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Abstract: Zinc is a redox-inert trace element that is second only to iron in abundance in biological
systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a
labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging
from structural to catalytic to replication to demise. This review discusses the influential properties
of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial
element. We also touch upon the significance of zinc among eukaryotic cells and how it may
modulate their survival and death through its inhibitory or modulatory effect on certain receptors,
enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating
agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the
multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal
the consequential prominence of this remarkable transition metal in human health and disease.
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1. Introduction

Zinc, an essential component of life in the three domains, follows iron as the second
most abundant transition metal ion in living organisms [1,2]. About 5–6% and 9–10% of
proteins from prokaryotes and eukaryotes, respectively, depend on this metal to fulfill their
biological functions [1]. A bioinformatics study found that over 50% of zinc-bound proteins
are enzymes, and in the vast majority of them, the metal plays a catalytic role [3]. About
20% of them use zinc as a structural component, and in a small percentage, it is a regulator
or substrate of enzymatic activity [3–5]. The requirement of zinc in such a high number
of proteins illustrates its fundamental role in numerous biological processes [6–11]. The
essential nature of zinc for cellular viability, together with the toxic nature of the element
in higher concentrations, led prokaryotes [12] and eukaryotes [13] to evolve export and
import systems to keep ionic homeostasis.

This review summarizes representative examples of zinc’s action on bacterial vir-
ulence and antibiotic resistance gene dissemination, different bacterial mechanisms to
maintain zinc homeostasis, and possible uses of the metal ion in the development of novel
therapeutics. It also discusses multiple roles that zinc ions play in mammalian cells, in-
cluding its modulatory effect on cell signaling and cell death, in which a wide variety of
therapeutic applications is continuously being researched and developed to produce an
immense volume of information. Therefore, this review offers the reader a representative
rather than an exhaustive description of mechanisms of action, uptake, and export as well
as pharmacological uses of zinc and its chelators.

2. Prokaryotes
2.1. Zinc as Antimicrobial

Zinc is a member of the group of metals that participate in the nonspecific mechanisms
of defense against infection [14,15]. The host defenses reduce trace elements’ availability to
starve the infecting bacterial cells in a response known as “nutritional immunity”, a term
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coined in the mid-70s [16]. The first hint to this defense strategy’s existence occurred in the
mid-40s, when the high-affinity iron-binding transferrin was discovered [17,18]. Immedi-
ately after the invasion of infecting bacteria, the body responds, reducing free iron levels in
the blood and tissue (hypoferremic response) [19,20]. Posterior studies have shown that
nutritional immunity is a strategy that is not limited to iron sequestration and also includes
restricting the availability of other essential elements, including zinc [21–25]. In the face of
these nutritional limitations, microorganisms evolved stratagems to scavenge sufficient
quantities of trace elements necessary to support their metabolism and growth. Zinc is a
component of nutritional immunity; in human serum, which contains 0.1% of the total body
zinc, about 98% is bound to proteins, mainly albumin (80–85%) and alpha-2-macroglobulin
(5–15%), and in marginal quantities to other proteins [26–28]. Additionally, zinc is fur-
ther restricted to pathogens in ongoing infections by releasing calprotectin, a protein that
sequesters this metal and creates zinc-limited microenvironments [29–32]. Calprotectin,
a heterodimer formed by the S100A8 and S100A9 proteins, also binds manganese and
iron [31,33,34], and it has a proven effect against infection [23,33–38]. Other proteins, like
the S100 family calgranulin C (S100A12) and psoriasin (S100A7), have also been shown
to be able to bind zinc and could contribute to nutritional immunity response [39,40].
As zinc is a component of nutritional immunity, bacteria need to sense the intracellular
concentrations and put in motion the different mechanisms involved in this element’s
homeostasis. Interestingly, while essential to support growth, zinc is also known to inhibit
the progress of infectious processes caused by bacteria [41,42] and viruses, including SARS-
CoV-2, the causative agent of COVID-19 [43–46]. Zinc also inhibits SOS-induced antibiotic
resistance and horizontal transfer of antibiotic resistance genes in enteric bacteria [47,48].
Another utilization of zinc as defense by the human host is through macrophages, which
use it within the phagolysosome to intoxicate invading bacterial cells [49–53]. A common
mechanism by which zinc in excess is toxic to bacterial cells is by binding to noncognate
proteins [52,54–56].

The effect of zinc in the progress of infection was also investigated utilizing zinc-
deficient murine models [45,57,58]. Furthermore, zinc-deficient mice were found to be
suitable models for more general studies of infections caused by enterotoxigenic Escherichia
coli, Shigella flexneri, and Campylobacter jejuni and potential treatments and immuniza-
tion [45,57,58].

While zinc uptake is an essential process for bacterial pathogens to cause disease, this
element can also be detrimental to some infections. Since long ago, zinc has been used
as treatment and prophylaxis of diarrheal diseases [59–61]. It was originally thought that
the beneficial effect of zinc in treating enteropathogenic E. coli (EPEC)-produced diarrhea
was entirely caused by enhancement of the immune response and inhibition of ecto-5’-
nucleotidase, an enzyme that catalyzes the conversion of the 5’-AMP to the secretagogue
adenosine [57,58]. However, this initial idea proved to be insufficient to explain the ther-
apeutic effects observed [57,58,62]. Addition of zinc acetate at sublethal concentrations
caused a decrease in the expression of various virulence factors [62]. The mRNA species cor-
responding to the bfp gene (bindle forming protein) and various esp genes (EPEC-secreted
proteins) were expressed at reduced levels. Furthermore, zinc acetate lowered the bacte-
rial cells’ adherence, inhibited secretion of infection-induced fluids into ileal loops, and
reduced histopathological damage in an animal model of infection [62]. Zinc acetate also
had effects on the virulence of Shiga-toxigenic E. coli (STEC) and enteroaggregative E. coli
(EAEC) [44,45,63]. It inhibited STEC adherence to cultured cells, expression of enterohem-
orrhagic E. coli (EHEC)-secreted protein A (EspA) and Shiga toxin. In vivo, it reduced fluid
secretion and toxin levels in the loops and reduced STEC-induced histological damage [64].
In several forms like oxide, sulfate, and acetate, zinc was also used to test its effects on
EAEC [42]. A decrease was observed in biofilm formation, cell adhesion, and expression of
other potential or confirmed virulence factors [42]. The observation that zinc reduced the
expression of recA suggests that inhibition of the SOS response may be one mechanism by
which zinc acts on E. coli virulence [41]. This finding also prompted other studies to test if
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zinc could also reduce SOS-induced hypermutation response to antibiotics or horizontal
transfer of resistance traits [48,65–67]. Zinc blocked the SOS-induced (hypermutation
response) development of resistance in E. coli, Klebsiella pneumoniae, and Enterobacter cloacae,
probably by inhibiting RecA binding to single-stranded DNA [47]. Zinc also interfered with
horizontal transfer of a β-lactamase gene from Enterobacter to E. coli strain [47]. As observed
with other zinc effects [63,68], the complex zinc ionophore showed significantly higher
activity than zinc salts in inhibition antibiotic-induced hypermutation [47].

Environmental enteropathy, a small intestinal disorder caused by subclinical intestinal
infections, produces chronic low-grade intestinal inflammation and dysregulation of tight
junctions [69,70]. A study on adults with environmental enteropathy showed disruptions
that cause leakage in the patients’ epithelial barrier [69]. The authors hypothesized that
the sites with epithelial defects could be responsible for bacterial translocation. In vitro
experiments utilizing enteropathogenic E. coli and Citrobacter rodentium showed that these
bacteria induced barrier dysfunction, and treatment with numerous compounds like zinc,
epidermal growth factor, colostrum, trefoil factor 3, resistin-like molecule-β, hydrocortisone,
and ML7 (an inhibitor of the myosin light chain kinase) increased transepithelial resistance
while reducing bacterial translocation [71]. This effect was nutrient-independent, and, of all
the tested compounds, only zinc exhibited an antimicrobial activity [71].

2.2. Zinc Oxide Nanoparticles as Antibacterial

Zinc ions at concentrations higher than those needed for the cells’ normal physiology
are detrimental [12]. Multiple effects of excess zinc concentrations lead to bacterial cell
death [12,52]. Interestingly, zinc ions at sublethal concentrations inhibit biofilm forma-
tion but do not disrupt preformed biofilms in Actinobacillus pleuropneumoniae, Salmonella
typhimurium, Haemophilus parasuis, and at a lesser level, E. coli, Staphylococcus aureus, and
Streptococcus suis [72]. Zinc oxide is the most common, but not the only, zinc compound used
as an antibacterial [73,74], and it has attracted great interest in nanoparticle form [75,76].
Zinc oxide nanoparticles are being researched for applications not only against infections
but also as drug delivery tools and as therapies for a variety of conditions [75]. The en-
thusiasm for nanoparticles’ uses as antibacterial agents is partly fueled by their particular
mechanisms of action that differ from those utilized by currently used antibiotics and have
targets reducing the frequency of appearance of resistant strains [77,78]. Various research
teams have tested the activity of zinc oxide nanoparticles as antibacterials against numerous
species [75,76,79–84]. The mechanism by which zinc is toxic to bacterial cells is ultimately
that of other forms of the ion; however, zinc oxide seems to be more effective when it is
administered in nanoparticle form [80,81,85]. Zinc oxide nanoparticles release zinc in an
aqueous medium, which then penetrates the cells and produces toxic effects [75]. Zinc
oxide nanoparticles are robust candidates to be developed as standalone antimicrobials or
as components in combination therapies against multiresistant bacterial infections.

2.3. A Brief Overview of Zinc Homeostasis in Bacterial Pathogens

The intracellular concentration of zinc must be tightly controlled to ensure that it is
high enough to sustain life but low enough not to cause toxic effects that can lead to cell
death [6,12,85–88]. Through the molecular interactions with biomolecules, zinc participates
in a wide variety of metabolic processes as well as repair and maintenance of cell struc-
tures and biomolecules that are essential for bacterial cell growth [7,13,81,89,90]. However,
higher than needed concentrations of zinc are highly detrimental to the life of the bacterial
cell. Infecting bacteria may need to overcome zinc deprivation or toxicity depending on
the location of the infection. While nutritional immunity produces deprivation of the metal
ions, intracellular and other niches have the opposite effect [50,56]. As a consequence
of the strict requirements for intracellular zinc concentrations, bacteria evolved several
tightly regulated uptake, efflux, binding, and sensing mechanisms critical for pathogenic-
ity [6,12,23–25,33–37,76,86,89–94]. This section will discuss the major and better-known
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mechanisms of zinc import and export. Major regulation mechanisms will be described in
the following section.

Import systems can be specific, usually coupled to an energy source, and nonspe-
cific, mostly exerting their function through diffusion gradients across the cytoplasmic
membrane [12]. A major import mechanism is ZnuABC, an ATP-binding cassette (ABC)
transporter [95,96]. The ZnuA and ZnuB are the periplasmic and inner membrane compo-
nents, respectively, and ZnuC is the cytosolic ATPase. ZnuA, the periplasmic component,
belongs to the cluster A-I of substrate binding proteins [97]. These proteins are associ-
ated with ABC transporters in prokaryotes. They are periplasmic in Gram-negatives or
lipid-anchored in Gram-positives. They can also exist as domains of periplasmic or inner
membrane components [97,98]. The znuA gene is transcribed in opposite orientation to
znuC–znuB [96,99]. The transport complex consists of one molecule of the periplasmic
ZnuA and two ZnuC and ZnuB monomers [96,99]. Another component of this zinc uptake
mechanism is ZinT (also known as YodA) [100–102]. This periplasmic metal-binding pro-
tein recruits zinc and delivers the ion to the ZnuABC complex through specific interaction
with ZnuA [103–105]. It is worth mentioning that ZinT is not exclusively a zinc-binding
protein. It shows affinity for other divalent metal ions and also participates in detoxifica-
tion [106]. In Gram-negatives, there is a need for one or more outer membrane receptors.
The protein ZnuD found in bacteria belonging to several families like Neisseriaceae, Moraxel-
laceae, Acinetobacteriaceae, Pseudomonadaceae, and Bordetellaceae was proven to be a zinc
transporter and a requirement for a high virulence phenotype [107,108]. The 82 kDa ZnuD
is a member of the TonB-dependent siderophore receptor family of proteins, and it may be
able to recognize free or metallophore-complexed zinc ions [107]. ZnuD has been identified
as a potential candidate for a vaccine against at least two bacteria: Acinetobacter baumannii
and Neisseria meningitidis [103,109]. Interestingly, while the znuD gene is included in the
A. baumannii chromosome, another homolog, znuD2, is present in about half of the isolates,
in at least one case within a plasmid [93]. The role of ZnuD in A. baumannii virulence was
proven but that of ZnuD2 remains to be clarified because of difficulties in generating a
mutant that inactivates the gene [93]. Although most studies about the ABC transporter
mechanism of uptake of zinc were carried out on Gram-negative models, research on
Gram-positives showed that this mechanism also exists in these bacteria. The proteins
AdcB and AdcC are the integral membrane and ATPase components, respectively. In addi-
tion, there are substrate-binding lipoproteins, AdcA and AdcAII, that are attached to the
membrane’s surface and are the functional equivalents to ZnuA and ZnuT [110]. Structural
and functional studies showed that AdcA and AdcAII are substrate-binding proteins that
bind zinc, but they do it via different structural features [97,110]. In particular, the structure
of AdcA resembles a fusion between the zinc-binding domains of ZnuA and ZnuT [110].
Although AdcA and AdcAII have redundant functionalities in vitro, they are both required
for full virulence in Streptococcus pneumoniae [110].

An outer membrane protein found in N. meningitidis is CbpA, which binds calprotectin
in complex with zinc ions and, in a process that resembles the uptake of iron from transferrin
or lactoferrin, mediates acquisition of zinc in a TonB-dependent manner [104].

Until recently, the mechanism to scavenge an essential metal ion by means of small
molecular weight, high-affinity compounds known as siderophores was mostly known
for the uptake of ferric iron. Siderophores compete with the host organism’s high-affinity
binding proteins, and the ferric–siderophore complexes are internalized into bacterial cells
through specific receptors [105,111]. Recent research showed that bacteria possess a zinc
uptake mechanism that mimics siderophore-mediated iron-uptake systems. Metal chela-
tors, which are chemically unrelated to siderophores but play a similar role transporting
several metals, were found in many bacteria [112]. They are known as metallophores, and
when they transport zinc, are sometimes called zincophores. A broad-spectrum metal-
lophore, staphylopine, produced by S. aureus, is one of the earliest metallophores found in
a human pathogen [112]. Staphylopine participates in the transport of nickel, cobalt, zinc,
copper, and iron [112]. Furthermore, the staphylopine biosynthetic pathway is conserved in
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numerous bacterial pathogens, and in some cases, it is associated with virulence [112,113].
Although other zincophores were subsequently discovered, research on these elements
is in its infancy. Many more will most probably be detected and characterized in the
future [90,114–116].

ZIP (zinc–iron permeases or ZRT/IRT-like proteins) mediate zinc uptake into the
cell’s cytosol. They were thought not to exist only in bacteria, but it is now known that
they can be found in all kingdoms [117]. Expression of some of them is regulated by zinc
concentration like the Zip11 and Zip63 from Nostoc punctiforme [118] or the Salmonella
enterica ZupT, which was shown to be a virulence factor [119]. Conversely, expression of
the E. coli ZupT seems to be constitutive [120].

Transcriptomic analyses using mutants that lack a functional Zur (zinc uptake regu-
lator, a regulator discussed below) led to the identification of elements involved in zinc
homeostasis [99,121,122]. One of them, the A. baumannii ZrlA, is a zinc-binding peptidase
induced in zinc-limiting conditions. A lipoprotein anchored to the inner membrane, ZrlA
is necessary for appropriate uptake levels under zinc starvation and may promote uptake
through modifications of the peptidoglycan [94]. Interestingly, mutants lacking a functional
ZrlA are also more susceptible to antibiotics. Both effects may be related to the protein’s
contribution to cell wall integrity [94]. Another protein involved in A. baumannii zinc
homeostasis is ZigA, a zinc-binding GTPase necessary for full growth in zinc-limiting
conditions and full virulence [123].

Since zinc is highly toxic at higher concentrations, bacteria are also equipped with
efficient efflux systems that contribute to the homeostasis. Gram-negative as well as
Gram-positive bacteria can export zinc through P-type ATPase transporters, a ubiquitous
superfamily of membrane ion transporters that couple ATP hydrolysis to ion passage
from inside to outside of the cell [97,124,125]. The presence of P-type ATPase transporters
in cells from all kingdoms of life and the characterization of many of them led to their
classification in at least five subfamilies, P1–P5, that are further subdivided (P1B–P1B, P2A–
P2D, P3A–P3B, and P5A–P5B) [126]. Zinc is mostly exported through P1B-type ATPase
transporters, which can also transport other metal ions [91,92]. The ATPase’s general
structure includes a transmembrane domain that has a central core of six α-helices and a
cytoplasmic portion that contains three domains: nucleotide-binding, phosphorylation,
and actuator. The protein adopts two possible conformations, E1 and E2, and each one
can be phosphorylated (E1P and E2P) or not. In conformation E1, the metal ion can
reach an intramembrane site, and ATP–Mg can bind the nucleotide-binding site. The
protein adopts the E1P state after phosphorylation by the transfer of a phosphate from
ATP. A conformational change to E2P closes the possibility that the metal ion flows back to
the cytosol. A further conformational modification releases the metal ion to the outside
of the cell, followed by hydrolysis of the phosphate group, which leads to the adoption
of the E2 state [92,126]. Several P1B-type ATPase transporters from Gram-negative and
Gram-positive bacteria have been mechanistically and structurally studied, and many of
them were confirmed as virulence factors [127–132].

Another family of transporters that export zinc outside the cytosol is the cation
diffusion facilitators (CDF). Proteins in this family are subdivided into groups according
to the metal they transport [121,122,124]. In prokaryotes, these transporters play a role
in metal ions homeostasis, tolerance, and resistance [121,122,125,133,134]. ZitB, an E. coli
member of the CDF family, was first shown to be an antiporter that effluxes the divalent
metal cation in exchange for protons [135]. Studies on CDFs in several bacteria later
confirmed that they export the cations through an antiport mechanism driven by the
proton motive force [136–138]. In at least one case, the exchange could also occur with
potassium [139].

The structure of the 32 kDa CDF YiiP protein from E. coli has been resolved. It exists as
an integral membrane Y-shaped homodimer with a C-terminal 89-amino acids cytoplasmic
domain [140,141]. The two upper arms of the Y are the transmembrane domains, which
include six α-helices, and the lower stalk of the Y is the C-terminus cytoplasmic region.
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Studies on YiiP and other structures that were resolved indicate that the C-terminal region
is structurally related to metallochaperones. Therefore, one of the functions of this sector of
the protein could be to sense zinc and deliver it to the transmembrane region [137,140–144].
At least two mechanisms have been proposed for the transfer of zinc through the cytoplas-
mic membrane. Both consider conformational changes as the ion contacts the protein, and
it is subsequently exported [121]. Interestingly, CDF proteins that lack the C-terminus have
been recently identified. Although the existing evidence points to a role in the export of
zinc and other metal ions, research of these elements is still in the early stages [121,145].

The CDF and ATPase-mediated export mechanisms of Gram-negative bacteria deliver
zinc to the periplasmic space, and then the ions must be exported outside of the cell
wall. Conversely, heavy metal efflux (HME) systems, which belong to the resistance–
nodulation–cell division efflux system superfamily, transport zinc from the cytosol to the
milieu [13,95,97,146]. Three proteins assemble the HME export machinery. Components
known as A and C are integral inner and outer membrane proteins, respectively. They
usually exist as trimers and are connected through a periplasmic protein component (B) that
forms a hexameric or trimeric ring around the inner and outer membrane components [147].
A HME system from A. baumannii, czcCBA, was recently studied, and it was found that all
three genes are highly regulated, together with the CDF proteins coded for by czcE and
czcF, when the cells were treated with 2.5 mM zinc sulfate for 1 h [148]. This work found
that cytoplasmic zinc can be transported from the cytoplasm to the periplasmic space by
the CDF member CzcD; a metallochaperone CzcI may bind the metal ion and deliver it to
the CzcCBA system that completes the efflux process [148].

More detailed descriptions of bacterial systems and elements involved in zinc home-
ostasis can be found in numerous excellent reviews and pub-
lications [12,36,56,85,86,91,92,119,121–124,126,131,132,147,149,150].

2.4. Zinc-Driven Regulation of Gene Expression

Cells keep a delicate balance to avoid zinc deficiency or toxicity. For this, they are
equipped with numerous systems, some of them discussed in the previous section, to
take up or export zinc. Cells possess regulators, mainly transcription factors, that control
the levels of expression of the different uptake and efflux systems to ensure that ions are
imported or exported according to their needs [6].

The Fur family is an essential group of metal sensors that regulate gene expres-
sion. The first known member of this group of proteins was Fur (ferric uptake regula-
tor), which functions as a classical repressor, interfering with transcription when com-
plexed to iron [151,152]. Further research showed that most bacteria possess Fur ho-
mologs [15,146,153–158]. Fur is a dimer that binds iron, which acts as corepressor and
activates it to favor binding to the Fur box (an operator) to turn off the expression of genes
mainly involved in iron-uptake systems [159,160]. While this is the only identified factor
regulating gene expression in many cases, Fur can serve as part of regulatory circuits that
inhibit expression of genes when the concentration of cellular iron is high [161,162]. Fur
also acts as a positive regulator of certain genes by repressing expression of a protein
required for expression of another gene, facilitating binding of RNA polymerase when
binding to the Fur box located upstream of a responsive gene, or binding to a Fur box
located near an operator and interfering with repressor binding to such an operator [163].
Fur functions as a dimer and binds one iron per monomer. It binds iron at the C-terminus
region and the DNA Fur box through a winged-helix DNA-binding domain located at
the N-terminus [164]. A signature, histidine-rich motif (HHHXHX2CX2C), is located close
to the dimerization domain between the DNA-binding domain and the C-terminal re-
gion [153,164]. Research on Fur through the years have shown that related regulator
proteins have different metal-binding sites with affinity for other metal ions or compounds,
such as hydrogen peroxide. Of particular interest to this article are the Zur regulators,
which, mirroring the Fur proteins, act mainly, but not always, as negative regulators of gene
transcription and repressors of uptake of zinc [6,165]. A search at the Research Collabora-
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tory for Structural Bioinformatics Protein Data Bank revealed that three crystal structures
of bacterial Zur proteins have been resolved [166–168]. The E. coli Zur structure was solved
in association with zinc and bound to the promoter region of the znuABC operon [166]. The
authors showed repression of gene expression mediated by highly cooperative binding of
two adjacent dimers [166]. Studies using other Zur-regulated promoters showed significant
differences in binding affinity between Zur–zinc complexes and the cognate DNA protein
binding sites (Zur boxes) and the strength of inhibition of gene expression [166]. Zur
proteins, as it is the case of other Fur family members, have two conformations. When
bound to zinc (activated, closed conformation), it has high affinity for the Zur binding
DNA regions. When not complexed to the metal (open conformation), it has negligible
affinity for DNA [6]. Numerous experiments designed to elucidate aspects of regulation of
gene expression by Zur and its requirement for virulence have shown that most of the time,
albeit not always, it is essential for virulence [169,170]. An extensive listing of bacterial
operons regulated by Zur can be found in a recent review [6].

A zinc-dependent gene regulator with functions similar to Zur, but with unrelated
structural characteristics, has been identified and characterized in different species of
Streptococcus [56,171–173]. This regulator, AdcR (adhesion competence resistance), is part
of the MarR family of transcription factors. Proteins in this family participate in the
regulation of expression of genes involved in virulence, antimicrobial resistance, and other
physiological functions [174,175]. Similarly to Zur and other metalloregulators, AdcR is a
homodimer that includes a DNA-binding and a zinc-binding domain. After associating
with zinc, a conformational change increases the affinity for DNA operator sequences
(known as adc motif) and leads to binding and inhibition of gene expression [176]. A recent
study on Streptococcus pyogenes showed that by sensing the cytosol’s zinc concentration,
AdcR regulates about 70 genes. As is the case with other metalloregulators, AdcR acts
as a negative and positive regulator, and its effects extend to functions other than zinc
homeostasis, including virulence and metabolism [171].

Mechanisms to export zinc outside the bacterial cell, discussed in a previous section,
are necessary to counter the host immune system based on zinc intoxication. They were
first discovered when studying interactions between macrophages and Mycobacterium
tuberculosis [49,53] and later described as a host defense against some enterobacteria and
Streptococcus [50,51]. As is the case for systems that mediate uptake, expression of export
systems is tightly regulated. The expression of the exporter CzcD proteins of S. pyogenes,
Streptococcus agalactiae, and S. pneumoniae are activated by GczA (S. pyogenes and S. agalac-
tiae) or SczA [50,177]. These are related transcriptional regulators that belong to the TetR
family [50]. As is the case for the regulators Zur and AdcR, these regulators can also have
the opposite function to which they were discovered. Therefore, GczA and SczA can also
act as a negative regulator [177,178]. A recent study on SczA showed that it is a homod-
imer, with each monomer containing two zinc-binding sites necessary for transcriptional
activation [177]. Studies on different species of Mycobacterium showed that as opposed
to Zur’s action, the SmtB binds DNA when it is bound to zinc, which happens when the
metal ion concentration is too high. In consequence, an increase in the concentration of
zinc results in detachment of SmtB from the operator region, inducing expression of zinc
exporters like ZitA [179–181]. It is of interest that SmtB and Zur are part of an operon
in Mycobacterium species, a characteristic that seems to be specific to mycobacteria and
a small group of actinobacteria and Corynebacterium diphtheriae [1,182–184]. Goethe et al.
proposed an elegant model of regulation of gene expression in Mycobacterium smegmatis at
high and low zinc concentrations mediated by Zur and SmtB. Both regulators are expressed
from a unique operon containing binding sites for both proteins (Figure 1) [185]. At low
zinc concentrations, apo-SmtB binds the DNA and induces expression of the regulators
(apo-SmtB and apo-Zur), then apo-SmtB binds the operator of the gene coding for an
exporter protein [185]. Meanwhile, the expression of importers is allowed to proceed
because apo-Zur does not bind DNA efficiently. At high zinc concentrations, the holo-Zur
binds the Zur binding site upstream of the smtB–zur operon and represses the expression
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of SmtB. It also binds the operator regions of genes coding for zinc importers. SmtB bound
to zinc does not bind DNA, and zinc exporters are therefore expressed (see Figure 1) [185].

Figure 1. Mycobacterium smegmatis SmtB and Zur regulation of gene expression in response to the
concentration of zinc. Model proposed by Goethe et al. [185]. The upper diagram shows a cell in an
environment with low zinc concentration. In these conditions, SmtB is a homodimer that acts as a
repressor of the expression of ZitA (zinc exporter). Binding of ZitA also facilitates expression of the
smtB and zur genes. Zur depleted from zinc is unable to efficiently bind the Zur boxes upstream of
znuABC (zinc importer) and smtB/zur. As a consequence, expression of ZnuABC and the regulators
set up the cell to internalize zinc ions. The bottom diagram shows a condition where zinc ions are
abundant; Zur binds the metal ions as a homodimer and binds the operators, turning off expression
of smtB/zur and znuABC. SmtB loses affinity to the DNA, permitting high expression of ZitA, which
facilitates export of zinc ions.

2.5. Zinc as Adjuvant to Antibiotic Treatment

Aminoglycoside antibiotics have a general chemical structure consisting of an aminocy-
clitol nucleus (streptamine, 2-deoxystreptamine, or streptidine) linked to amino sug-
ars [186–188]. They are used to treat a broad spectrum of bacterial infections. Aminoglyco-
side modifying enzymes are responsible for the vast majority of aminoglycoside treatment
failure in clinics [182,189]. Because therapies combining an antibiotic and an inhibitor of
resistance proved to be potent weapons against β-lactam-resistant infections [190,191],
there have been numerous attempts to find equivalent compounds to overcome resistance
to aminoglycosides caused by modifying enzymes [183,184,190,192–195].

Recent studies to identify inhibitors of this resistance mechanism showed that zinc
interferes with enzymatic inactivation by acetylation catalyzed by the aminoglycoside
6’-N-acetyltransferase type Ib (AAC(6’)-Ib) and others [68,193,196–198]. The initial experi-
ments showed that zinc ions very efficiently inhibited AAC(6’)-Ib-mediated acetylation
of aminoglycosides in vitro [68]. However, attempts to interfere with resistance in cellulo
by treating bacteria with amikacin and zinc chloride (ZnCl2) required enormous concen-
trations of the salt. The differences between the concentrations necessary for efficient
inhibition in vitro and in cellulo could be due to permeability issues or the action of zinc
export systems (see previous sections). Therefore, the combination treatment was mod-
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ified to include ionophores that could increase the number of zinc ions that reach the
cytosol. The addition of zinc complexed to pyrithione reduced the concentration required
to add to the growth medium to reverse resistance to amikacin by 1000-fold [68,196].
Similar results were obtained utilizing 8-hydroxyquinoline analogs, such as clioquinol
or 5,7-diiodo-8-hydroxyquinoline [63,197]. An aminoglycoside-resistant A. baumannii
strain that resists these antibiotics’ effects through a mechanism other than enzymatic
modification grew equally in the presence of amikacin or amikacin plus clioquinol or
5,7-diiodo-8-hydroxyquinoline ionophores [63]. These experiments expanded the scope
of zinc’s therapeutic uses to encompass being an inhibitor of the clinically most relevant
resistance mechanism to an important group of antibiotics as it is of aminoglycosides.

3. Eukaryotes
3.1. Importance of Zinc in Eukaryotic Cells

The effectiveness of antibiotics against bacteria exemplifies the importance of these
drugs against many human infections. Unfortunately, the same drugs that kill bacteria have
similar effects on the mitochondria present within eukaryotic cells [199]. The synergistic ef-
fect of zinc with antibiotics may also be the reason why zinc itself is toxic to eukaryotic cells
at high intracellular levels because zinc enters the mitochondria and enhances production
of reactive oxygen species (ROS) [200,201].

In eukaryotic cells, zinc exists in labile or free ion form (chelatable) [202], while
zinc bound to proteins serve in a structural or catalytic capacity [202–204]. Zinc is a
small ion (~0.65 angstrom) that binds nitrogen- and sulfur-containing molecules and
readily exchanges ligands due to its low ligand field stabilization energy. Intracellular zinc
levels range from 10−12 to 10−9 M in most cells, but zinc-enriched cells such as neurons,
hepatocytes, splenocytes, and thymocytes may contain an estimated 10−6 to 10−5 M
amount [205–208]. Zinc concentrations range from 10−9 M within the cytoplasm in most
cells to 10−3 M in some vesicles [209]. In transgenic baby hamster kidney cells that express
zinc influx transporter proteins, Palmiter and colleagues (1996) estimated that vesicular
zinc concentrations reach 14 µM when these cells are exposed to high levels of exogenous
zinc [210]. Cell survival in vitro is compromised when cells are exposed to extracellular zinc
concentrations ([Zn2+]e) between 225–1000 µM in neuronal cells and 7.5–200 µM in non-
neuronal cells [211–214]. It is therefore essential that cells regulate their intracellular zinc
concentrations through protein influxers and effluxers as well as physiological chelation by
apo-thionein or other zinc-sequestering apoproteins [210,215–218].

3.2. Zinc-Rich Cells

Zinc-rich cells in mammals are found in various tissue and organs, particularly
in the brain, mammary gland, intestine, pancreas, thymus, prostate gland, testes, and
ovaries [202,219–221]. In the brain, high levels of chelatable or labile zinc is synaptically
co-released with glutamate during normal neuronal communication [202], with ionic levels
reaching 100–300 µM, particularly during a seizure activity [222,223]. Intracellular zinc
is typically buffered but is exocytosed from neurons or secretory cells that release vesi-
cles or granules, respectively. Zinc release in the hippocampal mossy fiber terminals is
calcium-dependent whether it was evoked via potassium or kainic acid administration
and spontaneous activity [222,224–226]. Intracellular zinc elevation may occur due to high
exogenous zinc levels [227–231] or caused by cytoplasmic zinc release from compartments
or proteins due to oxidation by ROS or nitrosylation by reactive nitrogen species [232–234].
Zinc overload kills neurons, and thus it is imperative that cells tightly regulate intracel-
lular zinc concentration via zinc transporters and buffering of zinc-binding amino acids
or proteins.

3.3. Zinc Transporters

High- and low-affinity uptake mechanisms for zinc have been identified with dis-
sociation constants (Kd) of 15 and 361 µM, respectively [222]. An even higher binding
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affinity constant (Ka) of 0.25 µM has been reported for zinc, which is saturable, ATP-
independent, and unaffected by Na+ concentration gradient [235]. Indeed, zinc levels are
strictly maintained by tissue-specific and highly conserved low molecular weight transport
protein families known as the ZnTs (also known as SLC30 for solute carrier 30) and ZIPs
(also known as SLC39 for solute carrier 39) [236–238]. Early studies in the field led to
the discovery of mammalian ZnTs involved in the extrusion of zinc out of cells named
ZnT1 [215] and sequestration of zinc into compartments called ZnT2 [210]. ZnT1 is mainly
localized in the plasma membrane [215]. Meanwhile, ZnT2 is localized within vesicular
(acidic) compartments, such as lysosomes, but has a low affinity for zinc [210]. Another
effluxer termed ZnT3 was cloned and identified to localize within synaptic vesicles of
zinc-rich neurons [217]. ZnT3 is expressed in the mammalian brain, such as in the cerebral
cortex and the hippocampus, and strongly detected in the dentate granule cells. Over
the course of time, other members of the ZnT effluxers (ZnT4–ZnT10) and ZIP influxers
(ZIP1–ZIP14) were identified through sequence similarity analyses, cloning, and functional
experimentations [223,238]. More recently, transmembrane 163 protein (TMEM163; also
known as SV31) [239,240] was functionally characterized as a dimeric protein that effluxes
zinc [241], and one of us proposed that TMEM163 be now classified as ZnT11 as a new
member of the ZnT efflux family of proteins [241]. One commonality among ZIPs and ZnTs
is that histidine (H) and/or aspartic acid (D) residues, such as the HXXXD motif (where
X is a nonpolar amino acid) typically located within transmembrane domain (TMD)-4
and TMD5 helices of ZIPs, as well as HXXXH motif found in TMD2 and TM5 helices of
ZnTs have been shown to be responsible for tetrahedral zinc coordination [223,242]. For a
relevant review on certain zinc transporters, we refer the reader to the paper by Styrpejko
and Cuajungco (2021) as part of this Special Issue.

In addition to transporters, intracellular buffers offer a secondary defense mechanism
to prevent intracellular zinc overload, such as the metallothioneins (MTs)—a group of low
molecular weight (~6–7 kDa), single polypeptide chains with four functional mammalian
isoforms (MT1−MT4) [219,243]. MTs, however, are not a long-term storage for zinc due to
its short biological half-life [244]. Thus, vesicular or compartmental storage mediated by
ZnTs and ZIPs provide important contributions to zinc homeostasis.

3.4. Zinc Interactions with Various Proteins

Zinc is crucial to over 200 proteins and enzymes [204]. Most of the endogenous
and exogenous zinc in biological systems is bound to proteins with different degrees
of affinity (see Table 1). The ultrastructural localization of several neurotransmitters
present in the hippocampal mossy fiber terminals, especially glutamate, coincides with
the location of zinc-containing neurons [245–248]. Zinc is known to bind and permeate
ionotropic glutamate receptors (e.g., amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA)) and metabotropic glutamate
receptors [249–253]. Zinc also binds to the gamma-amino-n-butyric acid (GABA) receptors
and noncompetitively inhibits GABA-mediated responses [254,255]. Zinc antagonizes both
NMDA [256] and GABA [257] with approximate Kd of 13 and 11 µM, respectively. These
are well within the concentrations released during synaptic activity, which implies an
association of zinc in the regulation of neurotransmission. Likewise, zinc can modulate
the responses of ligand-gated or voltage-gated ion channels, such as the ATP-gated P2X-
purinergic ion channels, glycine, and sigma receptor [258–260].
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Table 1. Tabulated list of selected proteins and enzymes with known binding affinity and inhibitory
constant for zinc.

Protein Name Binding Affinity * [Reference]

Superoxide dismutase (Cu/Zn) Kd = 5 × 10−5 M [261]
Na+/K+ ATPase Kd = 3 × 10−6 M [262]

Ca2+ ATPase Ki = 8 × 10−12 M [263]
Mitochondrial complex III Kd = 1 × 10−7 M [264]

Protein tyrosine phosphatase Ki = 2 × 10−13 M [265]
Protein kinase C Kd = 1 × 10−13 M [266]

Caspase-3 Ki = 1 × 10−13 M [267]
Caspase-6 Ki = 1 × 10−13 M [268]

Sp1 Kd = 1 × 10−10 M [269]
Glutathione Kd = 5 × 10−7 M [270]

Metallothionein Kd = 1 × 10−12 M [271]
Calmodulin Kd = 8 × 10−5 M [272]

NMDA Receptor Kd = 1 × 10−7 M [256]
GABA receptor Kd = 1 × 10−7 M [257]

Tubulin Kd = 2 × 10−7 M [273]
Heme Kd = 2 × 10−8 M [206]

* Kd = dissociation constant; Ki = inhibitory constant. Adapted and modified from [274].

3.4.1. Enzymes

Zinc impedes the activity of several ionic transporters, such as the sodium–potassium
(Na+/K+)-ATPase with IC50 = 20 µM [262,275] and Ca2+-ATPase in vitro IC50 = 100 µM
(Table 1) [276]. The Na+/K+-ATPase enzyme activity has been found to be highly concen-
trated in the hippocampus and hypothalamus [275], and the inhibition of Na+/K+-ATPase
has been shown to cause neuronal death [277,278].

Zinc can inhibit the cell respiratory chain (Ki = 10−7 M; see Table 1) by blocking
the initial step of respiration of electron transfer between ubiquinone (coenzyme Q) and
cytochrome b of the bc1 complex (complex III) [264,279]. At higher concentrations (10−3 M),
zinc may further inhibit at the levels of flavoprotein 1–2 (complex I–II) and cytochrome
c oxidase (complex IV) activities [280]. The inhibitory effects of zinc may explain why
mitochondrial zinc overload is cytotoxic to eukaryotes.

In addition to inhibitory effects on energy metabolism, zinc also negatively impacts
a number of enzymes critical for neurotransmitter metabolism [202]. For example, it was
reported that zinc inhibits glutamate and GABA reuptake transporters (Km ~50 µM) in
mouse synaptosomal fractions [281]. Although zinc inhibition of glutamate transporters
results in extracellular glutamate accumulation and death of cortical neurons in vitro [282],
it was reported that physiological levels of zinc released within the synapse facilitate
glutamate homeostasis through its effect on glutamate transporter activity [283]. For
further information regarding the inhibitory effects of zinc on additional enzymes, see the
review by Maret (2013) [284].

3.4.2. Signaling Proteins

It has been observed that zinc influx may depolarize the cell and consequently trig-
ger a rise in intracellular calcium concentration ([Ca2+]i). Calcium is then bound by a
number of EF-hand proteins that contain distinct zinc binding sites, such as S-100A6
(calcyclin), S-100A7, S-100A8, S-100A9, S-100A12, calmodulin (CaM), and calgranulin C
(CAGC) [272,285,286]. Zinc binds CaM (Kd ~8 × 10−5 M) and induces a slight conforma-
tional change; however, calcium has a greater affinity for CaM (Kd = 10−8 M) [272]. The
binding of zinc to these calcium-binding proteins under physiological conditions remains
a point of contention. Notwithstanding, recent reports indicate that zinc and calcium play
important roles in the function of these S100 proteins [287].
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3.4.3. Cytoskeletal Proteins

Zinc has been shown to influence both assembly and disassembly of tubulin (Table 1) and
microtubule-associated proteins in vitro [273,288]. An excess of zinc levels in nervous tissues
could interfere with the microtubule structure by disrupting the normal functions of the
cytoskeleton [289]. The metal chelator, N,N,N,N-tetrakis(2-pyridylmethyl)ethylenediamine
(TPEN), prevented protein kinase C (PKC)-mediated actin cytoskeletal disruption induced by
phorbol ester in cultured C6 rat glioma cells, while addition of zinc reversed the protective
effects of TPEN [290].

3.5. Zinc-Induced Cell Death

Abnormal zinc metabolism results in an excess or deficiency of intracellular zinc
concentrations ([Zn2+]i), which could be detrimental to cells. The mechanism of zinc-
induced cell death has been extensively researched. Zinc may augment or directly trigger
cell death through its effects on various cellular pathways. The following discussion
summarizes the connection between zinc and programmed cell death (apoptosis).

Zinc Mobilization in Apoptosis

Apoptosis is characterized by distinct morphological changes in cells that include
membrane blebbing, chromatin condensation, DNA fragmentation, organellar packaging,
and cell shrinkage [291]. Cells undergoing apoptosis induce zinc-dependent transcription
factors [292]. Recently, cell death involving iron has been observed and coined ferroptosis
(for reviews on this topic, see the following references [293,294]).

Cultured lymphoblasts undergoing early events of apoptosis exhibit an increase of
[Zn2+]i [208,295]. Mobilization of [Zn2+]i is possibly due to compartmental release and zinc
dissociation from metalloproteins mediated by free radicals and ROS such as HOCl, H2O2,
and O2− [296–298]; amino acids such as L-glutamate, L-aspartate, and L-cysteic acid [299];
and disulfides [271]. It remains to be shown, however, if intracellular zinc mobilization is a
primary or secondary cause of apoptosis. As a case in point, apoptosis is observed in animal
models of a neurological disorder called mucolipidosis type IV (MLIV), which is caused
by the functional loss of the TRPML1 ion channel [300,301]. Coincidentally, lysosomal
permeabilization and the release of cathepsin B have been shown in a cell culture model of
MLIV [300], which correlates with lysosomal zinc accumulation in MLIV cells, as well as
cell culture and mouse models of MLIV [237,248,302]. It is worth noting that in the MLIV
mouse model, the downregulation of the ZnT3 vesicular zinc transporters may explain
why cortical zinc levels are abnormal [303], but further research is necessary to determine
if this is a cause or consequence. Notwithstanding, targeting [Zn2+]i to reduce pathological
conditions observed in certain human diseases could be a therapeutic approach. Indeed,
in the case of cerebral ischemia [304] or seizure activity [305], degenerating neurons show
increased zinc staining, and these neurons undergo an apoptotic process [306]. In the
case of ischemia, the pathological process results in [Zn2+]i elevation but precedes other
biomarkers of cellular damage. Interestingly, neuronal death is rescued by the chelator
ethylenediamine tetraacetic acid (EDTA), which suggests that zinc mobilization influences
cell death, at least in cerebral ischemia [304].

Intracellular zinc mobilization has biphasic effects on non-neuronal cells by either
initiating or preventing apoptosis [221,222,307]. There is, however, a variable range of
concentrations where zinc may induce or preclude apoptotic death. For example, cultured
mouse thymocytes incubated with zinc at concentrations of 15 µM underwent apopto-
sis [212], while other studies have found zinc-induced apoptotic death between 80 and
200 µM [213]. These results contrast markedly with induction of c-myc-dependent apopto-
sis by zinc (37.5 µM) in the absence of DNA fragmentation [292]. Based on these findings,
intracellular zinc elevation in non-neuronal cells undergoing apoptosis may be a protective
mechanism, while zinc mobilization in post-ischemic neuronal cells would appear to be
neurotoxic because a metal chelator rescues cell death.
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3.6. Zinc Chelators

Metal chelators have unique and specific binding properties on various metal ions [308,309].
Certain chelators are able to permeate cell membranes or become lipid soluble, while others
become membrane permeable after esterification or by acquiring a nonpolar state following
metal complexation. Further, some chelating agents demonstrate particular attributes known
as ionophores. Ionophores selectively enhance the permeability of metal ions in lipid mem-
branes of cells [308]. For example, pyrithione and clioquinol are zinc chelators that also act
as ionophores [302,310–312], in which both compounds increase intracellular zinc by virtue
of their membrane permeable property. Meanwhile, a number of chelators avidly associate
and sequester metals from metal–protein complexes, while others are incapable of such interac-
tion. The former are classified as high-affinity metal chelators, while the latter are low-affinity
chelators. Moreover, metal complexing agents have different denticity or means to bind metal
ions. Whereas some chelators form multidentate complexes, others can only bind a mono- or
bidentate complex. Note that multidentate ligands do not necessarily result in the formation of
high-affinity metal–ligand complex [309]. Thus, properties of chelating agents may depend on
the affinity or stability constant they form with the target ion(s), the metal-to-ligand ratio, and
the accessibility of the ion within the metal–ligand complex that the chelator is in competition
with. Overall, researchers must fully consider the characteristics of the chelator before they use
them for experiments.

Chelators That Bind Zinc and Their Effects on Cells

Certain chelating agents could exhibit high binding affinity for a particular metal
ion; however, these chelators may also bind other metals, albeit less avidly than the target
metal. Such a problem of metal selectivity is typically encountered in biological studies.
For example, diethylenetriamine pentaacetic acid (DTPA) avidly binds zinc but forms more
stable complexes with copper and iron [313], while diethyldithiocarbamate (DEDTC) and
zincon bind copper even though both can also complex zinc. Note that DTPA and zincon
do not affect histochemical staining for brain zinc, suggesting that both are membrane
impermeable, but DEDTC can penetrate cell membrane and quench histochemical stain
for brain zinc [314]. One commonly used and highly specific zinc chelator is TPEN.
However, although it is highly selective for zinc than calcium or magnesium, it also has a
higher affinity for copper and iron [307,315]. One advantage of TPEN is its cell membrane
permeability [307,315]. Because TPEN avidly binds zinc, its use to chelate intracellular
zinc results in induction of apoptosis in thymocytes [217], lymphocytes [295,316], isolated
hepatoma cells [317], and splenocytes [208]. These results are comparable to other reports
in which apoptosis was induced by exposure to low levels of zinc [212,213]. Note that zinc
chelation-mediated death is not only independent of, but also additive to apoptosis induced
by exogenous addition of Ca2+ [318]. These observations show that zinc is important for
apoptotic cell death pathways.

The use of metal complexing agents against certain disease states is quite common.
Indeed, membrane permeable chelators, such as TPEN and pyrithione, attenuate zinc neu-
rotoxicity in vivo [314,319], while the membrane impermeant chelator EDTA reduces zinc
toxicity in vitro [211,219,304,314,319–321]. It is interesting to note that intrahippocampal
co-administration of zinc with several metal chelators have been reported to produce dif-
ferential effects on neuronal damage in vivo. Specifically, several zinc–chelator complexes
showed behavioral side effects, such as seizures, which also correlated with increased
neuronal loss [314]. In contrast, however, the same chelators intra-hippocampally injected
alone were not significantly toxic compared with the zinc chelate treatment.

In summary, the problem of specificity may be overcome by using metal chelators
with varying degrees of affinity for zinc and determining different chemical structures that
inform denticity for zinc. Finally, recent advances have now allowed researchers to develop
chelating agents with more specificity and affinity for zinc than other metal ions.
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3.7. Concluding Remarks

Zinc is critical for the growth and survival of cells. However, an abnormal metabolism
of zinc in cells can have deleterious effects. Zinc is required by a number of transcription
factors, proteins, and enzymes. Studies have shown that zinc can induce cytotoxicity in
prokaryotic and eukaryotic cells once a threshold is reached. Zinc inhibits many critical
enzymes and regulates receptors or ion channels. Finally, zinc plays a role in apoptotic
death and is thus a potential target of specific chelating agents. The importance of zinc
in cells cannot be overstated, but further research is necessary to determine when and
how zinc may be used for therapeutic intervention in the case of antibiotic resistance
as antimicrobial adjuvant and when zinc can be tackled to prevent cell death in various
human diseases.
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