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Purpose: Circulating tumor DNA (ctDNA) has the potential to
guide therapy selection and monitor treatment response in patients
with metastatic cancer. However, germline and clonal hematopoi-
esis—associated alterations can confound identification of tumor-
specific mutations in cell-free DNA (cfDNA), often requiring
additional sequencing of tumor tissue. The current study assessed
whether ctDNA-based treatment response monitoring could be
performed in a tumor tissue-independent manner by combining
ultra-deep targeted sequencing analyses of cfDNA with patient-
matched white blood cell (WBC)-derived DNA.

Experimental Design: In total, 183 cfDNA and 49 WBC samples,
along with 28 tissue samples, from 52 patients with metastatic
colorectal cancer participating in the prospective phase IIl CAIRO5
clinical trial were analyzed using an ultra-deep targeted sequencing
liquid biopsy assay.

Introduction

Monitoring cancer treatment to identify response or progression
provides physicians with the opportunity to adapt a patients’ treatment
regimen. As one-size-fits-all systemic therapy makes room for more
personalized treatment approaches, and ineffective treatment contin-
uation has serious side effects for the patient, there is a clinical need for
biomarkers that can guide the treatment course (1). Currently, clinical
treatment response evaluation is performed by standard CT imaging
following RECIST (2), which is focused on tumor burden (3). Clinical
imaging has limitations for treatment response monitoring because
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Results: The combined ¢fDNA and WBC analysis prevented
false-positives due to germline or hematopoietic variants in 40% of
patients. Patient-matched tumor tissue sequencing did not provide
additional information. Longitudinal analyses of ctDNA were more
predictive of overall survival than standard-of-care radiological
response evaluation. ctDNA mutations related to primary or
acquired resistance to panitumumab were identified in 42% of
patients.

Conclusions: Accurate calling of ctDNA mutations for treatment
response monitoring is feasible in a tumor tissue-independent
manner by combined ¢fDNA and patient-matched WBC genomic
DNA analysis. This tissue biopsy-independent approach simplifies
sample logistics and facilitates the application of liquid biopsy
ctDNA testing for evaluation of emerging therapy resistance,
opening new avenues for early adaptation of treatment regimens.

tumor mass does not always correlate with the clinical outcome. For
example, clinical imaging does not provide information about the
viability of the tumor tissue nor does it constitute the genomic changes
of the tumor, that is, the development and outgrowth of subclones
following treatment-induced selection (4). As a consequence, deter-
mining treatment effectiveness by radiological CT imaging soon after
the start of therapy is challenging. Circulating tumor DNA (ctDNA)
derived from minimally invasive liquid biopsies is a biomarker indic-
ative of the presence of tumor cells (5, 6). Liquid biopsies allow for
longitudinal follow-up and provide the possibility to track intratu-
moral heterogeneity caused by different subclones without a repeated
tumor biopsy and can therefore be a helpful disease monitoring
tool (7-10). However, ctDNA analyses are impeded by germline
variants and white blood cell (WBC) variants related to clonal hema-
topoiesis of indeterminate potential (11, 12), which cloud the detection
of tumor-specific mutations (13-16). Therefore, ctDNA analyses
are often performed in a tumor tissue-informed manner, for which
a tumor biopsy is needed to avoid false-positive calls from germline
and hematopoietic variants. This requires additional logistic steps, is
more complex to perform in daily clinical practice, and is sometimes
not feasible. A liquid biopsy-only approach would therefore be
an attractive alternative. Here, we investigated whether liquid biopsy
cell-free DNA (cfDNA) analyses filtered by liquid biopsy WBC-
derived genomic DNA for germline and hematopoietic variants can
improve detection of tumor-derived alterations in ¢fDNA compared
with the tissue-informed approach using patient-matched tumor
tissue DNA (Fig. 1A). We assessed the applicability of this approach
in a cohort of patients with metastatic colorectal cancer (mCRC),
with both RAS/BRAF wildtype and left-sided primary tumors, who
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Translational Relevance

Treatment response monitoring of patients with metastatic
colorectal cancer is currently performed by CT imaging, which
assesses tumor volume. Liquid biopsy circulating tumor DNA
testing has the potential to replace or complement CT imaging
by assessing the presence and abundance of tumor-specific
mutations, allowing for personalized treatment and early adap-
tation of treatment regimens based on the emergence of therapy
resistance mutations. We here demonstrate that a combined
cell-free DNA and patient-matched white blood cell genomic
DNA analysis from a single blood draw is sufficient to eliminate
the confounding germline and clonal hematopoiesis-associated
alterations and results in the accurate calling of tumor-specific
circulating tumor DNA mutations in a tumor tissue-independent
manner in patients with metastatic colorectal cancer. In this
way, liquid biopsy circulating tumor DNA testing for treatment
response monitoring can be offered to patients with cancer in a
widely accessible manner.

received doublet chemotherapy and were eligible for anti-EGFR mAb
therapy (17-20). These patients are suited to evaluate treatment
response monitoring as not all patients respond (21), while those who
initially respond are prone to develop acquired resistance over
time (22-24).

Materials and Methods

Study design

This translational research is a retrospective analysis of liquid
biopsies collected from patients with histologically proven colorec-
tal cancer with isolated, previously untreated, initially unresectable
liver metastases collected in the prospective multicenter CAIRO5
clinical trial (NCT02162563) of the Dutch Colorectal Cancer
Group (25). The ongoing phase-III CAIROS5 trial investigates the
optimal first-line systemic therapy for patients with initially unre-
sectable colorectal cancer liver metastases. Patients were eligible for
the current study when initially KRAS, NRAS, and BRAF wildtype
and randomized for treatment with panitumumab and doublet
chemotherapy consisting of 5-fluorouracil, leucovorin, and oxali-
platin or irinotecan (FOLFOX or FOLFIRI), and when at least two
liquid biopsy samples were collected. A total of 52 patients, enrolled
between November 2014 and April 2019, were included in this
study. The study was performed in accordance with the Declaration
of Helsinki and a medical ethical committee approved the trial and
all patients signed written informed consent for study participation
as well as liquid biopsy and tumor tissue collection for translational
research. The objective of this research was to identify the best
strategy to determine tumor-specific somatic mutations in liquid
biopsy ctDNA. Therefore, we analyzed serial ctDNA samples with
patient-matched tumor tissue DNA and WBC-derived genomic
DNA. As a second endpoint, we assessed the prognostic and pre-
dictive clinical power of our genomic profiling approach to evaluate
treatment response.

Patient characteristics

Of the 52 patients with initially unresectable colorectal cancer liver
metastases included in this study, 42% were female, 92% had syn-
chronous metastases, and patients had a mean age of 61 years. All
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patients had an adenocarcinoma, were mismatch repair (MMR)
proficient, and had tested negative for KRAS and NRAS mutations
on tumor tissue samples. However, plasma deep sequencing did reveal
baseline KRAS alterations. Non-hotspot mutations in combination
with the used tumor tissue mutation assays, or tumor heterogeneity,
might explain these discordant results, as discussed previously (26).
From February 2017 onward, sidedness and BRAF V600 mutation
status were included in the selection criteria and subsequently, only
patients with a left-sided primary tumor without a KRAS, NRAS,
or BRAF mutation were eligible. No significant differences were
found in baseline mutant allele frequency (MAF) levels among pati-
ents with left- and right-sided primary tumors (independent sample
t test; P = 0.135), among patients with metachronous or synchronous
metastases (independent sample ¢ test; P = 0.339), and among males
and females (Mann-Whitney test; P = 0.155). All patients were treated
with a combination of panitumumab and chemotherapy, consisting
of FOLFIRI in 4 patients (8%), and FOLFOX in 48 patients (92%).
Fourteen patients remained permanently unresectable, whereas
complete radical resection of the primary tumor and liver meta-
stases was achieved in 25 patients. Additional radiotherapy was
given in follow-up after systemic treatment to metastases of 18
patients, and 3 patients received a radioembolization procedure.
Radiological complete response was observed after treatment in
3 patients, partial response was seen in 30 patients, stable disease in
7 patients, and 12 patients had progressive disease. In addition, 3
patients switched to cetuximab, 20 patients received bevacizumab,
5 patients received CAPOX, and 4 patients received capecitabine
monotherapy. In addition, 7 patients were treated with trifluridine
and tipiracil, and 4 patients with tegafur, gimeracil, and oteracil.
Extrahepatic disease, mainly in the lung and peritoneum, was
observed in 17 patients (33%; Supplementary Table S1). An over-
view of ctDNA dynamics, treatments, and radiological response
measurements is depicted per patient in Supplementary Data S1.

Sample characteristics

Liquid biopsies were collected prior to study treatment and every
3 months during follow-up until progression or end of treatment. In
total, 186 liquid biopsies were analyzed before treatment (baseline),
during treatment, after treatment, and included the latest timepoint
closest to progression when available. Six patients missed a baseline
blood withdrawal, and no WBCs were stored for 2 patients, resulting in
45 patients with a sample available for the pretreatment analysis. Blood
was collected using 10 mL cell-free DNA BCT tubes (Streck) and
shipped to the Netherlands Cancer Institute (Amsterdam, the Nether-
lands). Here, plasma and cell pellet were obtained after a two-step
centrifugation process (10 minutes at 1,700 x g followed by 10 minutes
at 20,000 x g) and stored at —80°C until further processing. Further-
more, patient-matched formalin-fixed paraffin-embedded (FFPE)
tissue blocks from surgical resection or biopsies of the primary tumors
were available for 30 patients, and DNA was isolated using the
Qiagen AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). The
available plasma samples, matched blood-derived WBCs, and FFPE
tumor tissue DNA from the 52 patients were sent to Personal Genome
Diagnostics (PGDx). Five plasma samples were already part of an
earlier analysis using a 58-gene panel (27).

Next-generation sequencing of tumor tissue DNA, plasma
cfDNA, and WBC-derived genomic DNA

At PGDx, c¢fDNA was isolated using the Circulating Nucleic Acid
Purification QIAamp kit (Qiagen), with an elution volume of 55 uL.
Concentrations of cfDNA were assessed using the Qubit dsDNA
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High-Sensitivity Assay (Thermo Fisher Scientific). For three plasma
cfDNA, one WBC genomic DNA, and two tumor tissue DNA samples,
the quality of the material was insufficient for library construction and
sequencing analysis. Next, library preparation, hybrid capture, and
sequencing of the plasma cfDNA, WBC-derived DNA, and FFPE
tumor tissue DNA were performed. For the FFPE tumor tissue DNA,
genomic libraries were prepared from 100 ng of DNA by shearing,
end-repair, A-tailing, and adapter ligation. Afterward, the libraries
were PCR amplified. Target enrichment was performed by hybrid-
ized DNA library capture using the PGDx elio tissue complete kit
(Research Use Only, RUO) covering single-nucleotide variants
(SNV), amplifications, translocations, and microsatellite instability
(MSI-H) using a panel consisting of 505 genes (Supplementary
Table S2). Samples were pooled and sequenced with 150 bp paired-
end reads on the Illumina NextSeq instrument (Illumina) targeting
2,500% depth across the targeted regions, taking along a verified
control and a no template control. Two tissue DNA samples did not
pass the quality control process and were excluded (Supplementary
Table S3).

For the contrived c¢fDNA, plasma c¢fDNA, and WBC-derived
DNA samples, genomic libraries were prepared from 40 ng of DNA,
following normalization, end-repair, A-tailing, adapter ligation, and
PCR amplification. For 17 plasma samples, cfDNA yield was limited
and genomic libraries were prepared from DNA input ranging from
25 to 40 ng. Targeted capture was performed by hybridization
using the custom PGDx elio plasma resolve kit (RUO, version 4.27)
covering SNVs, amplifications, translocations, and MSI-H using a
panel consisting of 33 genes (Supplementary Table S4), covering
over 237,000 bp. After pooling, the captured libraries were sequenced
using a targeted deep-sequencing approach with 150 bp paired-end
reads on the Illumina NextSeq instrument targeting 25,000 depth
across the targeted regions, with an average distinct coverage of
2,900, taking along a verified control and a no template control.
Two plasma samples (Supplementary Table S5) and one WBC geno-
mic DNA sample (Supplementary Table S6) did not pass the quality
control process and were excluded.

Somatic mutation calling

Somatic variant identification of tumor tissue DNA, plasma cfDNA,
and WBC genomic DNA was performed using machine learning
software developed by PGDx, which has shown high accuracy for
somatic mutation calling via characterization of germline mutations
and sequencing artifacts (28). In the case of less than 500 bp distinct
coverage in plasma cfDNA, assessment at specific regions of interest
for coverage requirement was done manually, using a 100 bp cutoff to
pass the positive threshold and a 475 bp cutoff to pass the negative
threshold. Results of the plasma cfDNA samples were scanned for
mutations found in other samples of the same patients but not
recorded by the PGDx pipeline. Alterations were considered germline
when present in all plasma ¢fDNA timepoints with a MAF over 35%,
and when not considered a hotspot (>20 cases reported) in the
COSMIC database.

Tumor-specific somatic mutations were identified for all plasma
samples by subtracting the identified WBC mutations at baseline from
the identified plasma cfDNA mutations, as described previously (14).
In short, WBC genomic DNA samples were analyzed for mutations
found in one of the plasma samples of the same patient. When present
in all samples with at least three duplicate reads of the same mutant, the
mutation variant was considered as a hematopoietic variant, except
when the MAF in the WBC genomic DNA was more than 100 x lower
than the MAF in plasma cfDNA, which might indicate circulating
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tumor cells in the WBC genomic DNA instead of a hematopoietic
variant. For mutations identified by cfDNA sequencing but not
identified by WBC sequencing, we computed the posterior probability
that the mutation was tumor derived using the Bayesian model
described in Leal and colleagues (14).

Response evaluation

After removing germline and hematopoietic variants, molecular
response evaluation using ctDNA was calculated on the basis of the
percentage difference of the most abundant alteration after treatment
compared with baseline. Patients without a baseline cfDNA sample
were excluded. The molecular response was compared with the
radiological response evaluated after systemic treatment. A molecular
responder was defined as a patient with elimination of more than 98%
of ctDNA after treatment compared with the measurement before
treatment initiation. On the basis of our previous studies, we used the
elimination of 98% of ctDNA as the threshold for molecular
response (8). For comparison, we also evaluated cut-offs of absolute
levels of ctDNA at baseline.

After treatment completion, clinical follow-up was performed
according to the standard of care. In the case of resectable liver
metastases, this included a clinical review every 3 months as well as
serum carcinoembryonic antigen (CEA) and CT imaging every
6 months. In the case of unresectable liver metastases, patients
continued chemotherapy and were continuously evaluated until
disease progression by serum CEA and CT imaging every 2 months.
CEA levels were compared between two patient groups, that is,
patients with serial CEA levels below 5 ng/mL upon treatment and
patients with serial CEA levels above 5 ng/mL. The follow-up was
recorded until February 1, 2021. The clinical response evaluation
was performed according to standard of care, making use of
RECIST version 1.1.

Statistical analyses

Assessment of analytic performance was determined using stan-
dardized methods guided by the Clinical and Laboratory Standards
Institute (29), including positive (PPA) and negative percent agree-
ment (NPA) for limit of blank, limit of detection, within-run repeat-
ability, between-operator precision, between-day precision, between-
instrument precision, and accuracy. Survival analyses were performed
using Mantel-Cox log-rank tests. A Bonferroni-corrected threshold of
P <0.02 for significance was set for comparison of three groups. A one-
way ANOVA with Tukey multiple comparisons test was used to
compare the difference in the number of mutations among the RECIST
clinical response criteria. Kolmogorov-Smirnov testing was per-
formed to evaluate the fragment distribution. Lead time between CT
imaging and ctDNA, and the number of mutations detected in plasma
before and after treatment, was analyzed using Wilcoxon matched-
pairs signed-rank testing. Pearson correlation tests were used to
calculate the correlation between the number of WBC variants and
age, as well as the correlation between MAFs in ctDNA and matched
WBC samples. Fisher exact tests were used to compare frequencies.
Analyses were performed with Prism version 8 (GraphPad Software,
Inc.) or R Statistical Software (version 3.6.1 Foundation for Statistical
Computing). Unless otherwise noted, hypothesis tests were two sided
with a type 1 error of 5% for determining statistical significance.

Data availability

All data associated with this study are presented in the main text or
Supplementary Materials and Methods. Raw sequencing data are
available via EGA (EGAS00001006695).
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Results

Design and analytic performance of an ultra-deep targeted
sequencing liquid biopsy assay

To perform noninvasive tumor profiling and assessment of ctDNA
alterations for patients with colorectal cancer, we first designed a
targeted gene panel containing common driver genes in colorectal
cancer and other tumor types. The FDA-recognized OncoKb database
(ref. 30; levels 1, 2, and R1) was utilized to ensure that genes relevant
for the management of approved therapies in colorectal cancer were
included, which identified BRAF, ERBB2, KRAS, NRAS, and MSI-H.
We then expanded this to 33 genes in total to encompass relevant genes
and alterations across other common solid tumor types, including
non-small cell lung cancer and melanoma. First, we investigated the
in silico performance of these gene regions across 353 colorectal
cancers previously profiled through The Cancer Genome Atlas project
(31), and established that 99.2% of tumors harbored at least one
somatic mutation covered by the panel, while 76.8% contained three
or more covered alterations. To assess the analytic performance of
this ultra-deep targeted sequencing liquid biopsy assay, currently
known and further referred to as the PGDx elio plasma resolve assay,
a comprehensive set of verification and validation studies were con-
ducted to assess the limit of blank (specificity), limit of detection
(sensitivity), within-run repeatability, between-operator precision,
between-day precision, between-instrument precision, and accuracy
(concordance). In summary, across 39 noncancerous donors, 62
patients with cancer (including 29 patients with colorectal cancer
across a total of 13 tumor types), and 18 contrived samples, a total of
>450 sample replicates were evaluated, which exhibited exceptional

A Sample collection

7
Blood samples

Patients with unresectable CRLM
treated with doublet chemotherapy
and anti-EGFR mAb in the prospective
CAIROS trial (n = 52)

(S]]

FFPE tumor

DNA extraction

—
' o——> WBCgenomicDNA e—»
e——> Plasma cell-free DNA >
=/

e— Tumor tissue DNA o——>

performance for detection of SNVs, insertions/deletions, amplifica-
tions, translocations, and MSI-H (Supplementary Tables S7 and S8).
Overall, these data demonstrated >99% specificity, >95% sensitivity
for detection of alterations 0.25%-1.0% variant allele fraction, >95%
repeatability and precision across different laboratory conditions,
as well as >95% PPA and NPA compared with orthogonal methods
across the majority of alteration types assessed (Supplementary
Tables S7 and S8).

Comparison of patient-matched tumor tissue DNA, plasma
cfDNA, and WBC DNA

To investigate whether variants in ¢fDNA were tumor specific or
instead were germline or hematopoietic in origin, we performed
targeted sequencing of patient-matched cfDNA (Supplementary
Table S5), WBC-derived genomic DNA (Supplementary Table S6),
and tumor tissue DNA material (Supplementary Table S3) obtained
from 52 patients with initially unresectable colorectal liver metastases
(CRLM) who were included in the arm of the CAIRO5 clinical trial
(NCT02162563) receiving treatment with doublet chemotherapy
(FOLFOX or FOLFIRI) and panitumumab (ref. 25; Fig. 1B). Patients
were enrolled in this arm of the CAIRO5 study when they had no
somatic mutations in KRAS, NRAS, or BRAF, based on tumor tissue
analysis. For the current study, DNA alterations were analyzed in both
cfDNA and patient-matched WBC-derived genomic DNA from liquid
biopsies that could be obtained at baseline, that is, before treatment,
which was feasible in 45 of the 52 patients (Supplementary Fig. S1).
Ultra-deep targeted sequencing analyses were performed using the
PGDx elio plasma resolve 33-gene panel at approximately 25,000 %

Sequencing analyses Variant calling

Detection of genomic
germline variation &
hematopoietic variants

Targeted capture (33 genes)
Deep sequencing (25,000x) Identifying tumor-specific

plasma cfDNA alterations

Identifying alterations
in tumor tissue

Targeted capture (505 genes)

tissue samples Sequencing (2,500x)
B Patients
0% 25% 50% 75% 100% Sex Age Treatment Metastasis
Sex Female 30-40 FOLFIRI and panitumumab Synchronous
Male 41-50 FOLFOX and panitumumab Metachronous
M st
Treatment .
. 71-80  Surgery Primary tumor
Surgery _ Not performed Colon right
Yes (no complete resection) Midcolon
Metastasis | [ ves (complete resection) Colon left
Sigmoid
. Rectum

Figure 1.

Analyses of cfDNA in patients with CRLM. A, Schematic representation of the identification of tumor-specific somatic mutations. Blood and tumor tissue samples
were collected from 52 patients with CRLM. WBC genomic DNA was isolated from the blood samples and used to remove germline and hematopoietic variants.
Tumor tissue DNA was isolated and tumor alterations were identified. Tumor-specific somatic mutations were identified by subtracting the identified WBC
hematopoietic and germline variants from the identified plasma cfDNA alterations. B, Baseline characteristics of the 52 patients with CRLM included. CRLM; colorectal
liver metastases; EGFR, epidermal growth factor receptor; FFPE, formalin-fixed paraffin-embedded; FOLFIRI, folinic acid, fluorouracil, and irinotecan; FOLFOX, folinic

acid, fluorouracil, and oxaliplatin; WBC, white blood cell.
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coverage (Supplementary Table S4; refs. 28, 32). A total of 157 alter-
ations were identified in the plasma cfDNA samples (Fig. 2A). All
45 patients (100%) had at least one detectable plasma cfDNA muta-
tion before treatment initiation. Parallel ultra-deep sequence analyses
of the patient-matched WBC genomic DNA revealed 39 alterations
in total (Supplementary Table S9), of which 29 alterations were also
present in the baseline cfDNA (Fig. 2B). These variants comprised
rare changes not excluded on the basis of variant databases, as well
as potentially pathogenic germline alterations in BRCAI and BRCA2
genes specifically, which were not filtered because of their clinical
utility. By filtering cfDNA alterations by the WBC-derived germline
and hematopoietic somatic alterations, the plasma ctDNA alterations
were obtained (Fig. 2C). This combined sequencing analysis of
plasma cfDNA together with WBC genomic DNA prevented the
calling of false-positive ct DNA mutations in 18 patients (40%). After
filtering, 45 patients (100%) had at least one detectable plasma
ctDNA mutation before treatment initiation, with an average of
three tumor-derived mutations per patient with a median MAF of
23% (Supplementary Fig. S2). There was a strong correlation between
MAFs of variants observed in both c¢fDNA and matched WBC
samples (Pearson correlation; r = 0.85; P < 0.0001; Fig. 3A). Variants
with a WBC MAF of approximately 50% and similarly high cfDNA
MAFs most likely represent germline variants, whereas the variants
with substantially lower WBC MAFs and similarly low cfDNA MAFs
are more likely hematopoietic variants. The number of WBC var-
iants was not significantly correlated with age (Pearson correlation;
r = 0.14, P = 0.33; Supplementary Fig. S3). As cfDNA fragments
derived from tumor cells are on average slightly smaller than c¢fDNA
fragments derived from WBCs (33), we used this cfDNA charac-
teristic to verify whether cfDNA fragments containing germline
variants differed in size from those with tumor-specific variants in
cfDNA molecules containing TP53, BRCA, and APC alterations.
As expected, we observed that fragments carrying tumor-derived
mutations were shorter than wildtype, germline, and WBC-derived
hematopoietic fragments (Kolmogorov-Smirnov test, P < 0.001;
Fig. 3B; Supplementary Fig. S4A).

Next, we investigated whether the sequencing of patient-matched
tumor tissue DNA, which was available for 28 patients (54%; Supple-
mentary Fig. S1), provided additional information to the WBC-
informed cfDNA calling. Targeted sequencing analysis was performed
using the PGDx elio tissue complete 505-gene panel for detecting
alterations in tumor tissue DNA (Supplementary Table S2; ref. 34).
This tumor tissue analysis revealed all but one of the germline variants
in the samples analyzed but did not identify the majority of hemato-
poietic variants as identified by the WBC analyses (Supplementary
Fig. S5, Supplementary Tables S10 and S11). Interestingly, 1 patient
had a somatic TP53 V173G alteration with a tumor tissue MAF of 5%
and a plasma cfDNA MAF of 12%, which might be interpreted as a
tumor tissue—confirmed plasma ctDNA mutation. However, WBC
analyses also reported a MAF of 14%, indicating that this TP53
alteration is a hematopoietic variant. This patient also harbored
another TP53 (R248W) variant that was not found in the WBCs but
only detected in cfDNA and tumor tissue. Comparing within this
patient the tumor-specific TP53 R248W to the hematopoietic TP53
V173G variant by fragment length distributions revealed that TP53
R248W harbored a shorter fragment length than wildtype TP53 and
the hematopoietic TP53 V173G, providing additional evidence that the
TP53 V173G variant is indeed hematopoietic and not tumor derived
(Supplementary Fig. $4B). This demonstrates that tumor tissue anal-
yses can result in false-positive calls due to the presence of hemato-
poietic variants in WBC.

AACRJournals.org
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Treatment response monitoring

Next, we explored the applicability of serial WBC-filtered cfDNA
analyses for treatment response monitoring. A total of 183 longitudinal
liquid biopsy cfDNA samples were analyzed from 52 patients with
CRLM. All patients had an adenocarcinoma, were MMR proficient,
and were treated with a combination of panitumumab and chemo-
therapy (Fig. 1B). In these 183 liquid biopsy samples, 474 cfDNA
alterations were observed (Supplementary Table S12). Sequencing the
patient-matched WBC genomic DNA samples revealed 39 alterations,
of which 16 germline and 23 hematopoietic variants, resulting in
filtering 106 non—tumor-specific somatic alterations from the plasma
cfDNA (Supplementary Fig. S6; Supplementary Table S13).

The prognostic value of liquid biopsy ctDNA monitoring was
assessed by evaluating the overall survival for patients with or
without a molecular response to treatment. On the basis of previous
analyses (8), and additional cut-off evaluations (Supplementary
Fig. S7), we defined a molecular response as elimination of more
than 98% of ctDNA upon treatment based on the highest MAF.
Molecular nonresponse was defined as patients with an increase
of ctDNA or elimination of less than 98% of ctDNA upon treat-
ment. Supplementary Figure S8A shows an example of a patient
classified as a molecular responder, illustrated by clearance of all
ctDNA upon treatment. Supplementary Figure S8B and S8C depicts
patients classified as molecular nonresponders, presented by MAF
levels that do not drop below 20% at any time (Supplementary
Fig. S8B) or emerging EGFR ectodomain mutations (Supplementary
Fig. S8C). Of the 46 patients whose ctDNA levels could be deter-
mined at baseline, 28 (61%) were classified as molecular responders,
whereas 18 (39%) patients were classified as molecular nonrespon-
ders to treatment. We evaluated the molecular response to treatment
using the tissue-informed (Fig. 4A) and WBC-informed approach
(Fig. 4B) for all 26 patients with tumor tissue DNA, c¢fDNA, and
WBC genomic DNA analyses. The molecular response to treatment
was less prognostic for overall survival when ctDNA was not filtered
for germline and hematopoietic variants [not filtered: log-rank
P = 0.195; HR = 2.2; 95% confidence interval (CI) = 0.7-7.2 vs.
filtered: log-rank P = 0.029; HR = 3.4; 95% CI = 0.8-15.0],
highlighting the importance of the combined ¢fDNA and WBC
analyses over the tissue-informed approach. Next, the WBC-
informed molecular response evaluation was compared with the
clinical response evaluation for all 46 patients. Using the WBC-
informed approach, molecular responders showed a significantly
longer overall survival compared with molecular nonresponders
(median 59 vs. 27 months; log-rank P = 0.039; HR = 2.4; 95% CI =
0.9-6.1; Fig. 5A). In contrast, the overall survival prediction
between patients with and without progressive disease based on
RECIST evaluation of CT imaging was less strong, with a median
overall survival of 39 months and 52 months, respectively (log-rank
P = 0.197; HR = 1.8; 95% CI = 0.6-5.6; Fig. 5B; Supplementary
Fig. §9). In addition, patients with a radiological complete and par-
tial response had a significant decline in the number of mutations
detected in plasma after treatment compared with baseline than
patients with progressive disease (Supplementary Fig. S10).

In addition to evaluating ctDNA dynamics, that is, changes
in ctDNA upon treatment, we examined the prognostic value of
ctDNA levels at baseline. Absolute levels of ctDNA at baseline were
not prognostic for overall survival (Supplementary Fig. S11).
Whereas ctDNA was able to make a valid response prediction after
treatment (Fig. 5A), potentially allowing for early switching of
therapies, serum CEA levels after treatment were not prognostic for
overall survival (HR = 1.1; 95% CI = 0.3-5.1; log-rank P = 0.867;
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A Cell-free DNA alterations Figure 2.
PatientID

Identification of WBC and ctDNA variants in cfDNA. A, cfDNA
alterations identified using a targeted 33-gene panelin 45 baseline
plasma samples. B, Germline and hematopoietic alterations were
identified on the basis of targeted sequencing of patient-matched
WBC-derived genomic DNA. C, ctDNA alterations identified after
correction for germline and hematopoietic variants detected in
WBC-derived genomic DNA. cfDNA, cell-free DNA; WBC, white
blood cell.
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Figure 3.

cfDNA and WBC variant frequencies and fragment length distributions. A, WBC-derived MAF (x-axis) and corresponding plasma cfDNA MAF levels (y-axis; Pearson
correlation coefficient = 0.85, P < 0.001). The different colors represent the probability of a variant being tumor derived when not observed in WBC genomic
DNA. Variants with a WBC MAF of approximately 50% (right vertical dotted line) and high cfDNA MAFs likely represent germline variants. The variants with both
low WBC and cfDNA MAFs likely represent hematopoietic variants. B, Cumulative distribution of cfDNA fragment length (bp) for tumor-specific TP53 (light blue)
and APC (orange) variants revealed shorter fragment lengths than wild-type (gray), germline (dark blue), and hematopoietic variants (red; Kolmogorov-Smirnov

test, P < 0.001). cfDNA, cell-free DNA; MAF, mutant allele frequency; WBC, white blood cell.

Supplementary Fig. S12A). CEA levels could only discriminate
clinical response based on overall survival when taking all longi-
tudinal measurements after treatment into account (Supplementary
Fig. S12B).

Detection of disease recurrence and residual disease

After a molecular response to treatment, that is, elimination of
>98% of ctDNA, lead time until disease recurrence could be evaluated
for 30 patients when restricting the analyses to patients with a blood
sample at least 6 months before clinical disease progression (Supple-
mentary Fig. S13A). We observed significantly earlier detection of
disease progression based on ctDNA analyses compared with con-
ventional CT imaging, with a median difference of 3.2 months (Wil-
coxon matched-pairs signed-rank test; P < 0.001; Supplementary
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Figure 4.

Fig. S13B). Progression was missed using ctDNA analyses of 4 patients
(13%; patients 12, 108, 130, 294), and 2 patients (7%) had a complete
clinical response and therefore showed no progression of disease on
CT imaging nor on ctDNA.

A subset of the patients in the CAIRO5 study was ultimately deemed
resectable and had surgical resection of their solitary liver metastasis
(n = 38). For the 12 patients among these with a postoperative liquid
biopsy sample (range, 31-818 days; Fig. 6), the event-free survival
(EFS) calculated as the time from last surgery to disease recurrence
or death, whichever came first, was significantly lower for 8 patients
with detectable ctDNA postoperatively (median EFS of 5.7 months)
compared with 4 patients with undetectable postoperative ctDNA
(median EFS of 39.1 months; HR = 6.2; log-rank P = 0.003; Supple-
mentary Fig. S14A). All patients with postoperatively positive tDNA
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Comparison of tissue-informed and WBC-informed approaches. Tissue-informed and WBC-informed approaches are compared for the 26 patients with plasma
cfDNA, tumor tissue DNA, and WBC genomic DNA available prior to treatment. The molecular response was defined as ctDNA clearance over 98% after treatment
compared with the initial baseline ctDNA measurement. A, Assessment of overall survival based on tissue-informed ctDNA analyses (HR = 2.2; 95% Cl = 0.7-7.2;
log-rank P = 0.195). B, Assessment of overall survival based on WBC-informed cfDNA analyses (HR = 3.4; 95% Cl = 0.8-15.0; log-rank P = 0.029). cfDNA, cell-free
DNA; ctDNA, circulating tumor DNA; HR, hazard ratio; WBC, white blood cell.
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Overall survival based on molecular response assessment and radiological response evaluation after treatment. Overall survival was compared for the 46 patients
with cfDNA assessment prior to treatment. A, Overall survival and molecular response evaluation to treatment based on ctDNA (HR = 2.4; log-rank P = 0.039). The
molecular response was defined as ctDNA clearance over 98% after treatment compared with the initial baseline ctDNA measurement. B, Overall survival and
radiological response evaluation of CT images (HR = 1.8; log-rank P = 0.197). The radiological response was based on the RECIST evaluation after treatment. cfDNA,
cell-free DNA; ctDNA, circulating tumor DNA; CT, computed tomography; HR, hazard ratio; WBC, white blood cell.

results developed a recurrence (100% specificity). Postoperative
ctDNA measurement missed disease recurrence in 2 patients, one of
whom developed the recurrence more than 3 years after surgery (80%
sensitivity; Fisher exact test P < 0.0001; Supplementary Fig. S14B).

Primary and acquired anti-EGFR mAb treatment resistance
Systemic treatment with therapeutic mAb directed against EGFR
can be offered to patients with mCRC, provided that no mutation in
either KRAS, NRAS, or BRAF is present and the location of the primary
tumor is left sided (17, 18), but it has shown to be effective in only a
limited percentage (10%-20%) of these patients (35). Somatic muta-
tions in other genes like PIK3CA, EGFR, PDGFRA, FGFR, as well as
amplifications of EGFR, ERBB2, and MET, are known to be involved in
the primary and acquired anti-EGFR mAb treatment resistance in
patients with mCRC (22, 36-39). Because all patients in our study
received panitumumab as an anti-EGFR agent, we evaluated the
presence of somatic DNA alterations in KRAS, NRAS, BRAF, EGFR,
PIK3CA, PDGFRA, FGFR, and amplifications in EGFR, MET, and
ERBB2 as a mechanism of primary and acquired treatment resistance.
In addition to the evaluation of somatic alterations in ctDNA, we
assessed amplifications in tumor tissue (Supplementary Table S14) and

in plasma ctDNA (Supplementary Table S15). Gene mutations asso-
ciated with primary resistance, which were detected at baseline before
the start of treatment, occurred in 17 patients (33%). Mutations
associated with acquired resistance, which were detected after the
start of treatment, occurred in 5 patients (10%) who were mutually
exclusive from the patients with primary resistance (Supplementary
Fig. S15). These data imply there is selection pressure to escape the
anti-EGFR mADb treatment, yet only in patients lacking these resistance
mechanisms at baseline. In addition, for the patients who show
acquired resistance on ctDNA analyses, the resistance mechanisms
were not detected in the available tumor tissue, highlighting the
potential of ctDNA analyses for the detection of anti-EGFR mAb
treatment resistance.

Discussion

Liquid biopsy testing for ctDNA is a promising new diagnostic
entity. We here demonstrate that correcting for germline and WBC
variants is both essential and sufficient for identifying tumor-specific
mutations in patients with mCRC. Our analyses showed that com-
bined deep sequencing of plasma cfDNA with patient-matched
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WBC-derived genomic DNA is able to distinguish tumor-specific
mutations from germline variants and WBC alterations associated
with clonal hematopoiesis.

The novelty of our approach was the possibility of comparing
plasma, WBC-derived genomic DNA, and tumor tissue DNA on
an individual patient level and using this information to follow
patients during the course of treatment. Other studies investigating
patients with mCRC have utilized tissue-informed plasma sequencing
without analyses of WBCs (40-46), or did not monitor ctDNA
longitudinally (47-49). WBC-informed serial liquid biopsies have
been evaluated in a study with patients with stage III colorectal cancer,
but only using a pooled set of healthy controls and did not include
matched patient-specific filtering (50). In the current study, sequenc-
ing matched WBC DNA prevented misclassification of germline and
clonal hematopoietic variants in 40% of patients, whereas sequencing
of patient-matched tumor tissue DNA for the tissue-informed cfDNA
analyses had no additional benefit to the WBC-informed approach.
These results indicate that liquid biopsy analyses can be performed for
patients with mCRC without the requirement of sequencing tumor
tissue. Because of the fact that tumor tissue is often not readily
available, liquid biopsy-only testing without the need for patient-
matched tissue sequencing has important advantages, including
reduced logistical complexity and faster turnaround times, thereby
facilitating clinical implementation.

The clinical relevance of cfDNA sequencing was assessed by apply-
ing a genomic profiling approach on serial liquid biopsies to evaluate
the molecular response to treatment in patients with CRLM receiving
chemotherapy and anti-EGFR mAb treatment in a well-controlled
clinical trial setting. Longitudinal liquid biopsy ctDNA measurements
yield both quantitative (mutant allele fractions) and qualitative (gene
mutation) information, allowing simultaneous tracking of different
tumor clones. Detecting resistance mechanisms to anti-EGFR treat-
ment in potentially actionable treatment targets, like EGFR and
PIK3CA mutations or ERBB2 amplifications (22) could provide
opportunities for dynamic adaptation of patients’ treatment regimens
or enrollment into new clinical trials. Although panitumumab was not
given as monotherapy in the current study, we observed primary
resistance in 33% and acquired resistance in another 10% of patients,
indicating that a substantial proportion of these patients might benefit
from such analyses. For example, 1 patient had a pretreatment EGFR
S464 L mutation, a known resistance mechanism to anti-EGFR
treatment. This patient showed an initial response, which presumably
must have been due to chemotherapy rather than anti-EGFR therapy.
Furthermore, all 5 patients with acquired resistance showed clinical
disease progression at the blood evaluation timepoint or developed
disease progression soon afterward.

The current study also showed that ctDNA dynamics after treat-
ment are informative for patient outcome and can discriminate
molecular responders from nonresponders at an early phase of a line
of therapy. When investigating all patients with no detectable ctDNA
after treatment, who had a complete resection of both the primary
tumor and the liver metastases, 11 of 12 patients were still alive at the
last moment of follow-up. Molecular response evaluation was more
indicative of overall survival than clinical response evaluation (i.e.,
RECIST) or serum CEA, although it could be useful to evaluate the
combination of ctDNA and CEA in the future. As for predicting
recurrence of disease after liver resection, despite the limited number
of patients analyzed, detection of postoperative ctDNA was indicative
of earlier disease recurrence with high sensitivity and specificity and a
lead time in favor of ctDNA over CT imaging. These observations
suggest that patients with postoperative detectable ctDNA are at high
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risk for recurrence and might benefit from intensified postoperative
disease management.

It is important to note that this study included patients with
colorectal cancer liver-only metastases, which have among the highest
levels of ctDNA compared with other colorectal cancer metastatic
sites (51) and other types of cancer (52). The extent to which the results
of the current study using patients with CRLM can be transferred to
patients with other sites of metastases, other types of cancer, or earlier
stages of colorectal cancer will need to be evaluated.

In conclusion, this study shows that WBC-informed plasma ctDNA
testing provides a minimally invasive approach that allows for tissue-
independent longitudinal treatment response monitoring that may
facilitate clinical intervention in patients with mCRC.
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