0–C

when compared with ADI–II/0-A and ADV–VI/B–C

(P = 0.005 and P = 0.049 respectively). In contrast,

the majority of genes which encode proteins of the mye-

lin sheet showed reduced expression levels at AD stages

III–IV/0-C when compared with MA or with AD stages

I–II/0-C: MBP (P = 0.009 when compared with MA),

PLP1 (P = 0.003 when compared with AD stages I–II/

0-A), and CNP, MAG, MAL, MOG and MOBP when

compared with MA (P = 0.006, P = 0.005, P = 0.006,

P = 0.035 and P = 0.041 respectively). Curiously, the

mRNA expression levels of several myelin-related genes

were within normal values at AD stages V–VI/B–C,

including MBP, PLP1, CNP, MAL, MOG and MOBP. Yet

levels of MAG were decreased in ADV–VI/B–C when

compared with MA (P = 0.032) (Figure 3).

The expression of the gene coding for glucose trans-

porter (SLC2A1) was reduced in ADV–VI/B–C when

compared with MA (P = 0.039). In contrast, the

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Figure 1. Representative formalin-fixed, paraffin-embedded, de-waxed coronal sections of the frontal cortex at the level of the head of the

caudate and putamen, stained with Kl€uver–Barrera. (A) AD stage V/C, the absence of co-morbidities (M, 82y); (B) ADIII–IV/A presenting

with a frontal infarct (M, 78y); (C) Patient categorized as mixed dementia suffering from HTA and extensive WM hyper-lucencies, AD

stage III–IV/A, LBD stage 3 (M, 75y); (D) Patient with chronic respiratory insufficiency and terminal hypoxia, AD pathology stage II/0

(M, 74y); (E) Patient with chronic respiratory failure, abnormal behaviour of nondetermined origin and AD- pathology stage III/0 (M,

54y); (F) Patient with cognitive impairment, focal WM hyper-lucencies, lacunar infarcts, HTA and AD stage V/C (M, 67y); (G) Patient

with cognitive impairment, HTA, WM hyper-lucencies and AD pathology stage II/0 (M, 40y); (H) Patient with severe cognitive

impairment, type II diabetes, hyperlipidaemia, obesity, HTA, renal failure, argyrophilic grain disease stage II and AD pathology III/A (M,

76y); (I) Patient with hepatic encephalopathy and AD pathology stage III/A (M, 58y); (J) Patient with no neurological symptoms, and

the absence of clinical and pathological co-morbidities, categorized as AD stage III/A (M, 69y); (K) Patient with mild cognitive

impairment, WM hyper-lucencies, HTA and AD pathology stage III/B (M, 72y); (L) Patient with long-lasting dementia, the absence of

risk factors of cerebral circulatory disturbance, and affected by ADVI/C, argyrophilic grain disease stage II and TDP-43 proteinopathy (M,

76). The figure makes it evident that there is variable involvement of the WM in association with distinct cerebral and systemic disorders

concomitant with AD pathology. M: man. Compare the variability of WM involvement in cases B, C, E, H, I and K categorized as AD

with co-morbidities (AD-Co) with J categorized as AD without co-morbidities, all of them stage ADIII–IV of Braak and Braak. Cases D and

G, classified as AD-Co stage II, also show decreased staining of the centrum semi-ovale when compared with stage III of AD without co-

morbidities (J). Differences are also observed between AD without co-morbidities stage V (A) in comparison with AD-Co stages V and VI

(F and L). Note that all cases in the figure correspond to males to avoid gender bias).
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expression levels of MCT1, the gene coding for solute

carrier family 16 (monocarboxylic acid transporter,

member 1), were not significantly altered, but did show

a trend to reduction at advanced stages of AD (Fig-

ure 3).

Immunohistochemistry

NG2 (which identifies oligodendroglial precursor cells)

immunoreactivity in the WM was detected as small

granules in the cytoplasm of a subpopulation of glial

cells, whereas Olig2 (which is expressed in oligodendro-

cytes) immunoreactivity decorated the nucleus of oligo-

dendrocytes. The number of NG2-positive cells

decreased with disease progression, but significant dif-

ferences were detected only between ADI–II/0-A when

compared with ADIII–IV/0-C (P = 0.001), and between

ADI–II/0-A compared with ADV–VI/B–C (P = 0.000).

Olig2-positive cells also decreased with disease progres-

sion: MA vs. ADIII–IV/0–C (P = 0.011), MA vs. ADV–

VI/B–C (P = 0.000), ADI–II/0-A vs. ADIII–IV/0–C

(P = 0.016), ADI–II/0-A vs. ADV–VI/B–C (P = 0.000)

and ADIII–IV/0–C vs. ADV–VI/B–C (P = 0.000). More-

over, Olig2-immunoreactive cells with large, dense and

often elongated nuclei were found in ADV–VI/B–C (Fig-

ure 4, Figure 6).

HDAC2 immunoreactivity was found in the nucleus

of glial cells. The number of HDAC2-positive cells and

(A) (B) (C)

Figure 2. Densitometric values of myelin sheet phospholipids as revealed in Kl€uver–Barrera-stained sections of the centrum semi-ovale at

the level of the head of the caudate and putamen in MA, AD with co-morbidities (AD-Co), and cases of AD without co-morbidities (AD).

Values are expressed as arbitrary units per area. (A) The area of densitometric studies is indicated by the circle; Kl€uver–Barrera staining

in an MA case. Note that the area is separated from the periventricular white matter and the subcortical U-fibres. (B) Significant decrease

in AD without co-morbidities (n = 33) and AD-Co (n = 173) is seen when compared with MA (n = 20). The intensity of myelin staining

is significantly lower in AD-Co when compared with AD cases. (C) No significant differences, but a tendency to reduced myelin intensity

is seen in AD without co-morbidities at stages V–VI/B–C (ADV–VI) when compared with AD at stages I–II/0-A (ADI–II) and AD at stages

III–IV/0-C (ADIII–IV). ADI–II/0-A, n = 9; ADIII–IV/0–C, n = 8; ADV–VI/B–C, n = 16. One-way ANOVA and post hoc Tukey, ***P < 0.001

AD and AD-Co compared with MA; ##P < 0.001: AD-Co compared with AD without co-morbidities.

Figure 3. mRNA expression of selected oligodendrocyte- and myelin-related genes in the frontal white matter of MA, AD without co-

morbidities stages I–II/0-A (ADI–II), III–IV/0-C (III–VI) and V–VI (B, C). Abbreviations may be seen in Table 2. One-way analysis of

variance (ANOVA) followed by Tukey posttest or Kruskal–Wallis test followed by Dunn’s post hoc test when required using the SPSS

software; *P < 0.05, **P < 0.01, ***P < 0.001 vs. MA; #P < 0.05, ##P < 0.01 vs. ADI–II; $P < 0.05 vs. ADIII–IV and ADV–VI (see
Methods for statistical studies).

© 2020 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society

NAN 2020; 46: 654–672

White matter in Alzheimer’s disease 661



the intensity of the staining in the remaining cells sig-

nificantly decreased with disease progression: MA vs.

ADIII–IV/0–C (P = 0.007), MA vs. ADV–VI/B–C

(P = 0.000), ADI–II/0-A vs. ADIII–IV/0-C (P = 0.035);

ADI–II/0-A vs. ADV–VI/B–C (P = 0.000), and ADIII–

IV/0-C vs. ADV–VI/B–C (P = 0.000) (Figures 4 and 6).

GLUT1 (glucose transporter member 1) immunoreac-

tivity, which decorated the neuropil and the wall of the

small blood vessels, decreased in AD with disease pro-

gression. However, no attempt was made to quantify

the density of the immunostaining due to individual

variations (Figure 4).

Regarding myelin proteins, the intensity of PLP1,

CNPase and MBP immunoreactivity decreased with dis-

ease progression (Figure 5). Densitometric studies were

carried out only for PLP1. Significant reduction was

observed in ADI–II/0-A, ADIII–IV/0–C and ADV–VI/B–

C when compared with MA (P = 0.000, P = 0.000

and P = 0.002 respectively). Moreover, significant dif-

ferences were also seen between ADI–II/0- vs. ADIII–

IV/0-C (P = 0.000) and ADIII–IV/0-C vs. ADV–VI/B–C

(P = 0.000) (Figure 6).

In contrast, GFAP immunoreactivity showed an

increase in the number and intensity in individual

astrocytes in the WM in parallel sections (data not

shown), in agreement with previous data from several

authors, as reviewed elsewhere [78].

Discussion

This study was designed to learn about WM abnormali-

ties in cases with AD pathology without co-morbidities

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

(M) (N) (O) (P)

Figure 4. Immunohistochemistry to cellular markers NG2, Olig2, HDAC2 and SLC2A1:GLUT1 in MA individuals (A, E, I, M), and in

cases with AD without co-morbidities at stages ADI–II/0-A (ADI–II) (B, F, J, N), ADIII–IV/0–C (ADIII–IV) (C, G, K, O) and ADV–VI/B–C
(ADV–VI) (D, H, L, P). Decreased numbers of NG2-, Olig2- and HDAC2-immunoreactive cells are observed at middle, and particularly,

advanced stages of AD. Large hyperchromatic Olig2-positive cells are also observed in ADV–VI. GLUT1 immunoreactivity is manifested as

a fine uniform meshwork in the neuropil which is progressively disrupted into patches of variable immunoreactivity with disease

progression. Paraffin sections, slightly counterstained with haematoxylin; NG2, HDAC2, bar = 50 µm; Olig2 and SLC2A1, bar = 45 µm.

Insert in MA NG2 is at greater magnification to show small positive granules characteristic of NG2 immunoreactivity. Insert in Olig2

ADV–VI shows a representative large hyperchromatic Olig2-immunoreactive cell; these cells are commonly present in ADV–VI.
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at different stages of disease progression. For this pur-

pose, our first approach was to consider all cases in

which one of the post mortem neuropathological

diagnoses was AD pathology in a continuous series of

necropsy cases in a general hospital. Following this

procedure, 206 of the 470 cases with adequate clinical

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Figure 5. Immunohistochemistry to myelin markers PLP1, CNPase and MBP in the centrum semi-ovale of the frontal lobe in MA (A, E,

I), and in cases with AD without co-morbidities at stages ADI–II/0-A (ADI–II) (B, F, J), ADIII–IV/0-C (ADIII–IV) (C, G, K) and ADV–VI/B–
C (ADV–VI) (D, H, L). Representative images show reduced immunoreactivity with disease progression, and small PLP1- and CNPase-

immunoreactive dots in ADV–VI. Paraffin sections, slightly counterstained with haematoxylin; bar = 50 µm.

Figure 6. Quantitative study of NG2-, Olig2- and HDAC2-immunoreactive cells in the frontal WM per area of AD cases without co-

morbidities (0.038 mm2 for NG2- and HDAC2-immunoreactive cells, and 0.126 mm2 for Olig2-positive cells; see Methods). The number

of positive cells decreases with increasing stages of AD pathology. MA, n = 10; ADI–II/0-A, n = 9; ADIII–IV/0-C, n = 8; ADV–VI/B–C,
n = 16. One-way ANOVA and post hoc Tukey; *: MA vs. ADIII–IV/0-C (ADIII–IV) or ADV-VI/B–C (ADV–VI); #: ADI–II/0-A (ADI–II) vs.
ADIII–IV or ADV–VI; $: ADIII–IV vs. ADV–VI; significance level set at *, # P < 0.05, ** P < 0.01 and ***, ###, $$$ P < 0.001.
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information and histological quality to carry out densit-

ometric studies of the WM of the frontal lobe were

selected. Interestingly, 89% of cases aged 65 and older

had AD pathology, a slightly higher figure than the

percentage already reported for this age group [79,80].

Review of the clinical history and neuropathological

study revealed that 84% had concomitant cerebrovas-

cular pathology; clinical morbidities such as HTA, type

II diabetes, hyperlipaemia, renal or liver failure and

chronic respiratory failure; cerebrovascular pathology;

age-related neurodegenerative diseases, such as other

tauopathies, Lewy body pathology and TDP-43 pro-

teinopathy; and long agonic state, or vegetative state,

which were putative causes of WM alterations. After

further selection, 33 were categorized as AD cases

without co-morbidities.

It can be argued that not all AD cases had cognitive

impairment and dementia, and therefore, they cannot be

classified as AD. Moreover, six cases of AD stages I–III

without co-morbidities did not have b-amyloid deposits,

and they might be classified as Primary age-related

tauopathy (PART) [81]. However, PART has also been

considered as part of AD [82]. We have followed here

this consideration because AD and PART share the same

NFT pathology at early stages of the disease.

Densitometric analysis performed on Kl€uver–Barrera-

processed sections of the central WM of the frontal lobe

at the level of the head of caudate and putamen

revealed significant differences between MA individuals

and cases with AD. It is important to stress that the

MA group was composed of individuals with an age of

about 25 years younger than that of the AD groups.

Therefore, MA must be not considered an age-matched

control group, but rather a representation of the mye-

lin in normal MA individuals. A significant reduction

in phospholipid myelin in elderly, as revealed with

Kl€uver–Barrera staining, is consistent with the idea

that myelin in the cerebral WM decreases with age, as

already noted in the Introduction. Since the majority of

individuals aged 65 and older had AD pathology, it is

difficult to ascertain whether changes in the AD groups

were linked to ageing or associated with AD pathology.

More practical is the observation that myelin decay

is greater in AD cases with co-morbidities (AD-Co) than

in AD cases with no co-morbidities. The age of the indi-

viduals has been assessed in every case, and the mean

values � SEM have been obtained for every stage both

in the total series and in pure AD. Values are similar in

both groups, and then comparisons are not biased by

differences in the age, but in the presence or absence of

co-morbidities. Since the majority of cases with AD in

our series had co-morbidities, it may be inferred that

part of the WM lesions commonly reported in the

elderly and in AD during life cannot be ascribed solely

to age and AD, but rather to common concomitant risk

factors and pathologies affecting the ageing brain.

Biochemical alterations in WM in AD without co-
morbidities

Previous studies have shown alterations in the lipid

composition of the WM in AD. Galactosylceramide (Gal-

Cer) and sulphatides, synthesized by oligodendroglia in

the CNS, are major components of myelin. Reduced Gal-

Cer and sulphatide levels, increased cholesterol and

increased fatty acid contents occur in cortical grey and

WM in AD [83-88]. Levels of GalCer and sulphatide

slightly decreased in the frontal and temporal cortex,

and in WM matter at stages III–IV, and more markedly

at stages V–VI in AD [89]. Curiously, the activity of cera-

mide synthase 2, which catalyses the synthesis of very

long chain ceramides, decreased in brain temporal cor-

tex at stages I–II and frontal cortex at stages III–IV pre-

ceding neurofibrillary tangle formation, suggesting that

alterations of ceramide synthesis occur earlier than pre-

viously suspected in the spread of AD [89]. Our observa-

tions on Kl€uver–Barrera-stained sections are in line with

biochemical studies showing decreased levels of phos-

pholipid components of myelin in AD when compared

with MA individuals. Differences are not as clear among

stages in AD cases without co-morbidities, although a

trend to reduction is observed at advanced stages.

Regarding myelin proteins, progressive reduction in

the levels of myelin basic protein (MBP), myelin prote-

olipid protein (PLP) and 20,30-cyclic nucleotide 30-phos-
phodiesterase (CNP) has been reported in the WM of

the parietal and occipital lobes in AD correlating with

Braak stages V–VI [90]. Reduced levels of CNP have

also been recorded in the WM of the frontal lobes in

advanced AD [89,90].

Our observations are restricted to cases with AD

pathology without co-morbidities. mRNA expression

levels of MBP, PLP1, CNP, MAG, MAL, MOG and

MOBP were preserved in the frontal white matter at

stages I–II/0-A when compared with MA, but they

were transiently decreased at stages III–IV/0-C, and
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increased thereafter to reach nearly MA levels at stages

V–VI/B–C. Regarding protein expression, densitometric

studies of PLP1 in the same region revealed a signifi-

cant decrease in PLP1 immunoreactivity at early stages

of AD, which became more marked at middle stages,

followed by a slight increase without reaching MA val-

ues at advanced stages of AD.

It is worth to stress that differences between AD

stages are not related to the age or gender of the indi-

viduals, but rather to the stage of the disease. Differ-

ences between myelin lipids, as revealed with Kl€uver–

Barrera staining, and myelin proteins as shown by RT-

qPCR and immunohistochemistry, in the same cases

may be related to differing preciseness of the methods

employed. However, the relative recovery of myelin

proteins, but not of phospholipids, at advanced stages

of the disease deserves further study, including analysis

of a possible structural imbalance between lipid and

protein components of the myelin sheet in the elderly

and in AD. Studies in the aged human post mortem

brain have shown decreased internodal distance,

reduced axon thickness and greater vulnerability of

thin myelinated fibres compared with large myelinated

fibres [7]. Little is known about this aspect in AD.

b-amyloid and tau

It has been suggested that cortical atrophy with neuron

loss is not the main cause of WM damage in AD, as

revealed by pioneering neuropathological studies [29],

and later supported by combined MRI and post mortem

examination [9,91]. However, this hypothesis has been

brought into question by other studies. The impact of

b-amyloid on oligodendrocytes is equivocal. On the one

hand, b-amyloid is toxic to oligodendrocytes as identi-

fied in in vitro models, transgenic mice and familial AD

[92-96]. However, Ab oligomers also promote oligoden-

drocyte differentiation and maturation in isolated oligo-

dendrocytes and in organotypic cerebellar slices [97].

In fact, deterioration of the WM parallels, but does not

correlate with either the total amount or the regional

localization of b-amyloid plaques [98]. However, sol-

uble b-amyloid is abundant in the WM in the absence

of plaques in AD [99]. Therefore, the possibility of

oligodendrocyte damage by soluble b-amyloid in AD

cannot be ignored.

WM damage has been correlated with tau pathology

in the cerebral cortex [10,101]. Therefore, myelin

breakdown in AD has been posited as being linked to

axonopathy and transport deficits [10-102]. In favour

of WM axonopathy resulting from tau pathology is the

presence of WM breakdown in transgenic mice bearing

the P301L mutation in the mapt gene [13]. Yet, WM

disruption does not correlate exactly with the localiza-

tion and distribution of NFTs in AD [29]. The present

findings further support the concept of early alteration

of the WM in AD, as transcription of oligodendrocyte

and myelin genes in the frontal WM is altered at stages

III–IV/0–C at which point no NFTs or neuron loss are

found in this region.

Oligodendrocytes and NG2-glia

Previous studies have shown reduced size of the nuclei

of oligodendrocytes [14], and decreased numbers of

Olig2- and NG2-glia-immunoreactive cells [15,106].

Moreover, several oligodendroglial nuclei in the WM

show oxidative damage (8-OHdG immunoreactivity),

whereas other oligodendrocytes exhibit increased

expression of p53 as a marker of stress, and a senes-

cent phenotype (SA-b-gal immunoreactive) [17,108].

Reduction in the expression of NG2 and PDGFRA

mRNA (stages V–VI/A–C, and stages III–IV/0–C and

V–VI/A–C respectively), together with reduced numbers

of NG2- and Olig2-immunoreactive cells in the WM,

points to progressive decline of the oligodendrocyte lin-

eage in the frontal WM with disease progression, which

is in line with the demonstration of early alterations of

the oligodendrocyte lineage linked to AD pathology

[15,106].

Reduction in NG2-glia is important as it probably

compromises the regenerative ability of the WM to

restore the number of oligodendrocytes and myelin

homeostasis. Reduced numbers of oligodendrocytes and

altered control of glucose and lactate metabolites neces-

sary for trophic support for axons may produce, in

turn, altered axonal function, and axonal degeneration.

This scenario takes place at a limited rate in the ageing

human brain [19], but its potentially damaging effect is

overwhelmed in AD [110].

Histone deacetylases (HDACs) remove specific acetyl

groups on a histone enabling it to interact with DNA

thereby modulating gene transcription. Increased

HDAC2 facilitates oligodendrocyte differentiation

[73,74]. Thus, HDAC2 reduction likely compromises

oligodendrogenesis.
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An intriguing feature in this scenario is the increased

expression of MYRF mRNA at early and late stages of

AD. Regarding the number of oligodendrocytes,

reduced expression of MYRF mRNA could be expected,

whereas with MYRF being a factor regulating the

expression of several myelin genes, the expression of

such genes would be expected to increase in AD. We

have no explanation for the altered MYRF regulation

and response in AD.

Transgenic mice expressing b-amyloid and tau as
animal models to uncover WM abnormalities in AD

WM alterations have also been examined in several

types of transgenic mice carrying the APP/PS1

(K670N/M671L Swedish and PS1dE9) mutation, PS1

mutation, and 5xFAD mutation (Swedish mutation,

1716V Florida mutation, V717I London mutation, and

PS1 with M146L and L286V mutation), as well as

3xTg-AD mice (APP Swedish mutation, a presenilin

knock-in mutation and P301L tau) [111-117].

In all these models, WM alterations characterized by

myelin loss and decreased numbers of oligodendrocytes

occur at early stages before the appearance of b-amy-

loid plaques, and they increase for a limited period of

disease progression. Oligodendroglial cell death and

myelin loss occur at early stages in 3xTg-AD mice

[112,113], and region-specific alterations appear before

b-amyloid and tau pathology [112]. However, murine

models of b-amyloid deposition show reparative

responses at later stages of the disease [15,114-116].

No similar increase in Olig2 and NG2-immunoreactive

cells occurs in AD, as shown in the present work and

in previous studies [15-106,109,110]. However, a cer-

tain normalization of the mRNA expression of several

myelin-related genes here observed in AD without co-

morbidities has its counterpart in transgenic models.

As a working hypothesis, it may be suggested that

repair of oligodendrocyte lineage is activated in AD and

transgenic models, but regeneration is minimized in AD

when compared with transgenic murine models.

Vascular alterations in ageing and AD

Vascular and circulatory alterations including

atherosclerosis, small blood vessel disease, tortuous and

coiled arterioles, reduced vascular density and cerebral

complications such as micro-infarcts, hypoperfusion

and micro-bleeds are common in aged human brains

[4,118-123].

In addition to vascular alterations linked to age,

which may occur in any patient, hypoperfusion linked

to b-amyloid deposition, alteration of the blood vessel

walls, increased RAGE, altered microglia and astrocytes

with senescent forms are constant in AD. b-amyloid

angiopathy is found in the vast majority of cases

[124,125] and it shows an early predilection for corti-

cal blood vessels. b-amyloid deposition is accompanied

by decreased expression of efflux receptor for b-amyloid

and increased influx receptor RAGE in AD [126,127].

Other alterations include atrophy, oedema and

increased numbers of pinocytic vesicles in endothelial

cells; thickening and focal disruption of the basal mem-

brane; increase in heparan sulphate, proteoglycans, col-

lagen IV and laminin in the basal membrane, with

atrophy of smooth muscle fibres and augmented aqua-

porin expression in perivascular astrocytes [128-132].

These changes, in conjunction with mounting evidence

of altered blood–brain barrier in AD [133-136], lend

support to the old proposal of reduced perfusion of the

brain as a pathogenic factor in AD [137-139].

Our study in AD cases without co-morbidities

excludes major vascular pathology and systemic circu-

latory factors which could have an impact on the

integrity of oligodendrocytes and myelin. However, we

cannot rule out a role for primary alterations in blood

vessels linked to AD since specific vascular pathology is

one of the manifestations of AD.

Conclusions

WM alterations in AD have been considered the result

of cerebrovascular dysfunction [138,139], axonopathy

linked to retrograde neuronal tau deposition [10-102],

or homeostatic responses to age-related myelin break-

down [140]. These factors are not mutually exclusive,

but rather reinforce each other with age and disease

progression. This study has tried to minimize co-mor-

bidities in a general population with AD pathology

dying in a general hospital. It may be argued that: i.

the population dying in a general hospital is not repre-

sentative of the total population whose health status is

better than that represented by in-patients, and that

co-morbidities are less frequent and serious in the gen-

eral population when compared with individuals dying

in the hospital; and ii. vascular ageing, and of course
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vascular changes linked to AD, cannot be ruled out in

the pathogenesis of WM disorders in the present series

of AD cases without co-morbidities. These are undoubt-

edly reasonable objections.

Yet, several studies have stressed the role of oligo-

dendrocytes as important players in the pathogenesis of

distinct neurodegenerative diseases including AD [141-

144]. In this line, the present observations point to

early alterations of oligodendrocytes and transcription

of genes linked to myelin proteins in WM in cases with

AD pathology without co-morbidities before the appear-

ance of NFTs in these regions, and before the appear-

ance of clinical symptoms of cognitive impairment.

This suggests that oligodendrocytes are along with neu-

rons, targets of AD, and that oligodendrocytopathy is

therefore part of AD.
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