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Abstract

Bats and birds must balance time and energy budgets during migration. Migrating

bats face similar physiological challenges to birds, but nocturnality creates special

challenges for bats, such as a conflict between travelling and refueling, which many

birds avoid by feeding in daylight and flying at night. As endothermic animals, bats

and birds alike must expend substantial amounts of energy to maintain high body

temperatures. For migratory birds refueling at stopovers, remaining euthermic

during inactive periods reduces the net refuelling rate, thereby prolonging stopover

duration and delaying subsequent movement. We hypothesized that bats could

mitigate similar ambient-temperature dependent costs by using a torpor-assisted

migration strategy. We studied silver-haired bats Lasionycteris noctivagans during

autumn migration using a combination of respirometry and temperature-sensitive

radiotelemetry to estimate energy costs incurred under ambient temperature

conditions, and the energy that bats saved by using torpor during daytime roosting

periods. All bats, regardless of sex, age, or body condition used torpor at stopover

and saved up to 91% of the energy they would have expended to remain euthermic.

Furthermore, bats modulated use of torpor depending on ambient temperature. By

adjusting the time spent torpid, bats achieved a rate of energy expenditure

independent of the ambient temperature encountered at stopover. By lowering body

temperature during inactive periods, fuel stores are spared, reducing the need for

refuelling. Optimal migration models consider trade-offs between time and energy.

Heterothermy provides a physiological strategy that allows bats to conserve energy

without paying a time penalty as they migrate. Although uncommon, some avian

lineages are known to use heterothermy, and current theoretical models of

migration may not be appropriate for these groups. We propose that

thermoregulatory strategies should be an important consideration of future

migration studies of both bats and birds.
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Introduction

Migrating bats, and the great majority of migrating birds, make their flights at

night when conditions appear to be most favourable for flying long distances [1].

Bats and birds typically land at stopover sites before sunrise, and birds (being

diurnal except for species like owls or nightjars) forage to refuel for the next flight.

Bats, being generally nocturnal, do not feed during the day and roost until night

[2] (although diurnal activity in migrating noctules Nyctalus noctula is a notable

exception [3]). Lost opportunity to refuel during the day places an added time

constraint on migrating bats that could impede progress of their journey because

they must use the nocturnal active period either to travel or refuel [2]. However,

the well-described physiological capacity of bats to enter torpor (reduced body

temperature and metabolic rate) during the day could confer an energy advantage

that would allow them to migrate efficiently, and perhaps more quickly than most

birds.

For birds, thermoregulatory costs during inactive periods at stopover can

substantially influence the energetics and timing of migration [4]. Birds typically

require several days (or even weeks) at a stopover to rebuild their fuel stores [5].

Theoretical and empirical evidence indicates that birds spend more time at

stopover sites than in flight, and that stopover periods account for approximately

two-thirds of the total energy expenditure during migration [4, 6]. Energy costs

during stopover are strongly linked to ambient temperature (Ta) because the cost

of maintaining euthermic body temperature increases as Ta decreases below the

thermal neutral zone [4]. Thermoregulatory costs decrease net refuelling rate and

prolong stopover because some nutrients accumulated at stopover are used to

meet immediate energy demands rather than being conserved for future flights.

Torpor use by migrating bats was first described in spring-migrating silver-

haired bats Lasionycteris noctivagans, particularly in response to inclement weather

(,8 C̊ or raining) [7]. Similarly, migrating male hoary bats Lasiurus cinereus

readily used torpor when cold challenged [8]. Recently, we used automated

radiotelemetry to study stopover behaviour of migrating bats, and observed that it

was quite different from songbirds refueling at the same site [9, 10]. While birds

frequently remained for several days, most bats arrived at dawn and departed at

dusk the same day when weather conditions permitted (i.e., not raining).

Extended foraging bouts were uncommon in bats, contrary to typical hyperphagic

refuelling observed in migrating birds [11]. We hypothesized that bats used torpor

to minimize non-flight costs of migration, reducing the need for foraging and

sparing nutrient stores to fuel subsequent migratory flight. We proposed the term

‘torpor-assisted migration’ to describe this strategy [10] whereby bats use torpor

in anticipation of future energy expenditures and not simply in response to

immediate energy emergency.

The objective of our study was to test the torpor-assisted migration hypothesis

by describing thermoregulatory patterns of migrating bats. Further, we developed

the implications of heterothermy for the energetics of migration, especially in
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context of comparisons with homeothermic migrants and the implications for

overall migration patterns.

Materials and Methods

We used mist nets to capture migrating silver-haired bats during autumn

migration (August 18 – Sept 15, 2011) at the Long Point Bird Observatory, Long

Point, ON, Canada (42.6 N̊ 80.4˚W). See [10] for descriptions of the study species

and study site. There were two experimental groups in our study. In group one,

silver-haired bats were held in respirometry chambers for the daytime roosting

period to measure euthermic resting metabolic rate (RMR) and torpid metabolic

rate (TMR) across a range of temperatures. In group two, we attached

temperature-sensitive radio-transmitters to bats to record skin temperature (Tsk)

in free-living individuals. Bats used for respirometry measurements (group one)

were not used for radio-tracking (group two). We used relationships between Ta

and either TMR or RMR from respirometry (group one; Fig. 1) to predict

roosting field energy expenditure of free-living bats (group two). All calculations

and statistical analyses were conducted with R statistical software [12]. All

research activities were approved by the University of Western Ontario Council

on Animal Care (protocol 2010-020) and the Ontario Ministry of Natural

Resources (licence no. 1063353).

Respirometry

We used flow-through respirometry to measure RMR and TMR of silver-haired

bats at temperatures from 15.0–27.5 C̊. The range of temperatures was selected to

approximate Ta at the study site. Bats were held at one temperature in the

morning, before increasing or decreasing Ta by 2.5 C̊ for a second metabolic trial

in the afternoon. Other than the 2.5 C̊ temperature change, bats were not

disturbed during respirometry trials. Bats were exposed to each experimental

temperature for at least 5 hours. Upon removal from respirometry chambers, we

used a two channel thermocouple (¡1 C̊; Model 4026 Type-K Traceable

Expanded Range Thermometer, Control Company, Friendswood, TX) to

simultaneously measure skin and rectal temperature.

Respirometry trials took place during the inactive period, beginning shortly

after sunrise and continuing until dusk. Metabolic chambers were constructed out

of 1.12 L metal canisters with a hanging piece of plastic mesh for bats to roost.

Chambers were housed in a dark, temperature-controlled cabinet (+/20.2 C̊;

model PTC-1 with PELT-5 temperature controller; Sable Systems, Las Vegas, NV,

USA). Incurrent ambient air was pumped through a column of Drierite to remove

water vapour, before passing through needle valves (air flow manifold MF-8; Sable

Systems), which supplied chambers with a constant flow of ,200 mL?min21.

Flow rate was measured with a mass flow meter (840L; Sierra Instruments,

Monterey, CA, USA) after passing through metabolic chambers and a second
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Drierite column to remove any water vapour produced by the study subjects.

Excurrent air was subsampled at 90 mL?min21 (Gas analyzer sub-sampler v2.0

Sable Systems) before gas concentrations were measured with CO2 (model CA-2A;

Sable Systems) and O2 analyzers (model FC-1B; Sable Systems). We used a

multiplexer to monitor each chamber for 10 min before switching to the next

chamber. Up to four metabolic chambers were used simultaneously. A 10 min

baseline of reference airflow was measured after each round of recordings. All data

were recorded using an analog-to-digital converter (UI-2; Sable Systems)

connected to a laptop computer. Fractional concentrations of O2 and CO2 were

lag- and drift-corrected and VO2 (ml?min21), and VCO2 (ml?min21) were

calculated using equations 11.7 and 11.8 from [13] using ExpeData analytical

software (v1.1.15, Sable Systems).

We searched for the lowest average 200 s period of VO2 in each 10 min

recording interval. At Ta #22.5 C̊ periods of TMR and RMR were visually

distinguishable. At higher temperatures we were not able to identify periods of

torpor. For each individual bat at each experimental temperature, we averaged

intervals with the two lowest mean VO2 measurements for both TMR and RMR,

as applicable. RMR and TMR measurements were used to develop predictive

equations for estimating metabolic rate of free-living bats in group 2 based on Ta.

We used linear mixed effects models with individual bats treated as random

factors to account for repeated measures. Our model selection process followed

the methods described by [14]. We fit an initial model with temperature, sex, age,

and temperature order (whether temperature was increased or decreased in the

afternoon), and all 2- and 3-way interactions of temperature, sex, and age. We

removed one parameter at a time, comparing nested models with likelihood ratio

Fig. 1. Torpid and euthermic metabolic rates measured by open flow respirometry. Silver-haired bats
were held at a range of temperatures similar to local conditions. Open circles and dashed regression line
indicate resting metabolic rate (RMR) and filled circles and solid regression line indicate torpid metabolic rate
(TMR).

doi:10.1371/journal.pone.0115724.g001
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tests. We sequentially removed the least significant term until only significant

terms remained. For TMR we log transformed both metabolic rate and Ta values

to account for the curvilinear response of TMR with Ta.

Telemetry

In group two, Tsk in free-living bats was quantified with temperature-sensitive

radio-transmitters (¡0.1 C̊, 0.38 g, ,4% body mass; Pip3, Lotek Wireless,

Newmarket, Ontario, Canada). This data was later used to identify periods of

torpor (see Energy Calculations below). Transmitters were calibrated by the

manufacturer at nine points (#5 C̊ intervals) from 21.8 to 37.0 C̊. Upon capture,

we weighed each bat (¡0.1 g) and used a quantitative magnetic resonance

(QMR) body composition analyzer (EchoMRI-B; Echo Medical Systems,

Houston, TX, USA) to determine fat mass and lean body mass (¡0.01 g) [10, 15].

We trimmed fur in the interscapular region close to the skin and affixed

transmitters with ostomy bonding cement (Torbot; Cranston, RI, USA) and then

released the bat. Shortly after dawn we tracked bats to their day roosts using 3-

element Yagi antennas and recorded Tsk every ,30 seconds with a datalogging

receiver (SRX400; Lotek Wireless). The placement of the receiver and antenna

ensured continuous recording until the bat departed from the roost. Ambient

temperature was recorded at a nearby (6 km) weather station operated by Bird

Studies Canada (Port Rowan, ON).

We used QMR body composition data to test for the effect of body condition

on torpor expression (see Energy Calculations section below for method of

identifying periods of torpor). We used general linear models to test for effects of

fat mass, controlling for body mass and mean daytime Ta on the number of torpor

bouts, mean torpor bout duration, maximum torpor bout duration, time spent

euthermic, or time spent below normal body temperature (not euthermic). For

each dependent variable we began with a model including all main effects, two-

and three-way interactions. We sequentially removed the least significant term

and re-evaluated the model until only significant (p,0.05) terms remained.

Energy Calculations

We estimated energy expenditure by applying regression equations of metabolic

rate (RMR or TMR) and Ta from bats in group one to periods of torpor and

euthermia observed in free-living bats (group two), accounting for warming and

cooling costs. Energy expenditure was calculated only for daytime periods. For the

purposes of our calculations, a day began either at sunrise, or the moment a bat

was first located, and continued until either sunset or when the bat returned to

euthermia if the bat had not aroused at sunset. We classified each Tsk

measurement as either euthermic, warming, cooling, or torpid. For each bat we

identified a period (.50 min except for one bat where only 20 min was possible)

of stable euthermic body temperature and calculated the mean Tsk (range 30.3–

36.6 C̊). We defined the torpor cut-off by taking the lower limit of the 99%
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confidence interval for euthermic body temperature and subtracting 3 C̊, as

described by [16]. This method allows for individual variation in Tsk due to

transmitter application differences (e.g. thickness of remaining fur and/or

adhesive). Warming was identified at transitions from torpor to euthermia, where

the rate of temperature increase was greater than 9 C̊ hr21, the minimum

warming rate for bats reported by [17]. Cooling is a passive process (but see [18]

for variation in metabolic rate during cooling) and therefore the rate is dependent

on ambient conditions. Consequently we did not define a cut-off cooling rate, but

rather defined cooling as the upper 10th percentile of the distribution of (Tsk - Ta)

during non-euthermic periods (excluding warming), essentially assuming bats are

torpid most of the time and cooling only briefly. Torpor bouts ,15 min in

duration were excluded and conservatively classified as euthermic. Warming costs

were calculated as per [19] and [8], assuming Tsk measured by radiotransmitters is

similar to body temperature [20, our data showing no difference in Tsk and rectal

temperature], and calculating thermal conductance from allometric scaling [21].

Cooling costs were calculated as 67.2% of warming costs [22], excluding heat loss

to the environment [8]. When necessary, we used the oxyjoule equivalent [13] to

convert from units of mL O2 h-1 to joules, and subsequently to Watts.

Infrequently, Ta extended beyond the range of temperatures included in the

TMR or RMR predictive equations. For RMR, if Ta.27.5 C̊ (maximum observed

RMR Ta529.9 C̊) we used the predicted value for 27.5 C̊. If RMR Ta,15 C̊

(minimum observed RMR Ta510.8 C̊) we extrapolated the predictive equation.

For TMR, if Ta was outside the range of the predictive equations (minimum

observed TMR Ta55.9 C̊, maximum observed TMR Ta525.7 C̊) we extrapolated

the predictive equation.

Results

We caught 24 silver-haired bats (10.6¡0.2 g) for use in respirometry (S1 Table).

We obtained 43 values of RMR from 22 bats, and 15 values of TMR from 9 bats

(Fig. 1). Metabolic rate was not affected by sex, age, the direction of Ta change, or

any interactions (all p.0.05). Ambient temperature was the only significant

predictor of mass-specific metabolic rate (RMR: F1,20557.43, P,0.001; TMR:

F1,559.14, P50.029). The predicted relationship for euthermic bats was:

Metabolic rate (ml O2?hr21?g21) 510.326–0.331*Ta( C̊). The predicted relation-

ship for torpid bats was: ln(Metabolic rate [ml O2?hr21?g21])

5211.559+3.539*ln(Ta[ C̊]). Skin and rectal temperatures (including torpid and

euthermic bats, range 16–37 C̊) were not different as measured by the two-

channel thermocouple (paired t-test: t2450.22, P50.82).

We attached radiotransmitters to 25 silver-haired bats (10.7¡0.2 g), all of

which used torpor regardless of sex or age. We obtained sufficient data records for

detailed analysis of 16 silver-haired bats: seven sub-adult male, six sub-adult

female, two adult male, one adult female (S2 Table). Two bats were present on

consecutive days, resulting in 18 bat-days for analysis. Duration of torpor varied
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Fig. 2. Temperature profiles of free-living silver-haired bats during autumn migration. Vertical lines
indicate sunrise and sunset, horizontal dashed line indicates the individually determined threshold below
which the bat was considered torpid (see Materials and Methods), black dots indicate skin temperature, and
gray dots indicate ambient temperature. The amount of time spent torpid depended on ambient conditions.
Mean ambient temperature over the period of observation was 27.4˚C (Sept 3), 21.9˚C (Aug 28), and 18.3˚C
(Sept 8) in panels (a), (b), and (c) respectively. Accordingly, in (a) the bat spent only a brief period of the
morning in torpor, whereas at cooler temperatures bats spent most (b) or all (c) of the day torpid.

doi:10.1371/journal.pone.0115724.g002
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widely (Fig. 2). Bats entered 1–3 torpor bouts per day, although the most

common pattern was a morning and evening bout (Fig. 2b). On cooler days, some

bats remained torpid for the entire day, arousing at sunset to depart from the site

(Fig. 2c). Among torpid bats, minimum Tsk was 2.6¡0.4 C̊ above Ta.

We did not observe any torpor bouts in free-living bats when Ta was.25.7 C̊,

similar to the intersection point of the TMR and RMR regression equations

(27.6 C̊). QMR body composition data was available for 14 of the bats with

sufficient telemetry records for analysis. Fat mass (0.99¡0.08 g; 9.24¡0.61% of

body mass) was not related to any measures of torpor expression (number of

torpor bouts, mean bout duration, maximum bout duration, time spent below

normal body temperature; P.0.05 in all cases).

The cumulative amount of time spent in torpor was related to Ta. On cooler

days, bats spent more time in torpor (F1,16516.09, P50.001; Fig. 3a), and thus

saved more energy (F1,16514.09, P50.002; Fig. 3b). At lower Ta, the potential

energy savings is greater due to the increasing difference between TMR and RMR

(Fig. 1). Consequently, variation in energy savings results from the combined (but

not independent) effects of lower Ta and increased time in torpor. When

accounting for torpor use, bats saved 8–91% of the energy requirement compared

to maintaining euthermic body temperature (Fig. 3b). Bats spent more time in

torpor on cooler days (Fig. 3a), but the total daytime energy expenditure was

independent of Ta (F1,1650.58, P50.46; Fig. 4).

Discussion

Migrating bats used torpor to save up to 91% of the energy they would have

otherwise expended to defend euthermic body temperature. Unlike home-

othermic birds, where ambient temperature greatly affects thermoregulatory costs

[4], bats did not expend more energy on colder days. Furthermore, bats could use

torpor facultatively to mitigate the energetic consequences of day-to-day variation

in ambient temperature conditions. With a flexible strategy of heterothermy, bats

are not subject to greater energy demands (and hence reduced net refuelling rate)

on cooler days, and therefore are able to maintain short stopover durations. Thus,

torpor-assisted migration enables migrating bats to save both time and energy.

Traditional interpretations of torpor have focussed on using torpor in cases of

energetic emergency, but there are many recent examples of adaptive reasons to

use torpor [23, 24]. We did not observe an effect of body composition on the use

of torpor in the field. However, it is possible that above or below certain

thresholds of body composition bats may respond by decreasing or increasing

their use of torpor. The thermoregulatory patterns we observed are consistent

with bats facultatively using torpor to save energy in anticipation of future

demand. This reduction in energy expenditure affects overall energy balance in a

similar way to the increased energy intake of migratory birds facing greater future

migration costs [25].
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In considerations of migratory stopover using optimal migration theory [26],

there is thought to be trade-offs between time, energy, and safety. Migrants are

described as being either time, energy, or predation risk minimizers. We predict

that torpor-assisted migration will modulate these trade-offs. The efficiency and

success of bird migration is largely dependent on conditions experienced at

stopover [27]. Weather can impact foraging conditions (energy input) and

thermoregulatory costs (energy output). Net energy balance strongly affects

stopover duration, and therefore the pace of migration, physiological condition,

and perhaps even survival and reproductive success [27]. By lessening energy

expenditure during inactive periods through the use of torpor, bats may reduce

their need to refuel during migration (note the similarities with bats increasing

torpor use prior to hibernation [28]). With lower energy expenditure and shorter

refuelling periods, migration may be completed more quickly. Based on

Fig. 3. Relative energy savings of daytime torpor use during stopover. (a) On cooler days, when the
energetic cost of defending normal body temperature would be greater, bats spent more time in torpor. (b)
Bats saved 12–91% of the estimated energy required to remain euthermic, and saved more energy on cooler
days.

doi:10.1371/journal.pone.0115724.g003
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allometrically predicted flight cost (1.5 W, assuming 10.5 g body mass; [21]), and

estimated flight speed (9.04 m s21; [10]), the energy saved (3351–14895 J; this

study) by using torpor on cooler days (mean Ta,20 C̊) would provide enough

energy to fly an additional 20–90 km per night. Computer simulation predictions

[10] indicate this additional distance may represent up to 36% of the distance

travelled each night. If torpor increases the speed of migration (less time spent in

unfamiliar territory) or if it reduces predation exposure (less active time exposed

to predators), migrating bats may have a higher rate of survival compared to

migrating birds. Recent mark-recapture survival estimates for a migratory bat

(Nyctalus leisleri; [29]) suggest that migration-related mortality is much lower

than similar estimates for a migrating songbird (Setophaga caerulescens; [30]).

Torpor-assisted migration provides clear energy and time benefits (and possibly

survival benefits) for migrating bats, particularly given time constraints faced by

these nocturnal animals. Every bat we tracked used torpor to some degree, yet a

number of factors may affect the use of torpor in migrating bats. Although we

were not able to directly observe free-living bats in their daytime roosts, migrating

silver-haired bats have been documented to use a wide variety of roosts at this site

[10]. Bats roosting in more or less exposed locations would experience a different

range of Ta. Furthermore, roost selection will affect the ability of bats to rewarm

passively [31]. In the morning, increasing Ta would allow animals to rewarm

passively with Ta and solar radiation [32]. Passive rewarming may reduce arousal

cost by.50% (e.g., [31, 33, 34]). Without knowledge of roost microclimate, we

are not able to account for passive rewarming. However, if mechanisms of

enhanced passive rewarming were important, actual energy savings realized by

bats will be greater than we have conservatively reported. Therefore roost

Fig. 4. Estimated field metabolic rate of migrating bats calculated for the entire daytime period of
observation. Metabolic rate was determined from ambient temperature and the regression lines from
respirometry trials (Fig. 1) accounting for periods of torpor and euthermia. The lines correspond to the
expected field metabolic rate if the bats had remained strictly euthermic (dashed line), or torpid (solid line)
based on respirometry trials. The secondary y-axis converts metabolic rate to the mass of fat required.

doi:10.1371/journal.pone.0115724.g004
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microclimate and passive rewarming should be important components for future

studies.

The energy saved through torpor use would allow bats to undergo minimal

refuelling en route and potentially to rely heavily on nutrient stores deposited

prior to migration. This could be particularly relevant for species where fat

deposited prior to migration is used for subsequent hibernation (e.g., [35]). If this

is the case, there is a potential for strong carryover effects from post-breeding

conditions to subsequent periods of the annual cycle. An interesting possibility to

consider is whether bats could further reduce their need to forage at stopover sites

by foraging on the wing during migratory flight. Insectivorous bats can fuel flight

with nutrients ingested during current foraging bouts [36], but we suggest it is

unlikely they would use this strategy during migratory flights. Two key factors in

the definition of migration as described by [37] are undistracted and direct

movements. Erratic flight in search of insect prey violates both these criteria. We

suggest that bats are more likely to engage in foraging either prior to or following

flight each night of travel, allowing for undistracted and direct migratory flight

through the night. Evidence from migrating Pipistrellus nathusii supports this

hypothesis. Bats captured early in the night exhaled stable carbon isotopes

indicative of supporting metabolism with insect prey, but carbon isotope

signatures of bats captured later at night indicated the bats relied on more on

endogenous adipose stores [38]. These results suggest the bats may have foraged

in the evening prior to a migratory flight. Further research is required to

determine when, where, and how bats deposit adipose stores to fuel their

migration.

Perhaps the most important factor to consider when discussing the cost-benefit

tradeoffs of a torpor-assisted migration strategy is the reproductive condition of

female bats. During spring migration, females migrate north while pregnant. The

coincidence of migration and pregnancy affects both time and energy budgets. In

addition to the energetic costs of pregnancy, females also face time pressures to

reach summer grounds to give their pups a longer growing season. As we have

demonstrated, using torpor during inactive periods reduces time and energy for

both sexes during autumn migration. However the costs of reduced body

temperature for developing foetuses may negate any benefits to mothers.

Accordingly, female hoary bats captured during spring migration rarely used

torpor when cold challenged, while males readily lowered body temperature with

decreasing Ta [8]. The costs of heterothermy for unborn pups may be dependent

on the developmental stage. Torpor has been observed in female silver-haired bats

(most likely pregnant) as they approach the northward end of spring migration

[7] and in pregnant female hoary bats upon reaching the summer grounds [39].

The full implications and interactions of torpor-assisted migration and pregnancy

remain to be elucidated.

Bats are well known for their heterothermic abilities, a strategy that is

uncommon in birds [40]. However, torpor-assisted migration is a strategy that

may not be restricted to bats, and may in fact be one of the important ‘other

functions of torpor’ [24]. Hummingbirds are known to use torpor during
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migration which may lead to similar energetic benefits [41]. Other migratory bird

lineages, including caprimulgids and swifts, are known to use torpor at other

times of year [40], and may follow a similar migration strategy. Furthermore,

torpor-assisted migration may be a specialized case of a more general pattern of

heterothermic migration strategies. In birds not known to use torpor, shallow

hypothermia has been suggested as an energy-saving strategy [40, 42, 43].

Although thermoregulatory strategies have been largely overlooked in studies of

migration physiology, our research indicates that future studies should consider

the role of heterothermy in the energetics of both bat and bird migration.

Supporting Information

S1 Table. Respirometry data. Data from respirometry measurements of silver-

haired bats Lasionycteris noctivagans captured during autumn migration.

doi:10.1371/journal.pone.0115724.s001 (pdf)
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