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Abstract

Prevention of Alzheimer’s disease (AD) is a major goal of biomedical sciences. In previous

studies we showed that high intake of the essential nutrient, choline, during gestation pre-

vented age-related memory decline in a rat model. In this study we investigated the effects

of a similar treatment on AD-related phenotypes in a mouse model of AD. We crossed wild

type (WT) female mice with hemizygous APPswe/PS1dE9 (APP.PS1) AD model male mice

and maintained the pregnant and lactating dams on a control AIN76A diet containing 1.1 g/

kg of choline or a choline-supplemented (5 g/kg) diet. After weaning all offspring consumed

the control diet. As compared to APP.PS1 mice reared on the control diet, the hippocampus

of the perinatally choline-supplemented APP.PS1 mice exhibited: 1) altered levels of amy-

loid precursor protein (APP) metabolites–specifically elevated amounts of β-C-terminal

fragment (β-CTF) and reduced levels of solubilized amyloid Aβ40 and Aβ42 peptides; 2)

reduced number and total area of amyloid plaques; 3) preserved levels of choline acetyl-

transferase protein (CHAT) and insulin-like growth factor II (IGF2) and 4) absence of astro-

gliosis. The data suggest that dietary supplementation of choline during fetal development

and early postnatal life may constitute a preventive strategy for AD.

Introduction

The development of a treatment for AD constitutes a major goal for biomedical sciences. A

vast amount of resources have been devoted to this challenge, consistent with its enormous

societal need. Very little thought has been given however to the possibility that AD might be

preventable or that its onset might be delayed by the use of a prevention strategy. We have

previously shown that high choline intake during gestation and perinatal period in rodent

models prevents age-related memory decline [1] and in the current study we test the idea
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that this preventive strategy will be effective in a model of AD. Choline was classified as an

essential nutrient, by the Food and Nutrition Board (FNB) of the Institute of Medicine of the

National Academy of Sciences, relatively recently. It was only in 1998 that the FNB issued

dietary reference intake values for this nutrient [2]. Significantly, the FNB recognized that

the requirements for choline are increased during pregnancy and nursing (Adequate Intake

values for women (mg/day): non-pregnant 425; pregnant 450; lactating 550). Because of this

short history, our understanding of the significance of choline nutrition in human health

and disease remains inadequate. The 2007 National Health and Nutrition Examination Sur-

vey (NHANES) study reported that in the US fewer than 15% of pregnant women consume

the recommended amount [3]. Moreover, at least 25% of women in a California cohort con-

sumed so little choline that they were at 4-fold increased risk of having babies with neural

tube defects [4, 5]. Several additional studies confirm that Americans consume far less cho-

line than recommended with only approximately 25% of adults meeting the AI values [6–

10]. These data indicate that increased intake of choline by our population is a desirable pub-

lic health goal.

Indeed, there is overwhelming support for this idea based on multiple studies on the effects

of prenatal and early postnatal choline availability in rodents showing that high choline intake

is neuroprotective in models of neuronal dysfunction, including those induced by aging [1, 11,

12], seizures [13–17], maternal alcohol consumption [18–24], Down’s syndrome [25–30],

autism spectrum disorders [24, 31–36], early-life iron deficiency [37], exposure to stress in
utero [38], and schizophrenia [39–42].

In this study, we examined the effects of perinatal choline supplementation on AD pathol-

ogy in the APPswe/PS1deltaE9 (APP.PS1) mice that express murine amyloid precursor protein

(APP) with the human Aβ amino acid sequence harboring mutations that cause a familial

form of AD (the Swedish mutation APP (K595N/M596L; APPswe) and a mutated form of pre-

senilin 1 (PSEN1 with exon 9 deleted; PS1dE9) [43]. Although no model of AD fully recapitu-

lates the human disease [44], APP.PS1 mice are well suited for our studies because they

exhibit: 1) high production of Aβ peptides in brain and accumulation of amyloid plaques by

4–6 months of age [45], and 2) cholinergic defects [46–50]. The latter is important because a

large body of evidence indicates that basal forebrain cholinergic neurons (BFCN) are vulnera-

ble to degeneration in AD [51–55], and our previous studies in rats showed that choline sup-

plementation in utero modulates acetylcholine (ACh) synthesis and release in adult BFCN

[56]. Using APP.PS1 mice, we found that perinatal choline supplementation can slow the accu-

mulation of Aβ40 and Aβ42 peptides and reduce plaque formation, which in turn may prevent

the heightened gliosis found in APP.PS1 mice. The reductions in cholinergic markers, such as

choline acetyltransferase (CHAT), observed in APP.PS1 mice can be rescued by perinatal cho-

line supplementation suggesting that cholinergic function and possibly cognitive ability may

be intact in these mice. Thus, dietary supplementation of choline during fetal development

and early postnatal life can produce life-long changes that may protect the brain and dramati-

cally slow the progression of AD.

Materials and Methods

Ethics Statement

All animal procedures were performed in accordance with the Animal Welfare Act (Animal

Welfare Assurance Number A-3316-01) and the principles of the NIH Guide for the Care and

Use of Laboratory Animals and were approved by the Institutional Animal Care and Use

Committee of Boston University (Protocol #AN-14994).
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Animals

We used the APPswe/PS1deltaE9 (APP.PS1) mice purchased from Jackson Laboratories

(strain B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax, Stock #034829) [43]. Breeding pairs

(APP.PS1 +/- male and WT female) were divided into 2 groups: Control and Supplemented.

Unless noted, animals were maintained on a standard rodent AIN76A diet [57, 58] (Dyets

#110098) consisting of 20.3% protein, 66% carbohydrate, and 5% fat. Specifically, this diet con-

tained (per kg) Casein (200 g), DL-methionine (3 g), corn starch (150 g), sucrose (500 g), cellu-

lose (50 g), Corn oil (50 g), mineral mix S10001 (35 g), and vitamin mix V10001 (10 g). From

the time of mating until offspring were weaned, dams were given either a control AIN76A diet

(Dyets #110098) containing 1100 mg/kg of choline chloride or a choline-supplemented diet

(Dyets #110184) containing 5000 mg/kg. After weaning at postnatal day (P) 21, all offspring

were fed a control diet. All experiments were performed using the transgenic and non-trans-

genic (control) littermates. Mice were euthanized at 6-, 9-, and 12-months of age. The number

of animals (N) per age, sex and group were as follows: 6-months (females: control WT N = 6,

control APP.PS1 N = 4, supplemented WT N = 4, and supplemented APP.PS1 N = 4; males:

control WT N = 4, control APP.PS1 N = 5, supplemented WT N = 4, and supplemented APP.

PS1 N = 5), 9-months (females: control WT N = 5, control APP.PS1 N = 6, supplemented WT

N = 5, and supplemented APP.PS1 N = 5; males: control WT N = 6, control APP.PS1 N = 7,

supplemented WT N = 6, and supplemented APP.PS1 N = 6), and 12-months (females: control

WT N = 6, control APP.PS1 N = 7, supplemented WT N = 6, and supplemented APP.PS1

N = 7; males: control WT N = 7, control APP.PS1 N = 8, supplemented WT N = 6, and supple-

mented APP.PS1 N = 4). Samples from all animals were analyzed in all assays described below.

At each time point, mice were euthanized with CO2, and decapitated. Brains were rapidly

removed. One hemisphere was immediately fixed for tissue staining and the other was dis-

sected on ice. The hippocampus was used for protein analysis.

During the study 10 animals died and were not used for experimental purposes: 1 was a

control diet WT female (unknown cause/found dead), 2 were control diet APP.PS1 females

(both were humanely euthanized due to poor body condition), 6 were control diet APP.PS1

males (4 were found dead in their cages, 2 were humanly euthanized due to severe fight

wounds and poor body condtion), and 1 was a choline supplemented APP.PS1 female

(humanely euthanized due to poor body condition).

ELISA for Solubilized Aβ Levels

Whole hippocampi were snap frozen on dry ice and stored at -70˚C until use. Frozen tissues

were sonicated in lysis buffer (0.05 M Tris-HCl pH 7.5, 0.15 M NaCl, 1% NP-40, 1 mM Na-

orthovanadate, 0.001% sodium fluoride, 1% protease inhibitor cocktail (Sigma)) and centri-

fuged to clear. The supernatants were transferred to new tubes and stored at -70˚C. A solution

of 8.2 M guanidine / 82 mM Tris HCl (pH 8.0) was added to the extracts to yield a solution

with 5 M final guanidine concentration. Samples were diluted with 10x volume of PBS and

centrifuged at 16,000 x g for 20 minutes at 4˚C. The supernatant was carefully collected and

stored on ice until analyses with the Aβ40 or Aβ42 ELISA kit from Invitrogen. ELISAs were

performed according to manufacturer’s instructions (Invitrogen #KHB3482 and #KHB3442,

respectively).

Western Blot Analysis

Hippocampal extracts were prepared by sonicating in lysis buffer and centrifuged to clear as

described above for ELISAs. The supernatants were transferred to new tubes and stored at

-70˚C. The extracts were normalized for total protein and 40 μg of hippocampal protein per
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sample was subjected to SDS-PAGE using 4–12% Bis-Tris Midi gels (Invitrogen). After trans-

ferring to a nitrocellulose or PVDF membrane using an iBLOT apparatus (Invitrogen), the

membrane was blocked with 5% nonfat dry milk in 1X TBS containing 0.1% Tween-20 for 1 h

and then was probed with primary antibody overnight. The antibodies used included a mono-

clonal β-actin antibody (Sigma #A5441; 1:5000), a monoclonal APP antibody clone 6E10 (Bio-

Legend #SIG-39320; 1:1000), a polyclonal C-terminal APP antibody (Calbiochem #171610,

1:1000), a polyclonal CHAT antibody (Millipore #AB144P; 1:750), a polyclonal doublecortin

(DCX) antibody (Cell Signaling Technologies #4604; 1:1000), a monoclonal glial fibrillary

acidic protein (GFAP) antibody (Cell Signaling Technologies #3670; 1:1000), and a monoclo-

nal insulin-like growth factor II (IGF2) antibody (Upstate #05–166; 1:500). The antibody/anti-

gen complexes were detected with either anti-rabbit, anti-mouse or anti-goat IgG peroxidase

conjugates and visualized using the enhanced chemiluminescence method (SuperSignal West

Femto Substrate, Thermo Scientific) and Kodak ImageStation 440 and quantified with the

Kodak 1D software. The membranes were stripped in Restore Western Blot Stripping Buffer

(Thermo Scientific) for 30 min at 37˚C. After incubation with 5% nonfat dry milk in 1X TBS

containing 0.1% Tween 20 for 1 h, membranes were reprobed with primary antibody as above.

Densitometric values for each protein were normalized to β-actin values.

Immunohistochemistry

Brains were dissected and immediately fixed in 10 volumes of PLP fixative (4% paraformalde-

hyde, 75 mM lysine, 10 mM sodium periodate; pH 7.4) at 4˚C for 24 h, then cryoprotected in a

graded series of 10% and 20% glycerol/2% dimethylsulfoxide, in 0.1 M PBS, pH 7.3 (24 h

each). Serial, frozen sections (40 μm, coronal) were cut from the anterior frontal pole to the

caudal occipital region with a sliding microtome. For Aβ40 and Aβ42 immunohistochemistry,

sections were washed for 10 min in PBS and then transferred to> 95% Formic Acid for 2 min

with gentle agitation. The sections were blocked in PBS/10% goat serum for 1 hour at room

temperature. Sections were probed with rabbit anti-Aβ40 (Invitrogen #44–344; 1:2500) or rab-

bit anti-Aβ42 (Invitrogen #44–344; 1:2500) overnight at room temperature in a solution of

0.3% Triton-X 100, 2% goat serum, 0.008% sodium azide, in PBS. The next day, sections were

incubated with goat anti-rabbit-HRP antibody (Millipore; 1:1000) in a solution of 2% goat

serum/PBS for 3 hours at room temperature. Staining was developed in a solution containing

diaminobenzidine, sodium imidazole, and hydrogen peroxide. These IHC procedures on sec-

tions slated to constitute a set used for comparative studies were performed at the same time

with the same reagents under identical conditions. Mounted sections were analyzed on an

Olympus B061 microscope using a 2X magnification objective, which permitted us to obtain

the image of the entire hippocampus in a single photographic frame. The photographic images

were obtained using constant exposure settings for each set of sections. Using the ImageJ soft-

ware, the region of interest was outlined to include the entire hippocampus in each of the

images. The staining intensity threshold was held constant for all of the images in a given set.

Plaque number, total plaque area, average plaque size, and plaque burden were measured by

the ImageJ software. Three sections per animal of the anterior (bregma approximately -1.5

mm) and posterior (bregma approximately -3 mm) hippocampus were used, and the data

averaged to obtain a single value for either anterior or posterior hippocampus of that animal.

Then the data were used to calculate the mean and standard error for each group of animals

per region. The analysis was performed by a single individual (OMH) and subsequently veri-

fied by another person (TJM), both of whom were blinded to the identity of the samples (die-

tary group, age, and sex status).

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease
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Immunofluorescence Imaging

Serial, frozen sections (40 μm, coronal) were prepared as described above. For immunofluores-

cence staining of DCX and GFAP, free floating sections were incubated for 3 h in a blocking

buffer consisting of 10% normal donkey serum and 0.3% Triton X-100 in PBS and subse-

quently overnight in 1% BSA, 0.3% Triton X-100 in PBS containing either a goat anti-DCX

(Santa Cruz #SC8066; 1:250) or a rabbit anti-GFAP (Sigma #180063; 1:1000), respectively.

After rinsing with PBS, the sections were blocked in the aforementioned blocking buffer for 3

h and incubated in the dark for 6 h with either secondary Alexa Fluor-594 donkey anti-goat

IgG antibody (Life Technologies; 1:1000) or secondary Alexa Fluor-594 donkey anti-rabbit

IgG antibody (Life Technologies; 1:1000). The sections were then rinsed in PBS. After the final

PBS rinse, the sections were mounted on SuperfrostPlus slides (Fisher), allowed to dry at RT in

the dark, coverslipped and stored at -20˚C. The sections were imaged with Olympus IX81/

DSU spinning disc confocal microscope.

Data Analysis

Data for all experiments, presented as means ± SEM, were analyzed by t-test or a one- or two-

way ANOVA, as appropriate. Post hoc analyses were performed with a Tukey test.

Results and Discussion

To assess the effects of choline supplementation on the progression of amyloidosis, we mea-

sured the amount of solubilized Aβ40 and Aβ42 by ELISA and soluble Aβ by Western blot

analysis in hippocampal tissue, as well as the number of plaques and total plaque area in both

anterior and posterior hippocampal sections of wild-type and APP.PS1 mice. First, solubilized

Aβ40 and Aβ42 were measured in hippocampal lysates in females (Fig 1A and 1C) and males

(Fig 1B and 1D) at 6-, 9-, and 12-months of age. Females from the control diet group had

more solubilized Aβ40 than control males at both 9- (P270) and 12- months (P360). Choline

supplementation significantly reduced the levels of Aβ40 and Aβ42 in APP.PS1 female mice at

the 9-months of age but not at 12-months (Fig 1A and 1C). In contrast, there were no signifi-

cant differences in Aβ40 and Aβ42 levels in 9-month-old males, but at 12-months choline-

supplemented males had dramatically less solubilized Aβ40 and Aβ42 than controls (approxi-

mately 13% and 39% of controls, respectively) (Fig 1B and 1D). Western blot analysis with an

anti-APP antibody was used to visualize full-length APP and Aβ levels in the hippocampus of

control and choline-supplemented APP.PS1 mice. There were no significant differences in

the levels of full-length human APP between dietary groups at either 9- or 12-months of age,

regardless of sex (Fig 1E and 1F). In both dietary groups and in both sexes, however, there

were significant reductions in the amounts of full length APP at 12-months of age compared

to those at 9-months. The analysis of total soluble Aβ levels in the hippocampus via immuno-

blot produced similar results to those obtained using ELISA, such that choline-supplemented

females had significantly less soluble Aβ than control mice at 9-months-old (Fig 1E) and cho-

line-supplemented males had less Aβ at 12-months (Fig 1F). In both sexes, the amount of

soluble Aβ significantly increased from 9-months to 12-months, regardless of diet. In the hip-

pocampus of 12-month-old APP.PS1 mice, we also measured the levels of the products of APP

cleavage catalyzed by the α and β secretase enzymes, i.e. the α- and β-C-terminal fragments

(CTFs) of APP. β-CTF is the substrate of γ secretase that produces the Aβ peptides. Using

Western blot analysis with an antibody raised against the C-terminal end of APP (Fig 2), we

found that, while choline supplementation had no effect on the α-CTF levels, it increased the

levels of the β-CTF by approximately 30% as compared to controls in both females and males

(Fig 2A and 2B).

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease
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Fig 1. Aβ levels in the hippocampus of APP.PS1 mice. Hippocampal lysates from females and males

were used to measure solubilized Aβ40 (A, B) and Aβ42 (C, D) levels by ELISA, and APP and soluble Aβ (E,

F) levels by Western blot analysis using the anti-APP 6E10 antibody. For each sex, the lysates from both 9-

and 12-month-old mice were loaded on the same SDS-page gel and immunoblotted together, and therefore,

the data were analyzed together and presented as percentages of the 9-month control values. As determined

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease
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In addition, we used the contralateral hippocampus from these 9- and 12-month old mice

to measure plaque formation using immunohistochemistry. We determined the average num-

ber, total plaque area, average plaque size and plaque burden for both Aβ40 and Aβ42 plaques

in sections from the anterior and posterior hippocampus. Fig 3A and 3B show representative

images of Aβ40-stained anterior and posterior hippocampal sections from 9-month old wild-

type and APP.PS1 female mice. Perinatal choline supplementation significantly reduced the

average number of Aβ40 plaques and total Aβ40 plaque area (also average plaque size and pla-

que burden- data not shown) in both 9- and 12-month old APP.PS1 females (Fig 3C and 3E)

and 12-month old males (Fig 3D and 3F). Similarly, choline supplementation lowered Aβ42

plaque formation (Fig 4). Representative images of Aβ42-stained anterior and posterior hippo-

campal sections from 9-month old wild-type and APP.PS1 female mice are shown in Fig 4A

and 4B, respectively. Choline supplementation significantly reduced the average number of

plaques and total plaque area in female and male APP.PS1 mice (Fig 4C–4F). While the num-

ber and size of both Aβ40 and Aβ42 plaques increased with age in the control APP.PS1 mice,

the plaque number and area were more stable in choline-supplemented mice suggesting that

Aβ synthesis, clearance, and/or aggregation may be altered in these mice to prevent additional

plaque formation.

Cholinergic dysfunction is a prominent symptom in AD and is thought to be due to the

reduced expression of CHAT, the enzyme necessary for ACh synthesis, as well as the degenera-

tion and loss of cholinergic neurons. We measured the levels of CHAT protein in the hippo-

campus of both control and perinatally choline-supplemented wild-type and APP.PS1 mice.

At 9- and 12-months, CHAT protein levels were significantly decreased by the presence of

human mutant forms of APP and PS1 in female mice from the control group (Fig 5A). Perina-

tal choline supplementation prevented this decrease, suggesting that choline supplementation

may rescue cholinergic function in AD mice. Similar results were observed in males (Fig 5B).

We have previously shown that prenatal choline supplementation can increase hippocampal

neurogenesis in rats [59, 60]. Here, we examined the effects of perinatal choline supplementation

by 2-way ANOVA for genotype and diet and Tukey test per age: * represents p<0.05 compared to control diet

APP.PS1 mice at 9-months; †, p<0.05 compared to choline-supplemented diet APP.PS1 mice at 9-months;

and #, p<0.05 compared to control diet APP.PS1 mice at the same age.

doi:10.1371/journal.pone.0170450.g001

Fig 2. APP metabolite levels in the hippocampus of APP.PS1 mice. Hippocampal lysates from 12-month-

old female and male APP.PS1 mice were used to measure the α- and β-CTFs using an anti-C-terminal APP

antibody. As determined by Student T-test, * represents p<0.05 compared to control diet APP.PS1 mice of

the same sex.

doi:10.1371/journal.pone.0170450.g002
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Fig 3. Aβ40 plaques in the hippocampus of 9-, and 12-month old WT and APP.PS1 mice. Anterior (A) and

posterior (B) hippocampal sections from representative 9-month females stained with anti-Aβ40. The average

number of Aβ40 plaques per animal (C, D) and the total Aβ40 plaque area (E, F) were quantified using ImageJ64

software in both females and males. As determined by 2-way ANOVA for hippocampal region and diet and Tukey

test per age, # represents p<0.05 compared to control diet APP.PS1 mice at the same age. There was a

significant overall effect of choline supplementation on the average number and total plaque area in both females

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease
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(P270: average number p<0.001 and total plaque area p<0.0005; P360: p<0.0001 and p<0.0001) and males

(P270: p<0.05 and p<0.05; P360: p<0.0005 and p<0.01).

doi:10.1371/journal.pone.0170450.g003

Fig 4. Aβ42 plaques in the hippocampus of 9-, and 12-month old WT and APP.PS1 mice. Anterior (A)

and posterior (B) hippocampal sections from representative 9-month females stained with anti-Aβ42. The

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease
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on this process in mice by immunofluorescence staining and measuring the protein expression

of DCX as a marker. Overall, we did not observe any effects of the APP.PS1 genotype on DCX

expression. By qualitative examination, 9-month old perinatally choline-supplemented wild-type

and APP.PS1 females had more DCX-positive cells within the dentate gyrus as compared to con-

trols (Fig 6A). Consistent with previous studies, there was an overall significant increase in DCX

protein levels quantified by Western blot analysis of both female and male hippocampal lysates

in the wild-type and APP.PS1 perinatally choline-supplemented mice (Fig 6B and 6C, respec-

tively). This increase was particularly striking (over 2-fold) in 12-month old females.

In addition, we determined the protein expression of GFAP as a marker for gliosis. At 9-

and 12-months of age GFAP levels, as measured by Western blot analysis, were significantly

increased in the hippocampus of both male and female APP.PS1 mice on a control diet (Fig 7B

and 7C, respectively). This increase could be also be observed using immunofluorescence

staining with an anti-GFAP antibody of hippocampal sections from 9-month old females (Fig

7A). Perinatal choline supplementation prevented the increase in GFAP expression in the

APP.PS1 mice (Fig 7B and 7C). Amyloid-associated gliosis and neuroinflammation are com-

monly observed in the post-mortem brains of AD patients [61]. Our results in the mouse

model are consistent with this observation. The decrease in GFAP protein levels in choline-

supplemented mice may indicate reduced level of gliosis.

average number of Aβ42 plaques per animal (C, D) and the total Aβ42 plaque area (E, F) were quantified

using ImageJ64 software in both females and males. As determined by 2-way ANOVA for hippocampal region

and diet and Tukey test per age, # represents p<0.05 compared to control diet APP.PS1 mice at the same

age. There was a significant overall effect of choline supplementation on the average number and total plaque

area in both females (P270: average number p<0.005 and total plaque area p<0.01; P360: p<0.01 and

p<0.05) and males (P270: p<0.05 and p<0.05; P360: p<0.005 and p<0.0005).

doi:10.1371/journal.pone.0170450.g004

Fig 5. CHAT protein levels in the hippocampus of 9- and 12-month old WT and APP.PS1 mice.

Hippocampal lysates were used to measure CHAT protein levels by Western blot analysis in females (A) and

males (B). As determined by 2-way ANOVA for genotype and diet and Tukey test per age: * represents p<0.05

compared to control diet WT mice at the same age; and #, p<0.05 compared to control diet APP.PS1 mice at the

same age.

doi:10.1371/journal.pone.0170450.g005
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Fig 6. Neurogenesis in the hippocampus WT and APP.PS1 mice. DCX immunofluorescence staining of

anterior hippocampal sections (A) from 9-month old female mice visualized using confocal microscopy. Bar

represents 50 μm. Hippocampal lysates of 9- and 12-month old females (B) and males (C) were used to measure

DCX protein levels by Western blot analysis. As determined by 2-way ANOVA for genotype and diet and Tukey

test per age: * represents p<0.05 compared to control diet WT mice at the same age; and #, p<0.05 compared to

control diet APP.PS1 mice at the same age. There was a significant overall effect of perinatal choline

supplementation on DCX protein levels in both 9- and 12-month females (p<0.05 and p<0.0005, respectively) and

males (p<0.001 and p<0.01, respectively).

doi:10.1371/journal.pone.0170450.g006
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Due to the emerging role of IGF2 on brain development and function, we also measured

the amount of IGF2 protein in hippocampal lysates from both female and male mice at

9-months of age. Overall, choline supplementation increased hippocampal IGF2 levels (Fig 8).

IGF2 levels were significantly reduced in the hippocampus of APP.PS1 mice as compared to

Fig 7. Astrogliosis levels in the hippocampus WT and APP.PS1 mice. GFAP immunofluorescence staining of

anterior hippocampal sections (A) from 9-month old female mice visualized using confocal microscopy. Bar

represents 50 μm. Hippocampal lysates of 9- and 12-month old females (B) and males (C) were used to measure

GFAP protein levels by Western blot analysis. As determined by 2-way ANOVA for genotype and diet and Tukey

test per age: * represents p<0.05 compared to control diet WT mice at the same age; †, p<0.05 compared to

choline-supplemented diet WT mice at the same age; and #, p<0.05 compared to control diet APP.PS1 mice at the

same age.

doi:10.1371/journal.pone.0170450.g007
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the WT siblings; however, choline-supplemented APP.PS1 mice retained IGF2 levels similar to

those of WT mice.

Conclusions

These data show that high dietary choline consumption by mouse mothers throughout preg-

nancy and nursing ameliorates two central pathophysiologic features of their AD model APP.

PS1 offspring: accumulation of amyloid plaques and reductions in CHAT protein levels in the

hippocampus. The characteristic age-dependent progressive amyloidosis in brain of the APP.

PS1 mice [45, 62] was dramatically attenuated by an increased supply of choline during fetal

and early postnatal development.

Consistent with previous studies, males accumulated Aβ peptides and generated amyloid

plaques more slowly than the females [63–65]. Perinatally choline-supplemented males exhib-

ited dramatic resistance to Aβ buildup measured by ELISA and Western blot assays. However,

choline-supplemented males and females showed nearly equal reductions in the number and

area of Aβ40 and Aβ42 immunoreactive plaques. The latter observations suggest that while the

mechanisms that control brain amyloidosis in APP.PS1 mice are sexually dimorphic, the anti-

amyloidogenic mechanisms engendered by high choline supply during development operate

Fig 8. Hippocampal IGF2 protein levels in WT and APP.PS1 mice. Hippocampal lysates of 9-old females

and males were used to measure IGF2 protein levels by Western blot analysis. In the males, there was a

significant effect of choline supplementation, regardless of genotype, using a 2-way ANOVA (p<0.005). As

determined by 2-way ANOVA for genotype and diet and Tukey test per age: * represents p<0.05 compared to

control diet WT mice of the same sex; and #, p<0.05 compared to control diet APP.PS1 mice of the same sex.

doi:10.1371/journal.pone.0170450.g008
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efficiently in both sexes. Our data showing that perinatal choline supplementation increased

the hippocampal levels of β-CTF in both sexes is consistent with this notion. Moreover, the

pattern of reduced levels of Aβ peptides together with increased levels of β-CTF in brain of

perinatally choline-supplemented animals is reminiscent of what is observed in AD mouse

models treated with certain inhibitors of γ-secretase [66–68]–the enzyme that catalyzes the for-

mation of Aβ by hydrolyzing β-CTF. Thus, the mechanism underlying amelioration of amy-

loidosis in our choline supplemented APP.PS1 mice may be potentially mediated by reduced

activity of γ-secretase. Similarly both male and female choline-supplemented APP.PS1 mice

were resistant to the 30–40% decline in the hippocampal CHAT protein levels observed in

mice reared on the control diet. The vulnerability of the septohippocampal cholinergic neu-

rons to the pathophysiologic process of AD is commonly considered to be mediated by the

toxic actions of Aβ peptides [69]. Our observations are consistent with this idea, however, we

note that CHAT levels reach their nadir already at 9 months–a time when accumulation of

hippocampal Aβ peptides and amyloid plaques in APP.PS1 mice is far from complete. Thus, it

is possible that the anticholinergic actions of Aβ are saturated at low levels of the peptide, as

seen in our previous studies in cell culture [69], or that they occur in the septum in the milieu

of the cholinergic neuron somata, a region generally free of amyloid plaques (data not shown),

rather then the hippocampus.

AD model mice, including the APP.PS1 mice, reportedly exhibit impaired adult hippocam-

pal neurogenesis as they age [70–73]. In this study, both the 9- and 12-month-old APP.PS1

mice had similar expression of DCX–a marker of newly-born, immature neurons [74]–as the

WT mice suggesting no marked defects of neurogenesis in these mice. However, consistent

with previous studies in rats [16, 59, 60] and Ts65Dn Down’s syndrome (DS) model mice [30],

perinatal choline supplementation significantly upregulated dentate gyrus DCX staining and

hippocampal DCX levels in both WT and APP.PS1 mice. Thus, high choline supply in early

life appears to program the hippocampal neurogenic niche to support robust neurogenesis in

adulthood. It remains to be determined if this effect of choline is due to its actions on the early

maturation of the neuronal stem/precursor cells in the dentate gyrus per se or due to the mod-

ulation of the trophic environment of these cells. While there are no data on the former, the

latter possibility is supported by the observations that the levels of multiple growth factors

known to stimulate dentate gyrus adult neurogenesis [75] are increased in the hippocampus of

perinatally choline-supplemented rats and mice. The list of such choline-responsive factors

includes: NGF [15, 76], BDNF [15, 59], VEGF [60], IGF1 [15, 17], and IGF2 [77, 78].

Consistent with previous studies [79, 80], including ours [64, 81], the APP.PS1 mice were

characterized by hippocampal gliosis as determined by GFAP immunofluorescence and pro-

tein level assays. This gliosis was nearly eliminated by perinatal choline supplementation.

Given that activation of glial cells in AD and in AD mouse models may be initiated by Aβ pep-

tides [61], it is possible that reduced gliosis in perinatally choline-supplemented APP.PS1 mice

is secondary to the amelioration of the amyloidosis seen in these animals. However, in previ-

ous studies we observed that prenatal choline supplementation in rats similarly attenuated

increases in hippocampal GFAP expression evoked by seizures [16]. Taken together the data

indicate that high choline intake during development may have long-term anti-inflammatory

actions in brain.

The age-associated amyloidosis of AD is the result of the accumulation of Aβ peptides

that are produced by proteolytic processing of APP [82]. Similar amyloidosis is found already

at a young age in the brains of patients with DS [83], caused by the inheritance of an extra

copy of chromosome 21 that harbors the APP gene. Because the murine App and human

APP genes encode proteins with somewhat different amino acid sequences, the murine Aβ
peptides do not aggregate and thus produce no amyloid. For this reason, mouse models of
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AD (including the APP.PS1 mice) are engineered to express various forms of the human

APP. However, models of DS have been generated (e.g. the Ts65Dn line [84]) by producing

animals with an additional copy of a portion of murine chromosome 16 that is syntenic with

the DS critical region on the human chromosome 21 [85]. These mice exhibit various mor-

phological, cognitive, behavioral and brain defects that model DS [86]. Interestingly, perina-

tally choline-supplemented Ts65Dn mice are somewhat protected from attention and

memory impairments [25, 28, 30], structural abnormalities in BFCN [25–27], and deficits of

hippocampal neurogenesis [30]. These data, together with the current results, raise the possi-

bility that some of the abnormalities seen in brains of the Ts65Dn and APP.PS1 mice may be

mediated by common mechanisms related to overexpression of the amyloid precursor pro-

tein (App in the Ts65Dn mice and mutant APP in the APP.PS1 mice, respectively) or its pro-

teolytic products [82], including the murine or human Aβ, and not necessarily by the toxic

actions of the human Aβ peptides.

The overall mechanisms of action of high choline intake during fetal and early postnatal

development on adult brain structure and function remain to be determined but are likely

related to the metabolism of choline for use in the synthesis of membrane phospholipids

(e.g. phosphatidylcholine) and as a precursor of ACh. Moreover, following enzymatic oxida-

tion to betaine, choline functions as a methyl group donor and as such influences DNA and

histone methylation–two central epigenomic processes that regulate gene expression [87].

Indeed, we [88, 89], and others [90–93] have shown that perinatal availability of choline dra-

matically alters brain DNA and histone H3 methylation. In an earlier set of studies we found

that prenatal choline intake modulates the methylation patterns of the regulatory DNA ele-

ments in the gene encoding IGF2 [88], and that IGF2 mRNA and protein levels are dramati-

cally upregulated by prenatal choline supplementation in the hippocampus and cerebral

cortex of rats [77, 78]. IGF2 is highly expressed in the choroid plexus and secreted into the

CSF [94, 95], and thus may exert global influence on the brain. Previous studies showed that

intrahippocampal injections of IGF2 in young rats [96–98] and mice [99, 100] enhances

memory function, whereas antagonizing the action of endogenous IGF2 impairs memory

[96, 99, 101] indicating the possible role of brain-derived IGF2 in this process. IGF2 upregu-

lates the proliferation of neural stem cells in the dentate gyrus [102], and intrahippocampal

injections of IGF2 promote the survival of adult-born neurons in the dentate granule cell

layer [99, 100]. In addition, we [78], and others [103] found that IGF2 increases the release of

ACh from BFCN. Most importantly, we reported that intracerebroventricular IGF2 infusion

ameliorates the amyloidosis and the cholinergic defect in the APP.PS1 mice [81]. In this

study, choline supplementation increased IGF2 levels and prevented the reduction in IGF2

protein observed in APP.PS1 mice. Thus, it is possible that many of the actions of high cho-

line intake observed in this study are mediated by IGF2.

Our study used a mouse model of AD that causes severe AD-like pathology due to the over-

expression of mutant APP and PSEN1 genes that cause hereditary forms of the disease in

humans. We found that the severity of the AD-like symptoms in this model can be signifi-

cantly attenuated by the supplementation of maternal diet with choline during pregnancy and

nursing. The vast majority of human AD is sporadic with no known causes and even though

its prevalence is alarming, reaching over 30% in individuals over 85 years of age [104], the dis-

ease does not appear to be an inevitable result of aging. Some of the factors that prevent or

forestall AD have may be genetic; e.g. non-carriers of the APOE ε4 allele [105–108] or individ-

uals who inherited the rare APP A673T allele [109] may be somewhat protected. Our study

suggests that vulnerability to AD may be modified by early-life nutrition and further support

the notion that adequate intake of choline during pregnancy and nursing in an important pub-

lic health goal.
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44. Götz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neu-

rosci. 2008; 9(7):532–44. Epub 2008/06/24. doi: 10.1038/nrn2420 PMID: 18568014

45. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins spe-

cifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of

a 42-specific gamma secretase. Hum Mol Genet. 2004; 13(2):159–70. Epub 2003/12/03. doi: 10.

1093/hmg/ddh019 PMID: 14645205

46. Perez SE, Dar S, Ikonomovic MD, Dekosky ST, Mufson EJ. Cholinergic forebrain degeneration in the

APPswe/PS1DeltaE9 transgenic mouse. Neurobiol Dis. 2007; 28(1):3–15. doi: 10.1016/j.nbd.2007.

06.015 PMID: 17662610

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease

PLOS ONE | DOI:10.1371/journal.pone.0170450 January 19, 2017 18 / 22

http://www.ncbi.nlm.nih.gov/pubmed/26391046
http://dx.doi.org/10.1016/j.nbd.2013.04.016
http://www.ncbi.nlm.nih.gov/pubmed/23643842
http://dx.doi.org/10.1016/j.nbd.2007.02.003
http://www.ncbi.nlm.nih.gov/pubmed/17395475
http://dx.doi.org/10.1016/j.brainres.2008.08.042
http://www.ncbi.nlm.nih.gov/pubmed/18778693
http://dx.doi.org/10.1016/j.nbd.2008.03.009
http://dx.doi.org/10.1016/j.nbd.2008.03.009
http://www.ncbi.nlm.nih.gov/pubmed/18571096
http://dx.doi.org/10.1111/j.1471-4159.2008.05768.x
http://www.ncbi.nlm.nih.gov/pubmed/19012748
http://dx.doi.org/10.1016/j.bbr.2011.03.051
http://www.ncbi.nlm.nih.gov/pubmed/21457731
http://dx.doi.org/10.1016/j.bbr.2014.09.043
http://dx.doi.org/10.1016/j.bbr.2014.09.043
http://www.ncbi.nlm.nih.gov/pubmed/25300468
http://dx.doi.org/10.1016/j.bbr.2014.03.031
http://dx.doi.org/10.1016/j.bbr.2014.03.031
http://www.ncbi.nlm.nih.gov/pubmed/24675162
http://dx.doi.org/10.1016/j.brainres.2014.01.022
http://www.ncbi.nlm.nih.gov/pubmed/24462939
http://dx.doi.org/10.1176/appi.ajp.2012.12070940
http://www.ncbi.nlm.nih.gov/pubmed/23318559
http://dx.doi.org/10.1016/j.pbb.2012.08.002
http://www.ncbi.nlm.nih.gov/pubmed/22917834
http://www.ncbi.nlm.nih.gov/pubmed/11337275
http://dx.doi.org/10.1038/nrn2420
http://www.ncbi.nlm.nih.gov/pubmed/18568014
http://dx.doi.org/10.1093/hmg/ddh019
http://dx.doi.org/10.1093/hmg/ddh019
http://www.ncbi.nlm.nih.gov/pubmed/14645205
http://dx.doi.org/10.1016/j.nbd.2007.06.015
http://dx.doi.org/10.1016/j.nbd.2007.06.015
http://www.ncbi.nlm.nih.gov/pubmed/17662610


47. Machova E, Rudajev V, Smyckova H, Koivisto H, Tanila H, Dolezal V. Functional cholinergic damage

develops with amyloid accumulation in young adult APPswe/PS1dE9 transgenic mice. Neurobiol Dis.

2010; 38(1):27–35. Epub 2010/01/08. doi: 10.1016/j.nbd.2009.12.023 PMID: 20053373

48. Goto Y, Niidome T, Hongo H, Akaike A, Kihara T, Sugimoto H. Impaired muscarinic regulation of excit-

atory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Eur J Phar-

macol. 2008; 583(1):84–91. Epub 2008/02/20. doi: 10.1016/j.ejphar.2008.01.030 PMID: 18282567

49. Nikolajsen GN, Jensen MS, West MJ. Cholinergic axon length reduced by 300 meters in the brain of

an Alzheimer mouse model. Neurobiol Aging. 2011; 32(11):1927–31. doi: 10.1016/j.neurobiolaging.

2011.05.006 PMID: 21752495

50. Savonenko A, Xu GM, Melnikova T, Morton JL, Gonzales V, Wong MP, et al. Episodic-like memory

deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid

deposition and neurotransmitter abnormalities. Neurobiol Dis. 2005; 18(3):602–17. Epub 2005/03/10.

doi: 10.1016/j.nbd.2004.10.022 PMID: 15755686

51. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and

lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000; 163(2):495–

529. doi: 10.1006/exnr.2000.7397 PMID: 10833325

52. Blusztajn JK, Berse B. The cholinergic neuronal phenotype in Alzheimer’s disease. Metab Brain Dis.

2000; 15(1):45–64. PMID: 10885540

53. Fibiger HC. Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence.

Trends Neurosci. 1991; 14(6):220–3. PMID: 1716012

54. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile

dementia: loss of neurons in the basal forebrain. Science. 1982; 215(4537):1237–9. PMID: 7058341

55. Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzhei-

mer’s disease: therapeutic implications. Expert Rev Neurother. 2008; 8(11):1703–18. Epub 2008/11/

07. doi: 10.1586/14737175.8.11.1703 PMID: 18986241

56. Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity pro-

vide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front

Integr Neurosci. 2007; 1:7. doi: 10.3389/neuro.07.007.2007 PMID: 18958235

57. Bieri J, Stoewsand G, Briggs G, Phillips R, Woodard J, Kanapka J. Report of the American Institute of

Nurtition ad hoc Committee on Standards for Nutritional Studies. J Nutr. 1977; 107(7):1340–8. PMID:

874577

58. Bieri JG. Second report of the ad hoc committee on standards for nutritional studies. J Nutr 1980;

110:1726.

59. Glenn MJ, Gibson EM, Kirby ED, Mellott TJ, Blusztajn JK, Williams CL. Prenatal choline availability

modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult

female rats. Eur J Neurosci. 2007; 25(8):2473–82. doi: 10.1111/j.1460-9568.2007.05505.x PMID:

17445242

60. Glenn MJ, Kirby ED, Gibson EM, Wong-Goodrich SJ, Mellott TJ, Blusztajn JK, et al. Age-related

declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal cho-

line supplementation in rats. Brain Res. 2008; 1237:110–23. doi: 10.1016/j.brainres.2008.08.049

PMID: 18786518

61. Osborn LM, Kamphuis W, Wadman WJ, Hol EM. Astrogliosis: An integral player in the pathogenesis

of Alzheimer’s disease. Prog Neurobiol. 2016.

62. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, et al. Characteri-

zation of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol

Dis. 2006; 24(3):516–24. Epub 2006/10/13. doi: 10.1016/j.nbd.2006.08.017 PMID: 17029828

63. Jiao SS, Bu XL, Liu YH, Zhu C, Wang QH, Shen LL, et al. Sex Dimorphism Profile of Alzheimer’s Dis-

ease-Type Pathologies in an APP/PS1 Mouse Model. Neurotox Res. 2016; 29(2):256–66. doi: 10.

1007/s12640-015-9589-x PMID: 26707129

64. Burke RM, Norman TA, Haydar TF, Slack BE, Leeman SE, Blusztajn JK, et al. BMP9 ameliorates

amyloidosis and the cholinergic defect in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U

S A. 2013; 110(48):19567–72. doi: 10.1073/pnas.1319297110 PMID: 24218590

65. Wang J, Tanila H, Puolivali J, Kadish I, van Groen T. Gender differences in the amount and deposition

of amyloidβ in APPswe and PS1 double transgenic mice. Neurobiol Dis. 2003; 14(3):318–27. PMID:

14678749

66. Mitani Y, Yarimizu J, Saita K, Uchino H, Akashiba H, Shitaka Y, et al. Differential effects between

gamma-secretase inhibitors and modulators on cognitive function in amyloid precursor protein-trans-

genic and nontransgenic mice. J Neurosci. 2012; 32(6):2037–50. doi: 10.1523/JNEUROSCI.4264-11.

2012 PMID: 22323718

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease

PLOS ONE | DOI:10.1371/journal.pone.0170450 January 19, 2017 19 / 22

http://dx.doi.org/10.1016/j.nbd.2009.12.023
http://www.ncbi.nlm.nih.gov/pubmed/20053373
http://dx.doi.org/10.1016/j.ejphar.2008.01.030
http://www.ncbi.nlm.nih.gov/pubmed/18282567
http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.006
http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.006
http://www.ncbi.nlm.nih.gov/pubmed/21752495
http://dx.doi.org/10.1016/j.nbd.2004.10.022
http://www.ncbi.nlm.nih.gov/pubmed/15755686
http://dx.doi.org/10.1006/exnr.2000.7397
http://www.ncbi.nlm.nih.gov/pubmed/10833325
http://www.ncbi.nlm.nih.gov/pubmed/10885540
http://www.ncbi.nlm.nih.gov/pubmed/1716012
http://www.ncbi.nlm.nih.gov/pubmed/7058341
http://dx.doi.org/10.1586/14737175.8.11.1703
http://www.ncbi.nlm.nih.gov/pubmed/18986241
http://dx.doi.org/10.3389/neuro.07.007.2007
http://www.ncbi.nlm.nih.gov/pubmed/18958235
http://www.ncbi.nlm.nih.gov/pubmed/874577
http://dx.doi.org/10.1111/j.1460-9568.2007.05505.x
http://www.ncbi.nlm.nih.gov/pubmed/17445242
http://dx.doi.org/10.1016/j.brainres.2008.08.049
http://www.ncbi.nlm.nih.gov/pubmed/18786518
http://dx.doi.org/10.1016/j.nbd.2006.08.017
http://www.ncbi.nlm.nih.gov/pubmed/17029828
http://dx.doi.org/10.1007/s12640-015-9589-x
http://dx.doi.org/10.1007/s12640-015-9589-x
http://www.ncbi.nlm.nih.gov/pubmed/26707129
http://dx.doi.org/10.1073/pnas.1319297110
http://www.ncbi.nlm.nih.gov/pubmed/24218590
http://www.ncbi.nlm.nih.gov/pubmed/14678749
http://dx.doi.org/10.1523/JNEUROSCI.4264-11.2012
http://dx.doi.org/10.1523/JNEUROSCI.4264-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22323718


67. Murakami K, Watanabe T, Koike T, Kamata M, Igari T, Kondo S. Pharmacological properties of a

novel and potent gamma-secretase modulator as a therapeutic option for the treatment of Alzheimer’s

disease. Brain Res. 2016; 1633:73–86. doi: 10.1016/j.brainres.2015.12.016 PMID: 26707977

68. Tamayev R, D’Adamio L. Inhibition of gamma-secretase worsens memory deficits in a genetically con-

gruous mouse model of Danish dementia. Mol Neurodegener. 2012; 7:19. doi: 10.1186/1750-1326-7-

19 PMID: 22537414

69. Pedersen WA, Kloczewiak MA, Blusztajn JK. Amyloid β-protein reduces acetylcholine synthesis in a

cell line derived from cholinergic neurons of the basal forebrain. ProcNatlAcadSciUSA. 1996; 93

(15):8068–71.

70. Niidome T, Taniuchi N, Akaike A, Kihara T, Sugimoto H. Differential regulation of neurogenesis in two

neurogenic regions of APPswe/PS1dE9 transgenic mice. Neuroreport. 2008; 19(14):1361–4. doi: 10.

1097/WNR.0b013e32830e6dd6 PMID: 18766011

71. Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, Sugimoto H. Decreased proliferation of hippocam-

pal progenitor cells in APPswe/PS1dE9 transgenic mice. Neuroreport. 2007; 18(17):1801–5. doi: 10.

1097/WNR.0b013e3282f1c9e9 PMID: 18090315

72. Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O. Complex environment experience rescues

impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alz-

heimer’s disease-linked APPswe/PS1DeltaE9 mice. Faseb J. 2010; 24(6):1667–81. doi: 10.1096/fj.

09-136945 PMID: 20086049

73. Demars M, Hu YS, Gadadhar A, Lazarov O. Impaired neurogenesis is an early event in the etiology of

familial Alzheimer’s disease in transgenic mice. J Neurosci Res. 2010; 88(10):2103–17. doi: 10.1002/

jnr.22387 PMID: 20209626

74. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin

expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005; 21(1):1–14. doi: 10.1111/j.

1460-9568.2004.03813.x PMID: 15654838

75. Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippo-

campal neurogenesis. Curr Top Behav Neurosci. 2013; 15:189–210. doi: 10.1007/7854_2012_220

PMID: 22847651

76. Sandstrom NJ, Loy R, Williams CL. Prenatal choline supplementation increases NGF levels in the hip-

pocampus and frontal cortex of young and adult rats. Brain Res. 2002; 947(1):9–16. PMID: 12144847

77. Mellott TJ, Follettie MT, Diesl V, Hill AA, Lopez-Coviella I, Blusztajn JK. Prenatal choline availability

modulates hippocampal and cerebral cortical gene expression. FASEB J. 2007; 21(7):1311–23. doi:

10.1096/fj.06-6597com PMID: 17264169

78. Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of

IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and

frontal cortex. Brain Res. 2008; 1237:124–35. doi: 10.1016/j.brainres.2008.08.046 PMID: 18786520

79. Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM. Differential cell proliferation in the cortex of the

APPswePS1dE9 Alzheimer’s disease mouse model. Glia. 2012; 60(4):615–29. doi: 10.1002/glia.

22295 PMID: 22262260

80. Kamphuis W, Mamber C, Moeton M, Kooijman L, Sluijs JA, Jansen AH, et al. GFAP isoforms in adult

mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alz-

heimer disease. PloS one. 2012; 7(8):e42823. doi: 10.1371/journal.pone.0042823 PMID: 22912745

81. Mellott TJ, Pender SM, Burke RM, Langley EA, Blusztajn JK. IGF2 Ameliorates Amyloidosis,

Increases Cholinergic Marker Expression and Raises BMP9 and Neurotrophin Levels in the Hippo-

campus of the APPswePS1dE9 Alzheimer’s Disease Model Mice. PloS one. 2014; 9(4):e94287. doi:

10.1371/journal.pone.0094287 PMID: 24732467

82. Nalivaeva NN, Turner AJ. The amyloid precursor protein: a biochemical enigma in brain development,

function and disease. FEBS Lett. 2013; 587(13):2046–54. doi: 10.1016/j.febslet.2013.05.010 PMID:

23684647

83. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition

of heterogeneous amyloid b-peptides and APO E in Down syndrome: implications for initial events in

amyloid plaque formation. NeurobiolDisease. 1996; 3:16–32.

84. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, et al. A mouse model for Down syn-

drome exhibits learning and behaviour deficits. Nat Genet. 1995; 11(2):177–84. doi: 10.1038/ng1095-

177 PMID: 7550346

85. Haydar TF, Reeves RH. Trisomy 21 and early brain development. Trends Neurosci. 2012; 35(2):81–

91. doi: 10.1016/j.tins.2011.11.001 PMID: 22169531

Perinatal Choline Ameliorates Pathology in a Mouse Model of Alzheimer’s Disease

PLOS ONE | DOI:10.1371/journal.pone.0170450 January 19, 2017 20 / 22

http://dx.doi.org/10.1016/j.brainres.2015.12.016
http://www.ncbi.nlm.nih.gov/pubmed/26707977
http://dx.doi.org/10.1186/1750-1326-7-19
http://dx.doi.org/10.1186/1750-1326-7-19
http://www.ncbi.nlm.nih.gov/pubmed/22537414
http://dx.doi.org/10.1097/WNR.0b013e32830e6dd6
http://dx.doi.org/10.1097/WNR.0b013e32830e6dd6
http://www.ncbi.nlm.nih.gov/pubmed/18766011
http://dx.doi.org/10.1097/WNR.0b013e3282f1c9e9
http://dx.doi.org/10.1097/WNR.0b013e3282f1c9e9
http://www.ncbi.nlm.nih.gov/pubmed/18090315
http://dx.doi.org/10.1096/fj.09-136945
http://dx.doi.org/10.1096/fj.09-136945
http://www.ncbi.nlm.nih.gov/pubmed/20086049
http://dx.doi.org/10.1002/jnr.22387
http://dx.doi.org/10.1002/jnr.22387
http://www.ncbi.nlm.nih.gov/pubmed/20209626
http://dx.doi.org/10.1111/j.1460-9568.2004.03813.x
http://dx.doi.org/10.1111/j.1460-9568.2004.03813.x
http://www.ncbi.nlm.nih.gov/pubmed/15654838
http://dx.doi.org/10.1007/7854_2012_220
http://www.ncbi.nlm.nih.gov/pubmed/22847651
http://www.ncbi.nlm.nih.gov/pubmed/12144847
http://dx.doi.org/10.1096/fj.06-6597com
http://www.ncbi.nlm.nih.gov/pubmed/17264169
http://dx.doi.org/10.1016/j.brainres.2008.08.046
http://www.ncbi.nlm.nih.gov/pubmed/18786520
http://dx.doi.org/10.1002/glia.22295
http://dx.doi.org/10.1002/glia.22295
http://www.ncbi.nlm.nih.gov/pubmed/22262260
http://dx.doi.org/10.1371/journal.pone.0042823
http://www.ncbi.nlm.nih.gov/pubmed/22912745
http://dx.doi.org/10.1371/journal.pone.0094287
http://www.ncbi.nlm.nih.gov/pubmed/24732467
http://dx.doi.org/10.1016/j.febslet.2013.05.010
http://www.ncbi.nlm.nih.gov/pubmed/23684647
http://dx.doi.org/10.1038/ng1095-177
http://dx.doi.org/10.1038/ng1095-177
http://www.ncbi.nlm.nih.gov/pubmed/7550346
http://dx.doi.org/10.1016/j.tins.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22169531


86. Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, et al. Down syndrome and Alz-

heimer’s disease: Common pathways, common goals. Alzheimers Dement. 2015; 11(6):700–9. doi:

10.1016/j.jalz.2014.10.007 PMID: 25510383

87. Blusztajn JK, Mellott TJ. Choline nutrition programs brain development via DNA and histone methyla-

tion. Central nervous system agents in medicinal chemistry. 2012.

88. Kovacheva VP, Mellott TJ, Davison JM, Wagner N, Lopez-Coviella I, Schnitzler AC, et al. Gestational

choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1

expression. J Biol Chem. 2007; 282(43):31777–88. doi: 10.1074/jbc.M705539200 PMID: 17724018

89. Davison JM, Mellott TJ, Kovacheva VP, Blusztajn JK. Gestational choline supply regulates methyla-

tion of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a) and

DNA methylation of their genes in rat fetal liver and brain. J Biol Chem. 2009; 284:1982–9. Epub 2008/

11/13. doi: 10.1074/jbc.M807651200 PMID: 19001366

90. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific

DNA methylation in the developing hippocampus of mouse fetal brains. Faseb J. 2006; 20(1):43–9.

doi: 10.1096/fj.05-4707com PMID: 16394266

91. Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency decreases angiogene-

sis in fetal mouse hippocampus. Proc Natl Acad Sci U S A. 2010; 107:12834–9. doi: 10.1073/pnas.

0914328107 PMID: 20624989

92. Bekdash RA, Zhang C, Sarkar DK. Gestational Choline Supplementation Normalized Fetal Alcohol-

Induced Alterations in Histone Modifications, DNA Methylation, and Proopiomelanocortin (POMC)

Gene Expression in beta-Endorphin-Producing POMC Neurons of the Hypothalamus. Alcohol Clin

Exp Res. 2013.

93. Tran PV, Kennedy BC, Lien YC, Simmons RA, Georgieff MK. Fetal iron deficiency induces chromatin

remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol.

2015; 308(4):R276–82. doi: 10.1152/ajpregu.00429.2014 PMID: 25519736

94. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides

a proliferative niche for neural progenitor cells. Neuron. 2011; 69(5):893–905. doi: 10.1016/j.neuron.

2011.01.023 PMID: 21382550

95. Lun MP, Johnson MB, Broadbelt KG, Watanabe M, Kang Y-j, Chau KF, et al. Spatially heterogeneous

choroid plexus transcriptomes encode positional identity and contribute to regional cerebrospinal fluid

production. J Neurosci. 2015; 35(12):4903–13. doi: 10.1523/JNEUROSCI.3081-14.2015 PMID:

25810521

96. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, et al. A critical

role for IGF-II in memory consolidation and enhancement. Nature. 2011; 469(7331):491–7. doi: 10.

1038/nature09667 PMID: 21270887

97. Alberini CM, Chen DY. Memory enhancement: consolidation, reconsolidation and insulin-like growth

factor 2. Trends Neurosci. 2012; 35(5):274–83. doi: 10.1016/j.tins.2011.12.007 PMID: 22341662

98. Stern SA, Chen DY, Alberini CM. The effect of insulin and insulin-like growth factors on hippocampus-

and amygdala-dependent long-term memory formation. Learn Mem. 2014; 21(10):556–63. doi: 10.

1101/lm.029348.112 PMID: 25227250

99. Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, et al. A hippocampal

insulin-growth factor 2 pathway regulates the extinction of fear memories. Embo J. 2011; 30

(19):4071–83. doi: 10.1038/emboj.2011.293 PMID: 21873981

100. Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H, Adachi K, et al. Reduced adult hippocampal neu-

rogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-asso-

ciated schizophrenia can be rescued by IGF2. J Neurosci. 2013; 33(22):9408–19. doi: 10.1523/

JNEUROSCI.2700-12.2013 PMID: 23719809

101. Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive

impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci

Res. 2003; 74(4):512–23. doi: 10.1002/jnr.10791 PMID: 14598295

102. Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, et al. Gene expression profiling of neural

stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis.

J Neurosci. 2012; 32(10):3376–87. doi: 10.1523/JNEUROSCI.4248-11.2012 PMID: 22399759
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