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SUMMARY

TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic 

stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent 
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genes is not well understood. Using a proteomics approach, we map the TET1 interactome in 

ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 

functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that 

PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, 

Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. 

During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 

chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain 

bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-

PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene 

transcripts in controlling stem cell bivalency

Graphical Abstract

In brief

Huang et al. use proteomics and genetic approaches to show that catalytic activity-independent 

functions of TET1, coordinated with the paraspeckle components PSPC1 and its cognate lncRNA 

Neat1, dynamically regulate stem cell bivalency by modulating PRC2 binding to chromatin and 

bivalent gene transcripts in the naive-to-formative pluripotent state transition.
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INTRODUCTION

Embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) of the naive and primed 

pluripotency states, respectively, differ significantly in their transcriptomic features, 

clonogenicity, and differentiation potentials (Nichols and Smith, 2009). Epiblast-like stem 

cells (EpiLCs), a kind of formative pluripotent cells, transiently emerge when adapting 

ESCs to primed EpiSCs culture conditions within a specific period (usually 48 h), while 

an extended culture of EpiLCs establishes a stable primed state (Hayashi et al., 2011; 

Morgani et al., 2017; Smith, 2017). Recently, stable cell lines of formative pluripotency 

state were generated with specific combinations of cytokines and inhibitors (Kinoshita et 

al., 2021; Wang et al., 2021; Yu et al., 2021) with a notable molecular feature, i.e., the 

“super-bivalency” at lineage-specific genes present both in vivo (Xiang et al., 2020) and 

in vitro (Wang et al., 2021). Bivalent promoters are marked by H3K4me3 and H3K27me3 

(Bernstein et al., 2006), catalyzed by KMT2B and polycomb repressive complex-2 (PRC2), 

respectively, and are considered to poise the expression of developmental regulators in 

ESCs while allowing timely activation upon differentiation cues (Voigt et al., 2013). DNA 

methylation at bivalent promoters decreases KMT2B activity and H3K4me3, which in turn 

leads to increased PRC2 occupancy at promoters (Mas et al., 2018). The TET (ten-eleven 

translocation) family of proteins regulate gene expression through DNA demethylation 

(Kohli and Zhang, 2013), and were thus implicated in regulating bivalency (Mas et al., 

2018; Xiang et al., 2020). Although the loss of TET proteins (Tet1KO or Tet1/2/3TKO) 

causes global changes in the DNA methylation and gene expression in ESCs, the cells 

nevertheless retain the ability to self-renew (Dawlaty et al., 2011; Lu et al., 2014; Verma 

et al., 2018). In the formative EpiLCs and the primed EpiSCs, TET1 is the only expressed 

TET protein (Fidalgo et al., 2016; Khoueiry et al., 2017). Loss of TET1 causes dysregulation 

of gene expression in ESC differentiation (Dawlaty et al., 2011; Koh et al., 2011) and 

defects in mouse post-implantation development (Khoueiry et al., 2017). Notably, TET1 is 

responsible for maintaining the DNA methylation valleys at promoters of developmentally 

regulated genes to establish a super-bivalency in the post-implantation epiblast (Xiang et 

al., 2020). Mechanistically, TET1 activates and represses gene transcription by catalytic 

activity-dependent and independent functions through promoter/enhancer demethylation 

(Kohli and Zhang, 2013) and association with SIN3A/HDAC (Williams et al., 2011) or 

PRC2 (Chrysanthou et al., 2022; Neri et al., 2013; Wu et al., 2011) complexes, respectively.

The post-transcriptional gene regulation by PRC2 has been increasingly appreciated through 

its association with RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) 

that can regulate gene expression in cis or in trans (Cifuentes-Rojas et al., 2014; Davidovich 

and Cech, 2015; Kaneko et al., 2014; Yan et al., 2019). In addition, nascent mRNAs and 

other RNA transcripts were also proposed to antagonize the association of PRC2 with the 

chromatin (Beltran et al., 2016; Davidovich et al., 2015; Kaneko et al., 2013; Long et al., 

2020; Wang et al., 2017b). In vivo, a “PRC2 eviction” model was proposed in which the 

nascent mRNA regulates its own production by evicting PRC2 from the promoter, thereby 

further promoting gene transcription (Skalska et al., 2021; Wang et al., 2017a). Although 

TET1 is a putative RBP (He et al., 2016), whether/how TET1 may functionally connect with 
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PRC2 through other RBPs and/or lncRNAs to control bivalent genes in pluripotent states has 

not been determined.

By studying the TET1 interactome in mouse ESCs, we here report the discovery of 

paraspeckle component 1 (PSPC1), a RBP generally associated with nuclear paraspeckles 

(Knott et al., 2016), as a TET1 partner. We further establish that PSPC1 and its cognate 

lncRNA Neat1 associate with TET1 and PRC2 at bivalent promoters. Using genetic loss-

of-function approaches, we demonstrate that TET1 and PSPC1 promote PRC2 chromatin 

occupancy through Neat1 to counteract the binding of PRC2 to bivalent gene transcripts, 

thereby preventing PRC2 eviction from chromatin to maintain the super-bivalency during 

the ESC-to-EpiLC transition. On the other hand, upon the loss of TET1 or PSPC1, Neat1 
enhances PRC2 binding to mRNAs, thereby activating transcription of bivalent genes during 

pluripotent-state transition. Our study thus establishes a previously unappreciated TET1-

PSPC1-Neat1 molecular axis that modulates PRC2 occupancy at chromatin and bivalent 

gene transcripts in controlling stem cell bivalency.

RESULTS

The TET1 interactome in ESCs identifies PSPC1 as its interacting partner

We engineered mouse ESCs expressing FLAG-tagged TET1 (FL-Tet1) and purified the 

TET1 protein complexes using SILAC (stable isotope labeling by amino acid in cell 

culture)-based AP-MS (affinity purification followed by mass spectrometry) method as 

described in our previous studies (Ding et al., 2015; Guallar et al., 2018; Huang et al., 

2021). Reciprocal SILAC labeling was performed as biological replicates (Rep1/2), and the 

intensity ratios of TET1 versus control immunoprecipitation (IP) (Rep1: light/heavy; Rep2: 

heavy/light) for each protein were plotted (Figure 1A; Table S1). Validating our approach, 

we identified several known TET1 partners such as OGT and SIN3A (Vella et al., 2013) and 

components of a ribosome biogenesis complex consisting of PELP1, TEX10, WDR18, and 

SENP3 (Finkbeiner et al., 2011), consistent with our previous finding that TET1 and TEX10 

are close partners (Ding et al., 2015). In addition, we identified several RBPs such as L1TD1 

and PSPC1 (Figures 1A and S1A). Selected candidate proteins in the TET1 interactome 

were validated by FLAG co-immunoprecipitation (co-IP) followed by western blot analysis 

(Figure 1B). We decided to focus on the TET1 and PSPC1 partnership for several reasons. 

First, although the functional significance of the TET1-SIN3A/OGT (Deplus et al., 2013; 

Vella et al., 2013; Williams et al., 2011) and TET1-TEX10 (Ding et al., 2015) partnerships 

in ESC maintenance or differentiation is well studied, the functional cooperation between 

TET1 and PSPC1 is unclear. PSPC1 does interact with other paraspeckle components such 

as SFPQ and NONO in ESCs (Figure S1B), although paraspeckles were not observed in 

mouse (Figure S1C) or human (Chen and Carmichael, 2009) ESCs. Second, TET1 activates 

and represses lineage gene expression during ESC differentiation through its catalytic 

activity-dependent and -independent functions, respectively (Koh et al., 2011; Wu et al., 

2011; Zhu et al., 2018). Whereas TET1 catalytic activity-independent function may act 

through PRC2, their direct physical association was not detected (Wu et al., 2011), raising 

the possibility of unknown bridging proteins and/or RNAs for the functional interaction 

between TET1 and PRC2.
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We confirmed the interaction between PSPC1 and TET1 by reciprocal co-IP using 

endogenous antibodies (Figures 1C and 1D), which were independent of RNAs (Figure 

S1E). PSPC1 also interacts with the TET1 partners SIN3A and PELP1 (Figure 1C). 

Compared with the TET2 interactome, we constructed with a similar SILAC strategy in 

ESCs (Guallar et al., 2018), and we found that SIN3A, PSPC1, OGT, and LMNB1 are 

shared proteins in both interactomes. However, the proteins in the ribosome biogenesis 

complex (PELP1, TEX10, WDR18, and LAS1L) are present only in the TET1 interactome 

(Figure S1F). To probe the potential biochemical entities associated with PSPC1, TET1, 

and TET2, we performed size exclusion chromatography (i.e., gel filtration) on ESC 

nuclear extracts. We found the co-fractionation of all these three factors (complex I, blue; 

Figure S1G) and the TET1-free co-fractionation of PSPC1 and TET2 (complex II, red; 

Figure S1G). While the existent TET1-free TET2/PSPC1 complex has been demonstrated 

with the critical role of TET2 in RNA-dependent targeting for ERV control in ESCs 

(Guallar et al., 2018), we wondered whether the PSPC1-TET1 interaction is mediated 

by TET2 in light of their co-fractionation as seen in complex I (Figure S1G). We thus 

employed the Tet1/2/3 triple-KO (TetTKO) ESCs (Fidalgo et al., 2016), rescued with 

either FLAG-tagged TET1 or TET2 (Figure 1E; TET3 is not expressed in ESCs), and 

performed FLAG-IP followed by western blot of PSPC1. Interestingly, we found that both 

TET1 and TET2 interact with PSPC1 in the absence of the other TET proteins (Figure 

1F), indicating the TET2-independent TET1-PSPC1 interaction while further confirming 

the TET1-independent TET2-PSPC1 interaction despite the co-fractionation of these three 

proteins in size exclusion chromatography.

We also performed domain-mapping experiments to dissect the TET1-PSPC1 interaction. 

The full-length (2,039 amino acids) or truncated fragments of Tet1 were cloned into the 

FLAG-tagged expression vectors (Figure S1H) for transfection in ESCs followed by Co-IP. 

We observed that full-length TET1 and its variants (C1, C2, and ΔCXXC) containing 

a minimal C-terminal catalytic domain (amino acids 1,367–2,039) interact with PSPC1 

(Figure S1H). Similarly, we cloned the full-length or truncated fragments of Pspc1 into the 

V5-tagged expression vectors (Figure S1I) for transfection in ESCs followed by Co-IP. We 

found that full-length PSPC1 and its truncated variant F2 containing the multifunctional 

Drosophila behavior/human splicing (DBHS) domain (Knott et al., 2016) were required to 

interact with TET1 (Figure S1I). We then asked whether PSPC1 can modulate catalytic 

activity-dependent or independent functions of TET1 in ESCs. We employed Pspc1KO 

ESCs (two independent clones, C4 and C9, shown in Figure S1D) (Guallar et al., 2018) and 

performed DNA dot-blot and mass spectrometry analysis. We found that PSPC1 ablation 

does not affect the DNA 5mC or 5hmC intensity in ESCs (Figures 1G and 1H). Taking these 

together, we identified PSPC1 as a TET1 partner that may modulate TET1 functions in ESC 

pluripotency independently of its catalytic activity.

PSPC1, TET1, and PRC2 co-localize at the bivalent gene promoters in ESCs

PSPC1 is a DNA- and RNA-binding protein (Knott et al., 2016). Therefore, we performed 

chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analysis of PSPC1 

in WT and Pspc1KO ESCs. We identified 2,324 PSPC1 ChIP-seq peaks in ESCs, using 

PSPC1 ChIP in Pspc1KO cells as the background control. The majority (74.2%) of 
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PSPC1-binding peaks are located at the gene promoters (within 5K bp of transcriptional 

start sites, TSSs), with PSPC1 ChIP signal also enriched at TSSs (Figures 2A and 2B). 

Consistent with the PSPC1-TET1 partnership, almost all PSPC1 peaks (91.7%, 2,132/2,324) 

co-localize with TET1-binding regions (Figure S2A). We compared the DNA 5hmC and 

5mC intensities at the TET1 peak regions with or without PSPC1 occupancy from published 

(hydroxy)methylated DNA immunoprecipitation sequencing (hme/meDIP-seq) data in ESCs 

(Xiong et al., 2016). Overall, the PSPC1/TET1 common regions lack 5hmC and 5mC 

compared with the TET1-only regions (Figure S2B), consistent with our finding that PSPC1 

does not participate in the catalytic activity-dependent functions of TET1 in ESCs (Figures 

1G and 1H).

To understand how PSPC1 may functionally interact with other transcriptional regulators in 

ESCs, we performed ChIP-seq correlation analysis (Ding et al., 2015) and found that PSPC1 

DNA binding sites are more like those of TET1 and EZH2/SUZ12 (Figure S2C), suggesting 

that PSPC1 may be involved in TET1- and PRC2-dependent regulations. Indeed, 56.9% 

(1,322/2,324) of the PSPC1 peaks are co-occupied by TET1 and PRC2 component SUZ12 

(Figure 2C). TET1 and SUZ12 are also enriched at PSPC1-bound regions (Figure 2D). 

PRC2 deposits the repressive histone mark H3K27me3 at the promoters of bivalent genes in 

ESCs that are lowly expressed and poised to be promptly activated upon differentiation 

(Boyer et al., 2006). Consistently, gene ontology (GO) analysis for the PSPC1/TET1/

SUZ12 common targets revealed that many of the genes are involved in multicellular 

organism development, cell fate commitment, and cell differentiation (Figure S2D). Next, 

we compared the intensity of histone marks H3K4me3, H3K27ac,and H3K27me3 at the 

PSPC1/TET1 common peaks with or without SUZ12 occupancy. The PSPC1/TET1 peaks 

without SUZ12 occupancy were enriched with active marks of H3K4me3 and H3K27ac 

(e.g., promoters of Pou5f1 and Nanog), whereas the PSPC1/TET1/SUZ12 common peaks 

were enriched with bivalent marks of H3K4me3 and H3K27me3 (e.g., promoters of T and 

Fgf5) (Figures 2E and 2F). RNA-seq analysis of Pspc1KO ESCs (this study) or Tet1KO 

ESCs (Hon et al., 2014) indicated that depletion of PSPC1 or TET1 protein does not disturb 

the expression of PSPC1/TET1 common target genes (with or without SUZ12 occupancy) 

(Figure S2E), consistent with the fact that Pspc1KO (Guallar et al., 2018) or Tet1KO (Hon et 

al., 2014) does not affect the maintenance of ESCs.

Together, these results suggest a potential physical association of the TET1-PSPC1 

partnership with PRC2 in repressing bivalent genes in ESCs. However, the possible role of 

the TET1-PSPC1 partnership independent of PRC2 in activating pluripotency genes cannot 

be discounted and warrants future investigation (see Discussion).

PSPC1 restricts bivalent gene activation during the ESC-to-EpiLC transition

To understand how PSPC1 might contribute to the regulation of bivalent genes in pluripotent 

cells, we decided to study the functions of PSPC1 in the pluripotent-state transition, during 

which the super-bivalency of a large set of developmental genes was initially proposed 

(Morgani et al., 2017; Smith, 2017) and subsequently confirmed (Wang et al., 2021) in 

formative pluripotent stem cells. By switching the culture medium from serum/LIF to Fgf2/

activin A (FA), ESCs enter a transient formative pluripotency state of EpiLCs, followed 

Huang et al. Page 6

Cell Rep. Author manuscript; available in PMC 2022 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by a primed pluripotency state of EpiSCs under an extended culture of EpiLCs in the FA 

condition (Smith, 2017). We thus adapted WT and Pspc1KO ESCs (day 0, D0) in FA 

culture medium for 2 days (D2) and 4 days (D4) and collected RNAs for RNA-seq analysis 

(Figure 3A). Of note, the D2 EpiLCs are considered as the state of formative pluripotency 

(Buecker et al., 2014; Fidalgo et al., 2016; Hayashi et al., 2011), whereas D4 EpiLCs and 

EpiSCs are of primed pluripotency when the meso/ectodermal lineage genes (e.g., Fgf5, 
Fgf8, T, Eomes, and Otx2) are further activated (Huang et al., 2017). Principal-component 

analysis (PCA) revealed a trajectory of gene expression profiles moving from D0 (ESC) 

to D2 and D4 (EpiLC) on PC1, while the differences of gene expression between WT 

and KO cells at all three time points are reflected on PC2 (Figure 3B). By comparing the 

differentially expressed genes (DEGs; p < 0.05, fold change > 1.5; Table S2) between WT 

and Pspc1KO cells at three time points, we found that multiple signaling pathways and 

their associated genes, including FGF signaling (e.g., Fgf5 and Fgf8), Nodal signaling (e.g., 

Nodal and Eomes), and Wnt signaling (e.g., Axin2, Wnt5b, and Wnt8a), are upregulated 

in Pspc1KO relative to WT EpiLCs (D2 and D4; Figure S3A). GO analysis of these PSPC1-

repressed DEGs in D2 and D4 EpiLCs indicates that they are involved in embryo and 

tissue development (Figure S3B, left). In contrast, the PSPC1-activated DEGs are involved 

in multiple cellular regulations, including metabolic process, protein transport, and cell 

death (Figure S3B, right). Interestingly, a majority (75.9%, 129/170) of the PSPC1-repressed 

DEGs in EpiLCs are not repressed by PSPC1 in ESCs (Figure S3B, left), likely due to their 

low expression levels and/or alternative repression mechanisms in ESCs.

Next, we focused on the DEGs between D0 and D4 (ESC vs. EpiLC) WT cells and between 

D4 WT and Pspc1KO EpiLCs to obtain 478 shared DEGs (Figure 3C; Table S2). Clustering 

analysis of these genes illustrated different expression patterns among the samples (class 1–

4, or C1–4; Figure 3C). We examined the number of DEGs in C1–4 that were direct PSPC1 

targets from ChIP-seq analysis and found that C4 contains the highest percentage (15.2%, 

21/138) of PSPC1 targets (Figure 3D). These PSPC1 targets (e.g., T, Fgf5, and Sall2) are 

bivalent and minimally expressed in ESCs, while transcriptionally activated in EpiLCs, and 

PSPC1 depletion further increases their expression during EpiLC differentiation (Figures 

3C, 3E, and 3F). GO analysis of these PSPC1-repressed C4 genes indicated that they were 

involved in multicellular organism development, cell fate commitment, and Wnt-signaling 

pathways (Figure 3G). To examine whether the repressive effect of PSPC1 on bivalent gene 

expression is dependent on its RNA-binding capacity, we rescued Pspc1KO ESCs with 

either a PSPC1 WT or an RNA recognition motif mutant (RRMmut) protein and performed 

EpiLC differentiation. Our data revealed that only the WT, but not the RRMmut protein, 

could rescue the repressive effect of PSPC1 on the target genes (e.g., Fgf5, Fgf8, and Wnt8a) 

(Figures S3C and S3D). Of note, NONO, a close partner of PSPC1 (Figure S1B), also 

interacts with TET1 in ESCs (Li et al., 2020). Like Pspc1KO, NonoKO is compatible with 

ESC maintenance (Ma et al., 2016) and causes upregulation of lineage genes (e.g., Eomes, 
Fgf5, Fgf8, and T) in EpiLCs (Figures S3E and S3F). In sum, our results establish PSPC1 

as a transcriptional repressor that restricts bivalent gene activation during the ESC-to-EpiLC 

transition.
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Neat1 promotes bivalent gene activation during the ESC-to-EpiLC transition

PSPC1 as an RBP was well known for its roles in binding lncRNA Neat1, which drives 

the formation of nuclear paraspeckles (Isobe et al., 2020; Nakagawa et al., 2011). However, 

pluripotent stem cells do not form paraspeckles, and thus the functional relationship between 

PSPC1 and Neat1 in pluripotency is not fully understood. Neither is it known whether Neat1 
plays any role in modulating TET1 functions. Therefore, we designed two sgRNAs targeting 

the Neat1 locus and performed CRISPR-Cas9 genome editing to delete the 6K-bp region 

containing the short (Neat1_1) isoform of Neat1 (Figure 4A), the only isoform expressed 

in ESCs (Isobe et al., 2020) and EpiLCs (Figure 4B). Of note, the long Neat1_2 is a 

somatic isoform that functions in driving paraspeckle formation (Isobe et al., 2020) and 

is collaterally abrogated by our CRISPR deletion (Figure 4A). We thus collectively refer 

to Neat1KO hereafter. We adapted WT and Neat1KO ESCs in FA culture medium and 

collected RNAs at D0 (ESC), D2, and D4 (EpiLC) for RNA-seq analysis. Like Pspc1KO 

ESCs, Neat1KO ESCs (two independent clones, 5F and 7G) are properly maintained 

with unaltered protein and mRNA expression of representative pluripotency/lineage genes 

critical for ESC maintenance/differentiation (Figures S4A and S4B). We confirmed that only 

Neat1_1 (the short isoform) is expressed in ESCs and EpiLCs, and its expression gradually 

decreases during EpiLC differentiation (Figure 4B; reduced signal strengths on the left panel 

and FPKM values on the right panel). By comparing the DEGs (p < 0.05, fold-change > 

1.5; Table S3) between the WT and Neat1KO EpiLCs, we observed many bivalent genes 

(e.g., Fgf5, Fgf8, Nefl, and Wnt8a) are downregulated in D2 or D4 EpiLCs upon Neat1KO 

compared with the WT cells (Figure S4C), confirmed by quantitative PCR (qPCR) analysis 

(Figure 4E). Interestingly, the effect of Neat1KO on bivalent genes (Figures 4D, 4E, and 

S4C) is opposite to that of Pspc1KO (Figures 3E, 3F, and S3A) in EpiLCs. Fewer DEGs 

were identified in D4 EpiLCs relative to D0 ESCs and D2 EpiLCs upon Neat1KO (Figure 

S4C), likely due to the relatively low Neat1 expression in D4 EpiLCs (Figure 4B).

To further investigate the functional relationship between PSPC1 and Neat1, we compared 

the RNA-seq gene expression ratios upon Pspc1KO and Neat1KO at three time points. We 

again observed a negative correlation of gene expression in ESCs (r = −0.27) and D2 EpiLCs 

(r = −0.23), but a weak positive correlation (r = 0.08) in D4 EpiLCs (Figure S4D). Next, 

we plotted the gene expression ratios of DEGs by Pspc1KO and Neat1KO at different time 

points (Figures 4C and S4E). Interestingly, whereas Pspc1KO decreases and increases the 

expression of pluripotency (e.g., Esrrb and Tbx3) and bivalent (e.g., Fgf5, Fgf8, and Nefl) 
genes, respectively, in D2 EpiLCs, as previously observed (Figures 3 and S3), Neat1KO 

exhibits an opposite effect in the regulation of those genes (Figures 4C–4E and S4E). The 

PCA analysis of the Pspc1KO and Neat1KO RNA-seq samples shows that the D0 (ESC) 

and D2 and D4 (EpiLC) samples group together, indicated by dash line circles, and move 

rightward on PC1 during EpiLC differentiation (Figure S4F). Consistent with the correlation 

analysis (Figures 4C, S4D, and S4E), the Pspc1KO and Neat1KO samples deviated to 

opposite directions compared with their WT samples in D0 and D2 (Figure S4F; refer to the 

direction of red versus blue arrows at each time point).

To understand the genomic occupancy of Neat1 in ESCs and during EpiLC differentiation, 

we performed ChIRP (chromatin isolation by RNA purification) with split pools of tiling 
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probes covering the Neat1_1 isoform followed by deep sequencing (ChIRP-seq) (Figure 4F). 

The Neat1KO cells were employed as the negative control. As expected, the Neat1 ChIRP 

signal significantly enriched at the Neat1 locus in both ESCs and EpiLCs (Figure S4G). 

In addition, we confirmed that Neat1 was highly enriched at the Sfi1 locus at chromosome 

11.qA1 region (Figure S4H), a known Neat1 target site previously reported from a global 

survey of genome-wide lncRNA-chromatin interactions in ESCs (Bonetti et al., 2020). 

Interestingly, the Sfi1 locus was also co-occupied with PSPC1, TET1, and SUZ12 from the 

ChIP-seq data in ESCs (Figure S4H), suggesting a genomic association of Neat1 and these 

proteins on chromatin. When comparing the Neat1 ChIRP reads enriched at the Neat1 peak 

regions in ESCs and D2 EpiLCs, we observed an overall higher intensity in D2 EpiLCs 

than that in ESCs (Figure 4G) despite its relatively lower expression level in D2 EpiLCs 

than in ESCs (Figure 4B). Importantly, Neat1 ChIRP intensity at the overall PSPC1 ChIP 

peaks (identified in ESCs) was also significantly higher in D2 EpiLCs than ESCs (Figure 

4H). For example, we observed higher Neat1 ChIRP signals at the PSPC1/SUZ12/TET1 

co-occupied bivalent gene promoters (e.g., T, Fgf8, Sp8, and Wnt3) in D2 EpiLCs than 

in ESCs (Figure 4I). Together, our results demonstrate that Neat1 may promote bivalent 

gene activation through its enhanced association with bivalent chromatin during the ESC-to-

EpiLC transition, establishing opposing functions of PSPC1 and its cognate lncRNA Neat1 
in controlling bivalent gene expression in pluripotent-state transition.

PSPC1 is required for maintaining PRC2 chromatin occupancy and H3K27me3 deposition 
at bivalent promoters during the ESC-to-EpiLC transition

The opposing functions of PSPC1 and its cognate lncRNA Neat1 in controlling bivalent 

gene expression prompted us to examine their potential roles in modulating TET1 and 

PRC2 functions on transcriptional regulation of bivalent genes. We first asked whether 

PSPC1 contributes to TET1 and PRC2 chromatin binding. In ESCs, Pspc1KO does not 

affect the chromatin-bound fraction of TET1 or the PRC2 subunit SUZ12 (Figure S5A). We 

then addressed the potential roles of TET1 in the ESC-to-EpiLC transition. We established 

a degron system (Nabet et al., 2018) for rapid and inducible TET1 protein degradation 

(Figures 5A and 5B; two independent clones, C#13 and C#16; see details in STAR 

Methods). Using Tet1-degron ESCs, we confirmed that activation of lineage genes (e.g., 

T, Fgf5, and Fgf8) during the ESC-to-EpiLC transition is further enhanced by dTAG13 

treatment (i.e., TET1 depletion) (Figure S5B), phenocopying Pspc1KO (Figure 3F).

Next, we asked how the PSPC1-TET1 partnership and the PSPC1/Neat1 opposing functions 

might impose upon PRC2 and bivalent histone marks in regulating bivalent genes during 

the pluripotent-state transition. We performed SUZ12, H3K4me3, and H3K27me3 ChIP-

seq analysis in ESCs and D2 EpiLCs of Pspc1WT/KO or Neat1WT/KO genotypes and 

control- or dTAG13-treated Tet1-degron cells (Figure 5C). We chose D2 EpiLCs because 

a high anti-correlation was observed between the Pspc1KO and Neat1KO RNA-seq data 

(Figure 4C), and D2 EpiLCs represent the formative state of pluripotency where super-

bivalency was established (Wang et al., 2021; Xiang et al., 2020). We identified 5,636 and 

8,541 bivalent peaks from ESCs and EpiLCs, respectively, and the majority peaks (N = 

5,457, 96.8% of ESC peaks and 63.9% of EpiLC peaks) were shared between the two 

pluripotent states. Among those bivalent peaks, 1,068 (out of 1,322, 80.8%) were shared 
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with the PSPC1/TET1/SUZ12 common peaks identified in ESCs (Figure 5D), suggesting 

that most of the PSPC1/TET1/SUZ12 target regions preserved bivalency during the ESC-to-

EpiLC transition. As expected, PRC2 chromatin-binding intensity at SUZ12 peak regions 

(identified in ESCs) decreased in D2 EpiLCs compared with ESCs (Figure 5E). Plotting the 

SUZ12-binding intensity at SUZ12 peaks from Pspc1KO, Neat1KO, and dTAG13-treated 

Tet1-degron D2 EpiLCs, we found that SUZ12 binding (measured by the mean intensity 

in RPM) decreased upon the depletion of PSPC1 or TET1, but not Neat1, at the PSPC1/

SUZ12/TET1 common peak regions (Figure 5F), exemplified by a few bivalent promoters 

(e.g., Fgf5, Nelf, Sall2, Eomes, and Wnt3) (Figure 5H).

Next, we investigated the effects of PSPC1, Neat1, or TET1 depletion on bivalent histone 

marks during the ESC-to-EpiLC transition. Whereas Pspc1KO does not change H3K4me3 

deposition in ESCs or EpiLCs (Figure S5C), Pspc1KO decreases H3K27me3 deposition in 

D2 EpiLCs, consistent with reduced SUZ12 binding at the PSPC1/TET1/SUZ12 common 

regions (Figures 5F–5H). However, in ESCs, Pspc1KO slightly increased the SUZ12 

chromatin binding and H3K27me3 (Figures S5D–S5F), which was opposite to the effects of 

PSPC1 loss on SUZ12 and H3K27me3 in D2 EpiLCs (Figures 5F and 5G). This discrepancy 

may be due to the expression of the bivalent genes being mostly repressed in ESCs but 

activated in EpiLCs (see Discussion). The Neat1KO and dTAG13-treated Tet1-degron D2 

EpiLCs showed only subtle changes of H3K27me3 relative to WT and DMSO-treated 

control cells, respectively, at the PSPC1/TET1/SUZ12 common regions (Figure 5G). Of 

note, in both ESCs and D2 EpiLCs, we observed more pronounced changes of H3K27me3 

upon Pspc1KO than by Neat1KO or TET1 depletion (compare the Δ[mean intensity] 

between Pspc1KO, Neat1KO, or Tet1-dTAG13 relative to their WT/DMSO-treated control 

in Figures 5G and S5D). These results suggest a closer functional partnership of PSPC1 with 

PRC2 in chromatin binding and H3K27me3 deposition than with Neat1 and TET1.

To understand if Neat1KO could affect PSPC1 and TET1 chromatin binding, we also 

performed ChIP-qPCR analysis on a few bivalent loci (e.g., Eomes, T, and Fgf5). We 

found that PSPC1 and TET1 ChIP signals in both ESCs and D2 EpiLCs decreased in 

Neat1KO relative to WT (Figure S5G). These results together demonstrate the requirement 

of Neat1 for bivalent chromatin occupancy of TET1 and PSPC1, which in turn maintain 

PRC2 chromatin occupancy and H3K27me3 deposition at bivalent promoters during the 

ESC-to-EpiLC transition.

PSPC1 and TET1 act through Neat1 to modulate PRC2 binding to bivalent gene transcripts 
and control stem cell bivalency

While a physical association between the PSPC1-TET1 partnership and PRC2 is highly 

speculated (Figures 2C and 2D) for the observed functional interactions among these factors, 

neither a previously published work (Wu et al., 2011) nor our current APMS study (Figure 

1) can detect the TET1 and PRC2 interaction or the interactions between PSPC1 and PRC2 

subunits using a regular nucleosome-free co-IP protocol (Figure S6A; see STAR Methods 

for details). However, using a nucleosome-containing co-IP protocol with micrococcal 

nuclease digestion of chromatin, we and others readily detected the physical associations 

between PSPC1 and PRC2 subunit SUZ12 (Figure 6A) and between TET1 and PRC2 
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(Neri et al., 2013) in ESCs, respectively, raising the possibility of nucleosomal DNA/RNA 

molecules for bridging the protein interactions. By examining the datasets of PRC2 

subunit EZH2 PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and 

immunoprecipitation followed by sequencing) (Kaneko et al., 2013) and our PSPC1 CLIP-

seq (Guallar et al., 2018) in ESCs, we observed that both EZH2 and PSPC1 were enriched at 

the Neat1 transcripts (Figure S6B). In addition, we performed a biotinylated RNA pull-down 

assay (Rinn et al., 2007) to identify Neat1-associated proteins in ESCs. Interestingly, we 

found that EZH2 bound to Neat1 sense (Neat1-S) RNA with a relatively higher affinity 

than the antisense (Neat1-AS) RNA. Such a preferential Neat1 sense RNA binding was 

even more pronounced for PSPC1 (Figure 6B). CLIP-qPCR analysis of PSPC1 and EZH2 

confirmed the binding of both proteins to Neat1 transcripts in WT ESCs (Figure 6C). 

Importantly, we also observed an enrichment of the Neat1 ChIRP intensity at the bivalent 

regions in both ESCs and EpiLCs (Figure 6D). Furthermore, consistent with the nature of 

promiscuous RNA binding by PRC2 (Davidovich et al., 2013; Long et al., 2020), we found 

that EZH2 binding to Neat1 was not affected by the loss of Pspc1 in ESCs (Figure 6C) or the 

loss of Pspc1 or Tet1 in D2 EpiLCs (Figure S6C), suggesting that PRC2 binding to Neat1 is 

independent of other RBPs such as PSPC1 irrespective of pluripotent states.

Since PRC2 has a higher affinity to RNA than to DNA or histone, the nascent mRNAs 

during transcription activation decoy PRC2 and promote PRC2 eviction from chromatin 

(Wang et al., 2017a, 2017b). We hypothesized that the TET1-PSPC1-Neat1 molecular 

interplay might modulate PRC2 binding to nascent bivalent gene transcripts in controlling 

stem cell bivalency. To address this, we performed EZH2 CLIP-qPCR analysis at the same 

D2 EpiLCs of Pspc1 WT/KO, Neat1 WT/KO, and Tet1 WT/KO (a genetic KO, see Dawlaty 

et al., 2011) genotypes. We first confirmed that EZH2 protein levels were not affected 

upon loss of Pspc1, Neat1, or Tet1 in ESCs and D2 EpiLCs (Figure S6D). PSPC1 mRNA 

and protein expression increased in D2 EpiLCs relative to ESCs (Figures 3F and S6D). 

PSPC1 also interacted with TET1 in D2 EpiLCs (Figure S6E). We then compared EZH2 

binding to the transcripts of bivalent genes (e.g., Fgf5, Nefl, and Sall2) activated during the 

ESC-to-EpiLC transition (Figures 3E and 3F). We found enhanced EZH2 binding to these 

mRNA transcripts upon the loss of Pspc1 or Tet1 (Figure 6E), accompanied by decreased 

PRC2 chromatin binding at promoters (Figure 5H). However, EZH2 binding to these mRNA 

transcripts decreased upon the loss of Neat1 (Figure 6E). Next, we asked whether PSPC1 

restricts EZH2 binding to bivalent transcripts is through PSPC1’s RNA-binding capacity. 

Using the Pspc1KO ESCs rescued with either PSPC1 WT or RRMmut protein (Figure S3C), 

we first verified that PSPC1 binding to Neat1 was significantly compromised in the PSPC1 

RRMmut-rescued ESCs compared with the WT-rescued ESCs (Figure S6F). In D2 EpiLCs, 

we found that the WT-rescued but not the RRMmut-rescued Pspc1KO cells significantly 

reduced the heightened EZH2 binding to mRNA transcripts in Pspc1KO cells to a near-wild-

type level (Figure S6G). We then addressed whether PSPC1 restricts EZH2 binding to 

bivalent gene transcripts through its RNA-binding capacity to Neat1 and/or bivalent gene 

transcripts. To this end, we performed PSPC1 CLIP-qPCR on Neat1 and bivalent gene 

transcripts in D2 EpiLCs. Interestingly, we found that PSPC1 RNA-binding capacity was 

specific only to Neat1 but not to the bivalent gene transcripts and was independent of TET1 
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(Figure 6F), which was distinct from the promiscuous RNA binding by PRC2 (Davidovich 

et al., 2013).

In sum, the enrichment of the Neat1 ChIRP intensity at the bivalent regions in both ESCs 

and EpiLCs (Figure 6D) and the preferential binding of PSPC1 to Neat1 help explain the 

requirement of Neat1 for the bivalent chromatin occupancy of PSPC1 (and its close partner 

TET1). As TET1 and PSPC1 inhibit, and Neat1 promotes (Figure 6E), the PRC2 binding to 

bivalent mRNA transcripts, these results support that PSPC1 and TET1 act through Neat1 to 

modulate PRC2 binding to bivalent gene transcripts and control stem cell bivalency.

DISCUSSION

Whereas a published study establishes a catalytic activity-dependent role of TET1 in 

demethylating bivalent promoters for the super-bivalency in formative pluripotency (Xiang 

et al., 2020), our study delineates a catalytic activity-independent role of TET1 in preventing 

hyper-activation of bivalent genes and thus preserving the bivalency in ESCs and during the 

ESC-to-EpiLC transition. Our data also support the PRC2 “eviction” models (Wang et al., 

2017a, 2017b) and provide detailed mechanistic insight into the proposed repressive role 

of TET1 during bivalent gene activation (Koh et al., 2011; Wu et al., 2011). Our findings 

are in line with a recent study suggesting that TET1 regulates bivalent developmental 

genes independently of its catalytic activity (Chrysanthou et al., 2022). We thus establish 

a stem cell paradigm whereby TET1 and its close partner PSPC1 prevent transcriptional 

activation of bivalent genes in ESCs and fine-tune the bivalent gene transcription during 

the ESC-to-EpiLC transition by promoting PRC2 chromatin occupancy and H3K27me3 

deposition at bivalent promoters and restricting the PRC2 binding to the bivalent gene 

transcripts, respectively, partly through Neat1-mediated interplay between PSPC1 and PRC2 

(Figures 7A and 7D). In ESCs, while the loss of Pspc1 or Neat1 modifies the H3K27me3 

distribution (Figure S5D), expression of bivalent genes is minimal (Figures 7B and 7C). 

Like Tet1KO ESCs (Dawlaty et al., 2011), Pspc1KO and Neat1KO ESCs maintain self-

renewal and the expression of pluripotency-associated genes. However, in EpiLCs, upon the 

loss of Tet1 or Pspc1, Neat1 maintains its expression and positively mediates transcriptional 

activation of bivalent genes, likely through promoting PRC2 binding, directly or indirectly 

(see Limitations of the study), to the nascent mRNAs (Figures 7D and 7E). Our study 

thus provides mechanistic insights into how a dynamic balance between PRC2 chromatin 

occupancy and scanning of mRNAs is maintained during the ESC-to-EpiLC transition 

(indicated by the up/down dashed arrows of Figure 7D). Without Neat1 (i.e., Neat1KO), the 

balance of PRC2 chromatin occupancy and RNA binding may be altered in favor of the 

former, resulting in attenuated bivalent gene transcription (Figure 7F).

While Neat1 function in modulating PRC2 chromatin occupancy was reported (Wang et al., 

2019), its role in promoting PRC2 binding to bivalent gene transcripts when PSPC1 and/or 

TET1 are depleted (Figure 6E) is an unexpected finding. In recent years, phase separation 

in the regulation of gene transcription has become an area of intense research (Hnisz et al., 

2017). RNA Pol II acts in gene transcription through phase separation (Lu et al., 2018), and 

Neat1 also scaffolds protein interactions of many RBPs that align to form paraspeckles by 

phase separation (Yamazaki et al., 2018). We recently revealed that PSPC1 promotes Pol II 
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engagement and activity for the actively transcribed genes by enhancing the phase separation 

and subsequent phosphorylation and release of polymerase condensates (Shao et al., 2022). 

In our model, Neat1 may facilitate phase separation of other mRNA-processing proteins 

(i.e., ribonucleoprotein complex) for maintaining gene transcription and mRNA processing. 

This concept is supported by a recent proteomics study revealing that RNase treatment or 

Pol II inhibition reduces the chromatin fraction of RNA-processing proteins while increasing 

the chromatin fraction of transcription factors and chromatin modifiers (Skalska et al., 

2021). The nascent mRNAs and other noncoding RNAs, including Neat1, may contribute to 

a dynamic matrix or phase-separated compartments that regulate chromatin states and gene 

transcription (Creamer et al., 2021; Skalska et al., 2021).

The lncRNA Neat1 has two isoforms. The long isoform Neat1_2 is essential for the 

assembly of paraspeckles (Jiang et al., 2017; Nakagawa et al., 2011). The short isoform 

Neat1_1, albeit also a paraspeckle component, plays various paraspeckle-independent roles 

(Fox et al., 2018; Li et al., 2017). Our Neat1 ChIRP-seq data (Figures 4F–4I) suggest that 

Neat1_1 may be necessary for proper activation of bivalent lineage genes by interaction 

with other RBPs (e.g., PSPC1 and EZH2) (Figures 6E and 6F) when their promoters are 

still bivalent (Figures 5F–5H). Accordingly, the “super-bivalency” at lineage-specific genes 

in formative pluripotency state may represent a few key molecular features, including the 

initiation of bivalent gene transcription, preservation of bivalent histone marks (H3K4me3 

and H3K27me3), occupancy of chromatin-bound transcriptional co-factors (i.e., PSPC1 and 

TET1), and homeostasis of RNA-bound and chromatin-bound PRC2 (Figure 7D). PRC2 is 

known to bind to thousands of RNA transcripts with low specificity (Davidovich et al., 2013; 

Kaneko et al., 2013), including Neat1 and bivalent gene transcripts, through competition 

with various RBPs including PSPC1. In ESCs, since expression of bivalent gene transcripts 

is minimal, Pspc1KO may increase Neat1-mediated PRC2 recruitment and H3K27me3 

(Wang et al., 2019). However, in EpiLCs, the change of transcription program (i.e., 

activation of bivalent gene transcripts) rebalances the PRC2 molecules that are available 

to chromatin, nascent transcripts, and/or Neat1. In Pspc1KO or RRMmut-rescued cells, the 

bivalent gene transcript-bound PRC2 increases (Figures 6E and S6G), likely through the 

abrogation of PSPC1-Neat1 interaction (Figures 6F and S6F) and thus more Neat1 available 

for PRC2 associations. Of note, the super-bivalency in formative pluripotency (D2 EpiLC) 

is likely a transient status because, during further differentiation (D4 EpiLCs or later), 

depletion of Neat1_1 and higher expression of the bivalent genes may eliminate (evict) 

PRC2 and repressive H3K27me3 on bivalent chromatin. During differentiation of human 

ESCs (hESCs), paraspeckles start to form with the expression of Neat1_2 (Modic et al., 

2019). TDP43 post-transcriptionally regulates alternative polyadenylation (APA) of Neat1 
to produce the long isoform Neat1_2 required for efficient early differentiation of hESCs 

(Grosch et al., 2020; Modic et al., 2019). Therefore, expression of Neat1_1, albeit lacking 

paraspeckle assembly, is conserved in both mouse and human pluripotency, akin to the 

conservation of stem cell bivalency in both mouse and human.

Limitations of the study

Our current study does not have direct evidence that the nascent mRNAs of bivalent genes 

are subjected to PRC2 dynamic binding during ESC-to-EpiLC transition, which requires 
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CLIP-seq analysis of PRC2 in a combination of global run-on sequencing (GRO-seq) to 

measure the association of PRC2 with the nascent mRNAs. In addition, we acknowledge 

that we do not have data supporting that PRC2 directly interacts with both Neat1 and 

the nascent transcript. Although Neat1KO reduces the interactions between PRC2 and 

certain bivalent gene transcripts (Figure 6E), this could be an indirect effect resulting from 

alterations in other mRNA-processing proteins (indicated by in “?” in Figure 7D–F), given 

that Neat1KO does not lead to changes in the occupancy of PRC2 on chromatin in D2 

EpiLCs (Figures 5F–5H). As discussed, we reported in another study that nascent RNAs 

could synergize with PSPC1 and promote Pol II activity by enhancing phase separation 

(Shao et al., 2022), although it remains to be determined whether Neat1 competes with or 

facilitates nascent RNAs in the polymerase condensates on bivalent genes.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, Jianlong Wang 

(jw3925@cumc.columbia.edu).

Materials availability—The Neat1KO and Tet1-degron ESC lines generated in this paper 

are available from the lead contact with a completed Materials Transfer Agreement.

Data and code availability

• The ChIP-seq, ChIRP-seq, and RNA-seq data have been deposited at the 

Gene Expression Omnibus (GEO) with accession code: GSE182443. The TET1 

affinity purification followed by mass spectrometry data have been deposited 

at the ProteomeXchange Consortium via the PRIDE partner repository with 

accession code: PXD033587. The deposited data are publicly available as of the 

date of publication. This paper analyzes existing, publicly available data. These 

accession numbers for the datasets are listed in the key resources table.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture and in vitro differentiation—If not specified, mouse embryonic stem cells 

(ESCs) were cultured on 0.1% gelatin-coated plates and in ES medium: DMEM medium 

supplemented with 15% fetal bovine serum (FBS), 1000 units/mL recombinant leukemia 

inhibitory factor (LIF), 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine, 0.1 mM MEM non-

essential amino acids (NEAA), 1% nucleoside mix (100X stock), and 50 U/mL Penicillin/

Streptomycin. The Ezh2 KO ESCs (Shen et al., 2008) were cultured on 0.1% gelatin-coated 

plates and in naive culture condition (2iL) using serum-free N2B27 medium (DMEM/F12 

and Neurobasal medium mixed at a ratio of 1:1, 1 × B27 supplement, 1 × N2 supplement, 

2 mM L-glutamine, 0.1 mM 2-mercaptoethanol, and 50 U/mL Penicillin/Streptomycin) 
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supplemented with Gsk3β inhibitor (CHIR99021, 3 μM), Mek inhibitor (PD0325901, 1 

μM), and LIF (1000 units/mL).

For SILAC labeling, ESCs were cultured in either SILAC heavy or light medium: ES 

medium with complete supplements but deficient in both L-lysine and L-arginine, and 

then supplemented with L-lysine and L-arginine (SILAC light) or 13C6
15N4 L-arginine 

(Arg+10) and 13C6
15N2 L-lysine (Lys+8) or 13C6 L-lysine (Lys+6) (SILAC heavy) amino 

acids (Cambridge Isotope Laboratories).

For in vitro ESC-to-EpiLC differentiation, ESCs were seeded on fibronectin-coated (10 

μg/mL/cm2) plates and in ES medium. On the next day, the medium was switched to 

formative culture condition using serum-free N2B27 medium supplemented with Fgf2 (12 

ng/mL) and Activin A (20 ng/mL) (FA).

Neat1 knockout (KO) ESCs—CRISPR/Cas9-mediated Neat1KO was performed as 

described in (Yin et al., 2015). Briefly, two vectors (with the same pGL3-U6-sgRNA-

PGK-puromycin backbone, Addgene #51133) containing two sgRNA sequences (Table S4) 

targeting a 6K bp region containing the short isoform of Neat1 (Neat1_1) were cotransfected 

with a Cas9-expressing vector (pST1374-N-NLS-flag-linker-Cas9, Addgene #44758) into 

WT 46C ESCs by lipofectamine 2000 (Invitrogen). Transfected cells were selected with 

puromycin and blasticidin for 8 days before clones were picked. Then, individual ESC 

clones were expanded and subjected to genomic DNA extraction and PCR for genotyping 

screening. The KO clones were further confirmed by RT-qPCR analysis of Neat1 expression.

Tet1-degron knock-in (KI) and protein degradation—The CRISPR/Cas9 system 

was used to engineer ESCs for protein degradation of TET1 genetically. The 5′- and 

−3″-homology arms of Tet1 were PCR amplified from genomic DNA. The P2A-2xHA-

FKBP(F36 V) fragment for N-terminal insertion and the mCherry and BFP sequences 

were PCR amplified from Addgene plasmids #91792, #104370, #104371, respectively. Tet1 
5′- and −3″-homology arms, FKBP, and mCherry or BFP sequences were assembled by 

Gibson Assembly 2× Master Mix (NEB, E2611S) to obtain 5′arm-FKBP-BPF-3′arm and 

5′arm-FKBP-mCherry-3′arm doner vectors in pJET1.2 vector (Thermo Scientific). CRISPR 

gRNA was subcloned into the pSpCas9(BB)-2A-Puro (PX459) vector (gRNA sequence in 

Table S4). ESCs were transfected with the two donor vectors and CRISPR vectors using 

Lipofectamine 2000 (Invitrogen). After two days of puromycin selection, double-positive 

cells were sorted out for mCherry and BFP and seeded on a 96-well plate with single-cell 

per well using the BD Influx Cell Sorter. Cells were expanded and genotyped by PCR, and 

protein degradation was confirmed by Western blot analysis. Clones with a homozygous 

knock-in tag were further expanded and used for experiments.

The Tet1-degron ESCs were treated with either DMSO control or dTAG13 (500 nM in 

DMSO, Tocris, 6605) for rapid degradation of TET1 protein. ESCs were treated with 

dTAG13 for 2 days before differentiation, and then cells were treated with dTAG13 during 

the ESC-to-EpiLC differentiation. In the control group, cells were treated with DMSO in 

ESCs and during the ESC-to-EpiLC differentiation.
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METHOD DETAILS

Affinity purification followed by mass spectrometry (AP-MS) analysis—We 

employed a previously validated ESC clone with the ectopic expression of the 3xFLAG 

tagged mouse Tet1 (FL-Tet1) gene (Ding et al., 2015). Before the AP-MS experiment, the 

empty vector (EV)- and FL-Tet1-transfected ESCs were cultured in both SILAC heavy and 

light medium for 2 weeks with reciprocal labeling: Replicate#1, light of FL-Tet1 versus 

heavy of EV (Lys+6); Replicate#2, light of EV versus heavy of FL-Tet1 (Lys+8, Arg+10). 

AP-MS was performed using our well-established protocols (Ding et al., 2015; Guallar 

et al., 2018; Huang et al., 2021). Briefly, the cell pellets were resuspended in ice-cold 

hypotonic buffer A (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 

0.2 mM PMSF, and protease inhibitor cocktail (PIC, Sigma, P8340)) and incubated for 

10 min on ice. The sample was centrifuged at 3,000 ×g for 5 min at 4°C, and the pellet 

containing nuclei was washed by resuspending with ice-cold buffer A and centrifuging at 

10,000 × g for 20 min at 4°C. Then, nuclei were resuspended with ice-cold nuclear extract 

buffer C (20 mM HEPES, pH 7.9, 20% glycerol (v/v), 0.42 M NaCl, 1.5 mM MgCl2, 0.2 

mM EDTA, 0.5 mM DTT, 0.2 mM PMSF, and PIC) and incubated at 4°C for 30 min with 

continuous mixing. Insoluble materials were pelleted by centrifugation at 25,000 × g for 

20 min at 4°C. The supernatant was collected as nuclear extract (NE) and dialyzed against 

buffer D (20 mM HEPES, pH 7.9, 20% glycerol (v/v), 100 mM KCl, 0.2 mM EDTA, 0.5 

mM DTT, 0.2 mM PMSF) for 3 h at 4°C. Then, 0.1 mL of Protein G agarose (Roche 

Diagnostic) equilibrated in buffer D containing 0.02% NP40 (buffer D-NP) was added to 

nuclear extracts in 15 mL tubes, in the presence of Benzonase (25 U/mL, Millipore 70664), 

and incubated/pre-cleared for 1 h at 4°C with continuous mixing. Precleared NE samples 

were incubated with pre-equilibrated anti-FLAG M2 affinity gel (Sigma, F2426) for 4 h 

at 4°C with continuous mixing. Five washes were performed with buffer D-NP. Bound 

material was eluted by incubation with buffer D-NP supplemented with 0.5 mg/mL 3xFLAG 

peptides (Sigma, F4799) for 2 h at 4°C with continuous mixing. The eluted proteins were 

concentrated with Amicon Ultra Centrifugal Filters (Millipore, UFC500396), boiled 5 min 

in Laemmli buffer, and fractionated on a 10% SDS-PAGE gel. The gel lanes were cut 

horizontally into 5~7 pieces, and each was subjected to LC-MS/MS analysis (Huang et al., 

2021).

MS data were processed by Thermo Proteome Discoverer software with SEQUEST 

engine against mouse International Protein Index (IPI v3.68) protein sequence database. 

Carbamidomethylation (CAM) was set as the fixed modification, and methionine oxidation 

was set as the variable modification. Outputs of protein identification from Proteome 

Discoverer were imported into a local Microsoft Access database. Common contamination 

proteins (trypsin, keratins) were removed, and protein Heavy/Light quantification ratios 

were obtained.

Co-immunoprecipitation (co-IP)—Co-IP in regular (nucleosome-free) conditions was 

performed as previously described (Ding et al., 2015). The nuclei were purified with buffer 

A followed the AP-MS protocol. Then nuclei were resuspended with ice-cold lysis buffer 

(50 mM HEPES, pH 7.9, 250 mM NaCl, 0.1% NP-40, 0.2 mM EDTA, 0.2 mM PMSF, 

and PIC) and incubated at 4°C for 30 min with continuous mixing. About 2% of input was 
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saved, then NE was diluted with 40% volume (v/v = 5:2) of dilution buffer (20 mM HEPES, 

pH 7.9, 20% glycerol (v/v), 0.05% NP-40, 0.2 mM EDTA, 0.2 mM PMSF, and PIC) as 

the co-IP buffer with the NaCl concentration of 180 mM. For antibody IP, the antibody 

and the same amount of mouse or rabbit IgG as control were added to the co-IP buffer, 

incubated with protein lysates overnight at 4°C with continuous mixing. Then, protein 

lysates were incubated with protein G-Agarose beads (Roche, 11243233001) for 2 h at 4°C 

with continuous mixing. For FLAG-IP, NE was incubated with anti-FLAG M2 affinity gel 

(Sigma, F2426) overnight at 4°C with continuous mixing. Beads were washed 4X with co-IP 

buffer (lysis buffer/dilution buffer = 5:2, v/v). For RNase A treatment, the beads were split 

during the first wash and incubated with or without RNase A (200 μg/mL, Sigma, R6148) 

at 37°C for 15 min. Proteins were eluted from the beads by boiling in 1X SDS Laemmli 

loading buffer, followed by SDS-PAGE and Western blot analysis.

Co-IP in nucleosome-containing conditions was performed following a published protocol 

(Neri et al., 2013). Briefly, cell pellets were resuspended in isotonic buffer (20 mM HEPES, 

pH 7.5, 100 mM NaCl, 250 mM Sucrose, 5 mM MgCl2, 5 μM ZnCl2, and PIC), incubated 

on ice for 5 min, and spun down 500 g for 5 min at 4°C. Then pellets were resuspended 

in isotonic buffer (no PIC) supplemented with 1% NP-40), vortexed for 10 s at the highest 

setting, incubated on ice for 5 min, and spun down 1000 g for 5 min at 4°C. The pellets 

(nuclei) were resuspended in 200 μL digestion buffer (50 mM Tris-HCl, pH 8.0, 100 mM 

NaCl, 250 mM Sucrose, 0.5 mM MgCl2, 5 mM CaCl2, 5 μM ZnCl2, no PIC) and 1 μL of 

micrococcal nuclease (MNase, NEB, M0247S), incubated at 37°C water bath for 10 min. 

Then the MNase digestion was immediately stopped by adding 20 μL 0.5 M EDTA, and 

nuclei were spun down 13,000 g for 1 min at 4°C. The digested nuclei were resuspended 

in digestion buffer (with PIC), subjected to sonication with Bioruptor Plus, set 30 s ON, 

30 s OFF, 5 cycles to break nuclei, and spun down 13,000 g for 5 min at 4°C. Protein 

supernatants were subjected to antibody incubation, washing with digestion buffer, protein 

elution, and SDS-PAGE, like the regular co-IP protocol.

The primary antibodies used for co-IP were: TET1 (Millipore, 09-872 and GeneTex, 

GTX125888), PSPC1 (Santa Cruz, sc-84577 and Bethyl, A303-206A), SUZ12 (Abcam, 

ab12073), EZH2 (Cell Signaling, 5246S), V5 (Invitrogen, R960-25), mouse IgG (Millipore, 

12-371), and rabbit IgG (Millipore, PP64).

Subcellular fractionation assay—The subcellular fractions of ESCs were extracted 

using the Subcellular Protein Fractionation Kit for Cultured Cells (Thermo, #78840). 

Briefly, about 5 × 106 cells were used, and each subcellular fraction was collected 

following the standard protocol. Protein loadings were balanced according to the protein 

concentrations in the cytoplasmic fraction before Western blot analysis.

Gel filtration assay—Size exclusion chromatography (gel filtration assay) was performed 

as previously described (Ding et al., 2015). Briefly, nuclear extracts (10~20 mg) of 

ESCs were applied to a gel filtration column (S400 HiPrep 16/60 Sephacryl, Amersham 

Biosciences), samples were eluted at 1 mL/min and continuously monitored with an online 

detector at a wavelength of 280 nm. Fractions were collected, concentrated, and subjected to 

Western blot analysis with indicated antibodies.
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Domain mapping—The FLAG-tagged Tet1 full-length (FL) sequence and truncated 

variants were cloned in the PiggyBac expression vectors. The Pspc1 full-length sequence 

and truncated variants were PCR amplified and subcloned into the V5-tagged PiggyBac 

expression vectors. The TET1 and PSPC1 PiggyBac expression vectors and control empty 

vectors (EV) were transfected into ESCs with Lipofectamine 2000 Transfection Reagent 

(Invitrogen, 11668019) following the standard protocol. After drug selection, ESCs were 

expanded for co-IP. FLAG-IP (for TET1 FL and truncated variants) and V5-IP (for PSPC1 

FL and truncated variants) were performed, followed by Western blot analysis of PSPC1 and 

TET1, respectively.

Western blot analysis—Western blot analysis was performed as previously described 

(Huang et al., 2017). Total proteins were extracted by RIPA buffer. Protein concentrations 

were measured by Bradford assay (Pierce, 23236), balanced, and subjected to SDS-PAGE 

analysis. The following primary antibodies were used: PSPC1 (Bethyl, A303-206A and 

Sigma, SAB4200503), TET1 (Millipore, 09-872 and GeneTex, GTX125888), SIN3A 

(Abcam, ab3479), PELP1 (Bethyl, A300-180A), TET2 (Abcam, ab124297), V5 (Invitrogen, 

R960-25), NONO (Bethyl, A300-587A), SFPQ (Abcam, ab38148), HA (Abcam, ab9110), 

OCT4 (Santa Cruz, sc-5279), ESRRB (R&D, PP-H6707), NANOG (Bethyl, A300-397A), 

SUZ12 (Abcam, ab12073), EZH2 (Cell Signaling, 5246S), ACTIN (1:5000, Sigma, A5441), 

GAPDH (ProteinTech, 10494-1-AP), Histone 3 (H3, Abcam, ab1791), and Vinculin (VCL, 

Abcam, ab129002).

Immunofluorescence—Mouse embryonic fibroblasts (MEFs) and ESCs were grown on 

24-well plates coated with 0.1% gelatin (w/v). After fixation with 4% paraformaldehyde 

(w/v) for 15 min, cells were permeabilized with 0.25% Triton X-100 (v/v) in PBS for 5 min 

and incubated with 10% BSA for 30 min at 37°C. For immunostaining, cells were incubated 

overnight at 4°C with PSPC1 antibody (Santa Cruz, sc-84577) in PBS with 3% BSA (w/v). 

The following day cells were incubated with fluorophore-labeled secondary antibodies for 1 

h at RT. Cells were imaged with a Leica DMI 6000 inverted microscope.

Dot blot analysis—The genomic DNA dot-blot analysis of 5mC and 5hmC was 

performed following the DNA Dot Blot Protocol (Cell Signaling, #28692) with 

modifications. Briefly, genomic DNA of ESCs was extracted using Quick-DNA Miniprep 

Plus Kit (Zymo Research, D4068), and DNA concentration was measured by NanoDrop. 

Next, the same amount of DNA was denatured with 10X DNA denaturing buffer (1 M 

NaOH and 0.1 M EDTA) and incubated at 95°C for 10 min, which was then immediately 

mixed with an equal volume of 20X SSC buffer, pH 7.0 (Invitrogen, 15557044) and chilled 

on ice. The DNA samples were diluted with a pre-determined amount and loaded on the 

positive-charged Nelyon membrane (GE Amersham, RPN2020B) using a vacuum chamber 

(Minifold, SRC-96). The membrane was dried, auto-crosslinked with 1200 × 100 μJ/cm2, 

and blocked with 5% milk/TBST for 1 h. Next, the membrane was incubated with 5mC 

(Cell Signaling, 28692) or 5hmC (Active Motif, 39769) antibodies, the same as the Western 

blot analysis. Then, the membrane was stripped with the stripping buffer (Thermo Scientific, 

21059) and reblotted with the dsDNA (Abcam, ab27156) antibody as the loading control.
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Biotinylated RNA synthesis, dot blot, and pull-down assay—Neat1-sense (Neat1-

S) and antisense (Neat1-AS) DNAs were amplified with primers containing the T7 promoter 

sequence at the 5′end (Table S4) from a pJET1.2 cloning vector (Thermo Scientific, K1232) 

containing the Neat1_1 cDNA sequence. Linearized DNA was biotin-labeled and in vitro 
transcribed using the Biotin RNA Labeling Mix (Roche, 11685597910) and MEGAscript 

T7 Transcription Kit (Invitrogen, AM1333). Synthesized RNA was purified with the RNA 

Clean & Concentrator Kit (Zymo Research, R1015). The ESC total RNA and biotinylated 

RNA were loaded on the positive-charged Nelyon membrane (GE Amersham, RPN2020B), 

auto-crosslinked with 1200 × 100 μJ/cm2, and blocked with 5% milk/TBST for 1 h. Then 

the membrane was washed with TBST and incubated in TBST containing HRP-Conjugated 

Streptavidin (GE Healthcare, RPN1231 V) at room temperature (RT) for 2 h. The rest steps 

were the same as the Western blot analysis.

The biotinylated RNA pull-down assay was performed as previously described (Rinn et al., 

2007). The ESC cell pellets were washed 2X with buffer A as in the co-IP protocol. Then 

nuclei were resuspended with RIP lysis buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 

1.5 mM MgCl2, 0.5% NP-40, 1 mM EDTA, with PMSF, PIC, and RNase inhibitor) and 

incubated at 4°C for 30 min with continuous mixing. After centrifuge, nuclear extracts were 

supplied with tRNA (0.1 μg/μL, Roche, 10109541001) and incubated with 4 μg Neat1-S, 

Neat1-AS RNAs, or the beads-only fraction for 1 h at 4°C. Then 40 uL of Streptavidin 

M280 dynabeads (Invitrogen, 11205D) were added to each binding fraction and further 

incubated for 1 h at 4°C. Beads were washed 5X with the RIP buffer and boiled, followed by 

SDS-PAGE analysis.

Genomic DNA 5mC and 5hmC quantification by mass spectrometry—The 

UHPLC-MS/MS analysis for 5mC and 5hmC quantification was performed as previously 

described (Lai et al., 2018) on an Agilent 1290 Infinity II ultrahigh performance LC 

system coupled with an Agilent 6470 triple quadrupole mass spectrometer equipped with 

a jet stream electrospray ionization source (Santa Clara, CA). The mass spectrometer was 

operated under positive ionization using multiple reactions monitoring (MRM) mode. The 

selective MRM transitions were monitored as follows: m/z 242 → 83 for 5mC and m/z 258 

→ 142 for 5hmC. The frequencies of 5mdC and 5hmC over total deoxycytidine (dC) were 

calibrated by their corresponding stable isotope-labeled internal standards.

RT-qPCR—Total RNA was extracted using the GeneJet RNA Purification Kit (Thermo 

Scientific, K0732). Reverse transcription was performed, and cDNA was generated using 

the qScript kit (Quanta, 95048). Relative expression levels were determined using a 

QuantStudio 5 Real-Time PCR System (Applied Biosystems). Gene expression levels were 

normalized to Gapdh. Primers for RT-qPCR are listed in Table S4.

Chromatin immunoprecipitation (ChIP) and sequencing—ChIP assays were 

performed as previously described (Huang et al., 2017). Briefly, cell pellets were crosslinked 

with 1% (w/v) formaldehyde for 10 min at RT, followed by the addition of 125 mM 

glycine to stop the reaction. Next, chromatin extracts were sonicated into 200–500 bp with 

Bioruptor Plus (settings of 30 s ON, 30 s OFF, 30 cycles) or with Bioruptor Pico (settings 

of 30 s ON, 30 s OFF, 15 cycles). Immunoprecipitation was performed with the following 
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primary antibodies: PSPC1 (Santa Cruz, sc-84577 and Bethyl, A303-206A), SUZ12 (Active 

Motif, 39357), H3K4me3 (EpiCypher, 13-0041), H3K27me3 (Cell Signaling, 9733S), TET1 

(GenTex, GTX125888), or rabbit IgG (Millipore, PP64) overnight at 4°C with continuous 

mixing, followed by incubation with protein G dynaberads (Invitrogen, 10004D) for another 

2 h at 4°C. The immunoprecipitated DNA was washed with ChIP RIPA buffer and purified 

with ChIP DNA Clean & Concentrator columns (Zymo Research, D5205). qPCR was 

performed with Roche SYBR Green reagents and a LightCycler480 (Roche) machine. 

Percentages of input recovery were calculated. The ChIP-qPCR primers are listed in Table 

S4.

For ChIP-seq, 10% of sonicated genomic DNA was used as ChIP input. Libraries were 

prepared using the NEBNext Ultra II DNA library prep kit and index primers sets (NEB, 

7645S, E7335S) following the standard protocol. Sequencing was performed with the 

Illumina HiSeq 4000 Sequencer according to the manufacturer’s protocol. Libraries were 

sequenced as 150-bp paired-end reads.

Chromatin Isolation by RNA purification (ChIRP) and sequencing—ChIRP 

assays were performed following an established protocol (Chu et al., 2011) with 

modifications. Briefly, 32 anti-sense oligo probes covering the whole Neat1_1 lncRNA 

(3.2K bp, 1 probe/100 bp of RNA length) were designed using singlemoleculefish.com. The 

probes were separated into “odd” and “even” pools before the experiment. Cell pellets were 

harvested and crosslinked with 1% of glutaraldehyde in PBS for 10 min at RT, followed 

by the addition of 125 mM glycine to stop the reaction. Next, chromatin extracts were 

sonicated into 100–500 bp with Bioruptor Pico, set 30 s ON, 30 s OFF, 45 cycles. Sonication 

efficiency was checked by running a 1.5% agarose gel. The lysates after sonication were 

diluted with 2X volume of hybridization buffer and incubated with odd and even probe pools 

at 37°C hybridization oven for 4 h with rotation, followed by incubation of streptavidin 

C1 dynabeads (Invitrogen, 65001) for another 30 min. The dynabeads were washed 5X 

with wash buffer, and ChIRP RNA was purified from 10% beads to examine the Neat1 
RNA enrichment. The ChIRP DNA was eluted from the remaining beads with elution 

buffer containing RNase A and RNase H and further treated with proteinase K. DNA was 

purified with Phenol:Chloroform:Isoamyl Alcohol (25:24:1, v/v, Invitrogen, 15593031) and 

resuspended in TE buffer. ChIRP-seq libraries were prepared using the NEBNext Ultra II 

DNA library prep kit and index primers sets (NEB, 7645S, E7335S) following the standard 

protocol. Sequencing was performed with the Illumina HiSeq 4000 Sequencer according to 

the manufacturer’s protocol. Libraries were sequenced as 150-bp paired-end reads.

Crosslinking immunoprecipitation (CLIP) qPCR—UV crosslinking and 

immunoprecipitation (CLIP) were performed according to the eCLIP-seq protocol (Van 

Nostrand et al., 2016) with modifications. Briefly, cells in culture were washed with ice-cold 

PBS and crosslinked in PBS with UV type C (254 nm) at 400 mJ/cm2 on ice. Next, cells 

were scraped, pelleted, and lysed in CLIP lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM 

NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) supplemented with proteinase 

and RNase inhibitors, and incubated on ice for 1 h. The lysate was briefly sonicated with 

Bioruptor Plus, set 30 s ON, 30 s OFF, 5 cycles to break DNA. Next, Turbo DNase (2 U/μL, 
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1:500, Invitrogen, AM2238) was added, and the lysate was incubated in a 37°C water bath 

for 15 min, followed by centrifuge 15,000 g for 15 min at 4°C. Primary antibodies PSPC1 

(Bethyl, A303-206A) and EZH2 (Cell Signaling, 5246S) or rabbit IgG (Millipore, PP64) 

were incubated with Protein-G dynabeads (Invitrogen) for 1 h at RT. Then the lysate and 

the beads were mixed overnight at 4°C with rotation. The next day, the beads were washed 

with wash buffer (low salt, 20 mM Tris-HCl, pH 7.4, 10 mM MgCl2, 0.2% Tween-20) and 

high salt wash buffer (50 mM Tris-HCl, pH 7.4, 1 M NaCl), and digested with Proteins K to 

elute RNA. The input and CLIP RNAs were purified with the RNA Clean & Concentrator-5 

kit (Zymo, R1015) followed by RT-qPCR analysis. Percentages of input recovery were 

calculated. CLIP-qPCR primer sequences are listed in Table S4.

Gene ontology (GO) analysis—Gene ontology (GO) analyses were performed using the 

DAVID gene ontology functional annotation tool (https://david.ncifcrf.gov/tools.jsp) with all 

NCBI Mus musculus genes as a reference list.

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP-seq and ChIRP-seq data processing—ChIP-seq data of histone marks 

H3K4me3 and H3K27ac in ESCs were downloaded from GSE48519, data of H3K27me3 in 

ESCs were downloaded from GSE89211 (Cruz-Molina et al., 2017), and data of TET1 

in ESCs were downloaded from GSE26832. All ChIP-seq and ChIRP-seq reads were 

pre-processed by trim_galore (v0.6.3) and aligned to the mm9 mouse genome using the 

bowtie2 (v2.3.4) program, and the parameters were “-X 1000 –no-mixed –no-discordant”. 

The aligned reads were exported (-F 0x04 -f 0x02) and sorted with samtools. Duplicates 

were removed with MarkDuplicates function in the PICARD (v2.14.0) package. The aligned 

ChIP-seq and ChIRP-seq bam files of biological replicates were combined. All bam files 

were converted to a binary tiled file (tdf) and visualized using IGV (v2.7.2) software.

All ChIP-seq and ChIRP-seq peaks were determined by the MACS2 program (v.2.0.10). 

PSPC1 ChIP peaks in WT cells were called using the Pspc1KO ChIP-seq as the control 

data, and other ChIP peaks were called using the input ChIP-seq as the control data. Neat1 
ChIRP peaks in WT cells were called using the Neat1KO ChIRP-seq as the control data. 

Broad peaks were called for PSPC1, SUZ12, and histone marks data, narrow peaks were 

called for TET1 and Neat1 data, and all other parameters were the default settings. All peaks 

were annotated using the annotatePeaks module in the HOMER program (v4.11) against the 

mm9 genome. A target gene of a called peak was defined as the nearest gene’s transcription 

start site (TSS) with a distance to TSS less than 5 kb. Heatmaps and mean intensity curves 

of ChIP-seq data at specific genomic regions were plotted by the NGSplot program (v2.61) 

centered by the middle point “(start+end)/2” of each region.

ChIP-seq correlation analysis of PSPC1 and other factors was performed with an in-house 

Python program as previously described (Ding et al., 2015). A phi correlation coefficient 

was used to calculate the correlation between the ChIP peaks of every two ChIP-seq data. 

Heatmap of correlations was shown with the Java TreeView (v1.1.6) program.

5mC and 5hmC DNA immunoprecipitation (DIP) data analysis—5mC and 5hmC 

DIP-seq data in ESCs were downloaded from GSE57700. Reads were aligned to the mouse 
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genome mm9 using the bowtie (v1.0.0) program, with parameters -m 1 -v 2 –best –strata. 

The duplicated reads of the aligned data were removed, then filtered reads were sorted with 

samtools (v0.1.19). The reads per million (RPM) values of 5mC and 5hmC DIP-seq at each 

TET1 ChIP-seq peak region were calculated with the NGSplot program (v2.61)and shown in 

Boxplots using R. p value was calculated from two-sided Mann-Whitney test.

RNA-seq and data analysis—100 ng total RNA was processed for RNA-seq library 

construction using the Ovation Mouse RNA-seq kit (NuGEN, #0348–32) following the 

manufacturer’s protocol. Massively parallel sequencing was performed on an Illumina 

HiSeq 4000 Sequencing System. Libraries were sequenced as 150-bp paired-end reads. 

For RNA-seq data processing, reads were aligned to the mouse genome mm9 using STAR 

(v2.7.6a) with the default settings. Transcript assembly and differential expression analyses 

were performed using Cufflinks (v2.2.1). Assembly of novel transcripts was not allowed 

(-G). Other parameters of Cufflinks were the default setting. The summed FPKM (fragments 

per kilobase per million mapped reads) of transcripts sharing each gene_id was calculated 

and exported by the Cuffdiff program. In the gene expression matrix, a value of FPKM+1 

was applied to minimize the effect of low-expression genes. p-values were calculated 

using a T-test. Differentially expressed genes (DEGs) were determined by two-sided T-test 

p-value<0.05 and fold-change>1.5. Boxplots for expression were generated using R. P-value 

was calculated from the two-sided Mann-Whitney test.

PCA-analysis was performed for RNA-seq data from different batches. Batch effects were 

adjusted by ComBat function implemented in the sva Bioconductor package (v.3.18.0). The 

expression data matrix was imported by Cluster 3.0 software for PCA analysis. PC values 

were visualized with the plot3d function in the rgl package using R (v4.1.0) scripts.

Statistical analysis—If not specified, qPCR analysis was performed in technical 

triplicates, and the error bars indicate standard deviation of the mean. p-values were 

calculated using a two-sided T-test in the GraphPad Prism software (v9.2.0). RT-qPCR 

analyses in Figures 3F, 4E, and S5B were performed in two independent KO clones. CLIP-

qPCR analyses in Figures 6C, 6E, 6F, S6C, S6F, and S6G were repeated in biological 

duplicates.

The boxplots in Figures 4H, S2B, and S2E present the 25th, median, and 75th quartiles, 

and the whiskers extend 1.5 of interquartile ranges, and the p-value was calculated from 

the two-sided Mann-Whitney test. In the scatter plots of Figures 4C and S4E, P-value 

was calculated using the Fisher-exact test based on the number of DEGs in each category 

(Pspc1KO Up/Down vs. Neat1KO Up/Down). In the scatter plot of Figure S4D, Pearson’s 

product-moment correlation coefficient (r) and P-value of correlation are indicated in each 

plot. The statistical analysis was performed with R (v4.1.0) scripts on the R-Studio platform 

(v1.4.1). The statistical details of experiment are indicated in the figure legend.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The TET1 interactome identifies PSPC1 as a partner of TET1 in ESCs

• PSPC1 interacts with TET1 and PRC2 for bivalency control in formative 

pluripotency

• TET1 and PSPC1 repress bivalent genes by promoting PRC2 chromatin 

occupancy

• Neat1 facilitates bivalent gene activation by promoting PRC2 binding to their 

mRNAs
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Figure 1. PSPC1 is an interacting partner of TET1 in ESCs
(A) Protein ratios of FLAG-IP (TET1)versus Control-IP (empty vector) AP-MS in two 

replicates with reciprocal SILAC labeling are plotted, and a few proteins in the TET1 

interactome are indicated.

(B and F) Co-immunoprecipitation (co-IP) of TET1 partners (B) or TET1/2 (F) by FLAG-IP 

followed by Western blot analysis in ESCs.

(C and D) Co-IP by endogenous PSPC1 (C) and TET1 (D) antibodies followed by western 

blot analysis in ESCs.
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(E) Western blot analysis in Tet1/2/3 triple-KO (TetTKO) ESCs rescued with FLAG-tagged 

TET1 or TET2 in ESCs.

(G) DNA 5mC and 5hmC dot-blot analysis of WT and Pspc1KO (two independent clones, 

C4 and C9) ESCs. dsDNA antibody is reblotted as the loading control. Dnmt1/3a/3b 
triple-KO (DnmtTKO) and TetTKO ESCs serve as negative controls of 5mC and 5hmC, 

respectively.

(H) UHPLC-MS/MS quantification of 5′-methyl-deoxycytidine (5mC) and 5′-
hydroxymethyl-deoxycytidine (5hmC) over deoxycytidine (dC) from genomic DNA of WT 

and Pspc1KO ESCs. Experiments were performed in biological duplicates with technical 

triplicates; p value is from two-tailed t test, and “n.s.” denotes statistically non-significant.
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Figure 2. PSPC1, TET1, and PRC2 co-localize at bivalent promoters in ESCs
(A) Annotation of PSPC1 ChIP-seq peaks in ESCs at promoters, intergenic or genic regions.

(B) Mean intensity plot by reads per million (RPM) showing PSPC1 ChIP-seq intensity of 

WT and Pspc1KO ESCs at gene bodies (within 3K bp). TSS, transcription start site, TTS, 

transcription termination site.

(C) Overlap ofthe PSPC1, PRC2 subunit SUZ12, and TET1 (Wu et al., 2011) peaks in ESCs.

(D) Mean intensity plot by RPM showing PSPC1, TET1, and RPC2 subunit SUZ12 ChIP-

seq intensity at PSPC1 peak regions (within 5K bp at PSPC1 peak center).
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(E) Heatmaps by RPM showing PSPC1 and histone marks H3K4me3, H3K27ac (Hon et al., 

2014), and H3K27me3 (Cruz-Molina et al., 2017) at PSPC1/TET1 common peak regions 

(within 8K bp at PSPC1 peak center) with and without PRC2 occupancy.

(F) ChIP-seq tracks of PSPC1, TET1, SUZ12, and histone marks of H3K4me3, H3K27me3, 

and H3K27ac at PSPC1/TET1 common peak regions with (T, Fgf5) and without (Pou5f1, 

Nanog) PRC2 occupancy. The numbers indicate the normalized RPM value of the tracks.
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Figure 3. PSPC1 negatively regulates activation of bivalent genes in the pluripotent-state 
transition
(A) Schematic depiction of the naive-to-formative transition of WT and Pspc1KO ESCs. The 

ESCs are adapted in Fgf2 and activin A (FA) culture medium for 2 days and 4 days.

(B) Principal-component analysis (PCA) of WT and Pspc1KO RNA-seq samples at different 

time points. Percentages of variance explained in each principal component (PC) are 

indicated.

(C) Heatmap showing the relative expression of differentially expressed genes (DEGs) by 

comparing D0 WT with D4 WT cells and D4 WT with D4 KO cells. The numbers of DEGs 
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are shown on the left, and representative genes in the four classes (C1–C4) are listed on the 

right. The direct PSPC1 targets from ChIP-seq analysis are indicated by the color text, which 

matches the color of the histogram in (D).

(D) Histogram showing the percentages (%) and numbers of DEGs in each class (C1–C4) as 

the PSPC1 ChIP-seq targets.

(E) RNA-seq tracks of WT and Pspc1KO ESCs and EpiLCs at bivalent lineage gene loci. 

The numbers indicate the normalized RPM value of the tracks.

(F) RT-qPCR analysis of pluripotency and lineage genes in WT and Pspc1KO ESCs (CCE 

background with two independent clones, C4 and C9) during ESC-to-EpiLC differentiation. 

Error bars represent the standard deviation of technical triplicates.

(G) Gene ontology (GO) analysis for the C4 genes (Class 4, N = 138) shown in (C).
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Figure 4. Neat1 positively regulates bivalent gene activation in the pluripotent-state transition
(A) Schematic depiction of the Neat1KO strategy. The scissors denote two gRNA-targeting 

sites for CRISPR-Cas9 genome editing. The short (Neat1_1) and long (Neat1_2) isoforms of 

the mouse Neat1 gene are indicated.

(B) RNA-seq tracks (left) and expression of Neat1 (right) during the ESC-to-EpiLC 

differentiation. The numbers indicate the normalized RPM value of the tracks (left). Neat1 
expression is shown in FPKM (fragments per kilobase of transcript per million mapped 

reads) values (right). Error bars represent the standard deviation of biological duplicates.
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(C) Scatter plot of the relative gene expression of DEGs upon Pspc1KO or Neat1KO 

relative to WT at D2 EpiLC from RNA-seq analysis; p value is from the Fisher exact test. 

Representative genes are labeled on the plot.

(D) RNA-seq tracks of WT and Neat1KO ESCs and EpiLCs at bivalent gene loci (Fgf5 and 

Nefl). The numbers indicate the normalized RPM value of the tracks.

(E) RT-qPCR analysis of bivalent genes in WT and Neat1KO ESCs (46C genetic 

background with two independent clones, 5F and 7G) during EpiLC differentiation. Error 

bars represent the standard deviation of technical triplicates.

(F) Schematic depiction of Neat1 ChIRP-seq analysis in WT and Neat1KO ESCs and D2 

EpiLCs. Biotinylated probes based on their relative positions along the Neat1_1 RNA were 

ranked and split into odd and even probes, followed by streptavidin pull-down and DNA 

sequencing.

(G) Mean intensity plot by RPM showing Neat1 ChIRP-seq intensity enriched at the Neat1 
peak regions in ESCs and D2 EpiLCs (within 1K bp around Neat1 peak regions identified in 

ESCs).

(H) Boxplots depicting quantification of Neat1 ChIRP-seq intensity by RPM at PSPC1 

ChIP-seq peak regions (extend 5K bp, identified in ESCs) from WT and Neat1KO ESCs and 

D2 EpiLCs. p value is from the Mann-Whitney test.

(I) PSPC1, TET1, and SUZ12 ChIP-seq tracks in ESCs and Neat1 ChIRP-seq tracks in WT 

and Neat1KO ESCs and D2 EpiLCs at the promoters of bivalent genes (T, Fgf8, Sp8, and 

Wnt3). The numbers indicate the normalized RPM value of the tracks.
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Figure 5. Depletion of PSPC1 or TET1 accelerates PRC2 eviction from bivalent promoters
(A) Schematic depiction of the Tet1-degron knock-in (KI) strategy using CRISPR-Cas9 

genome-editing tool (the scissor symbol). The HA-tagged FKBP12F36V donor sequence is 

inserted right after the start codon (ATG) of TET1 CDS to create the in-frame fusion protein.

(B) Western blot analysis of TET1 protein in Tet1-degron ESCs (two independent clones, 

C#13 and C#16) upon dTAG13 treatment for 24 h. Degradation of TET1 was indicated by 

both endogenous antibody and HA fusion protein tag.
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(C) Schematic depiction of the bivalent histone marks H3K4me3 and H3K27me3 and the 

PRC2 subunit SUZ12 ChIP-seq analysis in ESCs and D2 EpiLCs of different genotypes 

(Pspc1 WT/KO and Neat1 WT/KO) or treatment (Tet1-degron with control/dTAG13).

(D) Overlap of the bivalent peaks (H3K4me3 and H3K27me3) identified in ESCs and 

EpiLCs and with the PSPC1/TET1/SUZ12 common peaks identified in ESCs.

(E) Mean intensity plot (top) and heatmap (bottom) by RPM of SUZ12 ChIP-seq intensity 

in WT ESCs and EpiLCs at SUZ12 peak regions (within 5K bp at peak center, identified in 

ESCs).

(F and G) Mean intensity plot (top) and heatmap (bottom) by RPM of SUZ12 (F) and 

H3K27me3 (G) ChIP-seq intensity in D2 EpiLCs at PSPC1/TET1/SUZ12 common peak 

regions (within 5K bp at peak center, identified in ESCs).

(H) SUZ12, H3K4me3, and H3K27me3 ChIP-seq tracks at the promoters of bivalent genes 

(Fgf5, Nefl, Sall2, Eomes, and Wnt3) in D2 EpiLCs. The numbers indicate the normalized 

RPM value of the tracks.
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Figure 6. PSPC1, TET1, and Neat1 modulate PRC2 binding to nascent bivalent gene transcripts 
during bivalent gene activation
(A) Co-IP of PSPC1 and SUZ12 in ESCs using a nucleosome-containing protocol (see 

STAR Methods for detail).

(B) Biotinylated Neat1 (bioNeat1) RNAs pull down both EZH2 and PSPC1. Left: 

streptavidin (SA) beads conjugated with Neat1 sense (S) or antisense (AS) RNA, and 

empty beads(EB) were used for pull-down from ESC nuclear lysates followed by western 

blot analysis of bioNeat1-bound proteins. EZH2 and PSPC1 blots of both short and 

long exposure (exp.) are shown. Right: bioNeat1 sense (S) or antisense (AS) RNA were 
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transcribed by in vitro transcription (IVT) and confirmed by SA-HRP dot blot. ESC total 

RNA serves as a negative control.

(C) EZH2 and PSPC1 CLIP-qPCR analysis of Neat1 in WT, Pspc1KO, and Ezh2KO ESCs. 

Gapdh serves as a negative control; p value is from two-tailed t test, and “n.s.” denotes 

statistically non-significant.

(D) Mean intensity plot (top) and heatmap (bottom) by RPM of Neat1 ChIP-seq intensity 

at the bivalent regions (within 5K bp at peak center, identified in ESCs) in ESCs and D2 

EpiLCs.

(E) EZH2 CLIP-qPCR analysis of bivalent gene mRNAs (Fgf5, Nefl, and Sall2) in D2 

EpiLCs of different genotypes (WT versus KO); p value is from the two-tailed t test.

(F) PSPC1 CLIP-qPCR analysis of Neat1 and bivalent genes’ transcripts (Fgf5, Neff, and 

Sall2) in D2 EpiLCs of different genotypes. Error bars in (C), (E), and (F) represent 

the standard deviation of technical triplicates. Experiments were repeated in biological 

duplicates.
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Figure 7. The working model of this study
(A–C) In ESCs (WT), Neat1 (short isoform, Neat1_1) associates with the chromatin-

bound proteins TET1, PSPC1, and PRC2 at bivalent gene promoters (A). Bivalent 

genes are minimally expressed in WT (A), Tet1KO, or Pspc1KO (B), or Neat1KO (C) 

ESCs. In Neat1KO ESCs and D2 EpiLCs(WT or KO), the chromatin-bound PSPC1 and 

TET1 decrease, denoted by smaller protein symbols. Bivalent genes are activated during 

pluripotent-state transition (accompanied by downregulation of Neat1_1, with no expression 

of Neat1_2 yet), and nascent mRNA acts as a decoy to evict PRC2 from chromatin.

(D–F) In EpiLCs(WT), a dynamic balance is maintained between PRC2 chromatin 

occupancy and RNA binding (shown in up/down arrows)to fine-tune the expression of 

bivalent genes (D). In Tet1KO or Pspc1KO (E) EpiLCs, more PRC2 proteins bind to 

mRNAs and are displaced or evicted from chromatin, inducing enhanced bivalent gene 

transcription. Without Neat1 (F), the balance between the chromatin- and mRNA-bound 

PRC2 may be disrupted (indicated by dashed lines and a question mark). PRC2-binding 

affinityto mRNAs (and possibly mRNA-processing-associated proteins) is compromised, 

which causes reduced bivalent gene activation. Of note, although PRC2 binds to both 

Neat1 and certain bivalent gene transcripts, Neat1 may promote PRC2 binding to nascent 

mRNA transcripts indirectly (D–F, e.g., through unknown mRNA-processing protein; see 

Limitations of the study).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TET1 Millipore Cat. 09-872; RRID: AB_10806199

TET1 GeneTex Cat. GTX125888; RRID: AB_11164485

PSPC1 Santa Cruz Cat. sc-84577; RRID: AB_2171459

PSPC1 Bethyl Cat. A303-206A; RRID: AB_10954256

PSPC1 Sigma Cat. SAB4200503; RRID: N/A

EZH2 Cell Signaling Cat. 5246S; RRID: AB_10694683

SUZ12 Abcam Cat. ab12073; RRID: AB_442939

SUZ12 Active Motif Cat. 39357; RRID: AB_2614929

V5 Invitrogen Cat. R960-25; RRID: AB_2556564

Mouse IgG Millipore Cat. 12-371; RRID: AB_145840

Rabbit IgG Millipore Cat. PP64; RRID: AB_97852

SIN3A Abcam Cat. ab3479; RRID: AB_303839

PELP1 Bethyl Cat. A300-180A; RRID: AB_242526

TET2 Abcam Cat. ab124297; RRID: AB_2722695

NONO Bethyl Cat. A300-587A; RRID: AB_495510

SFPQ Abcam Cat. ab38148; RRID: AB_945424

HA Abcam Cat. ab9110; RRID: AB_307019

OCT4 Santa Cruz Cat. sc-5279; RRID: AB_628051

NANOG Bethyl Cat. A300-397A; RRID: AB_386108

ESRRB R&D Systems Cat. PP-H6707; RRID: AB_2100411

ACTIN Sigma Cat. A5441; RRID: AB_476744

GAPDH ProteinTech Cat. 10494-1-AP; RRID: AB_2263076

Histone3 Abcam Cat. ab1791; RRID: AB_302613

H3K4me3 EpiCypher Cat. 13-0041; RRID: N/A

H3K27me3 Cell Signaling Cat. 9733S; RRID: AB_2616029

VCL Abcam Cat. ab129002; RRID: AB_11144129

Streptavidin-HRP GE Healthcare Cat. RPN1231 V; RRID: N/A

Mouse IgG HRP Cell Signaling Cat. 7076S; RRID: AB_330924

Rabbit IgG HRP Jackson ImmunoRes Cat. 715-175-151; RRID: AB_2340820

Trueblot Mouse IgG HRP Rockland Cat. 18-8817-31; RRID: AB_2610850

Trueblot Rabbit IgG HRP Rockland Cat. 18-8816-31; RRID: AB_2610847

DNA 5mC Cell Signaling Cat. 28692; RRID: AB_2798962

DNA 5hmC Active Motif Cat. 39769; RRID: AB_10013602

Anti-dsDNA Abcam Cat. ab27156; RRID: AB_470907

Chemicals, peptides, and recombinant proteins

DMEM GIBCO Cat. 11965-092
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REAGENT or RESOURCE SOURCE IDENTIFIER

Heat inactivated FBS GIBCO Cat. 35-011-CV

Penicillin-Streptomycin GIBCO Cat. 15140-122

L-Glutamine GIBCO Cat. 25030-081

MEM NEAA GIBCO Cat. 11140-050

2-Mercaptoethanol Sigma Cat. M6250

Puromycin Sigma Cat. P9620-10ML

Hygromycin Omega Cat. HG-80

N2 GIBCO Cat. 17502-048

B27 GIBCO Cat. 17504-044

DMEM/F-12 GIBCO Cat. 11-330-032

Neurobasal GIBCO Cat. 21-103-049

LIF Lab prep N/A

GSK3i (CHIR99021) Sigma Cat. SML1046-25MG

MEKi (PD0325901) Selleckchem Cat. S1036

Recombinant Fgf2 R&D System Cat. 233-FB

Recombinant Activin A R&D System Cat. 338-AC

13C6
15N4 L-arginine Cambridge Isotope Cat. CNLM-539-H

13C6
15N2 L-lysine Cambridge Isotope Cat. CNLM-291-H

13C6 L-lysine Cambridge Isotope Cat. CLM-2247-H

dTAG-13 Tocris Cat. 6605

Deposited data

PSPC1 ChIP-seq in ESC This paper NCBI GEO: GSE182443

SUZ12 ChIP-seq in ESC This paper NCBI GEO: GSE182443

SUZ12 ChIP-seq in EpiLC upon Pspc1 KO, Neat1 KO, and 
Tet1-degron treatments

This paper NCBI GEO: GSE182443

H3K27me3 ChIP-seq in ESC and EpiLC upon Pspc1 KO, Neat1 
KO, and Tet1-degron treatments

This paper NCBI GEO: GSE182443

H3K4me3 ChIP-seq in ESC and EpiLC upon Pspc1 KO and 
Neat1 KO

This paper NCBI GEO: GSE182443

Neat1 ChIRP-seq in WT and Neat1 KO ESC and EpiLC This paper NCBI GEO: GSE182443

Pspc1 WT/KO RNA-seq in ESC and EpiLC This paper NCBI GEO: GSE182443

Neat1 WT/KO RNA-seq in ESC and EpiLC This paper NCBI GEO: GSE182443

TET1 affinity purification followed by mass spectrometry data in 
ESC

This paper ProteomeXchange PRIDE: PXD033587

TET1 ChIP-seq in ESC Wu et al., 2011 NCBI GEO: GSE26833

PSPC1 CLIP-seq in ESC Guallar et al., 2018 NCBI GEO: GSE103269

H3K4me3 and H3K27ac in ESC Hon et al., 2014 NCBI GEO: GSE48519

5mC and 5hmC meDIP-seq in ESC Xiong et al., 2016 NCBI GEO: GSE57700

Experimental models: Cell lines

Mouse ESC CCE This paper N/A

Pspc1 KO ESC Guallar et al., 2018 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Pspc1 KO ESC rescued with WT or RRMmut PSPC1 protein Guallar et al., 2018 N/A

Tet1-degron ESC This paper N/A

Mouse ESC 46C This paper N/A

Neat1 KO ESC This paper N/A

Ezh2 KO ESC Shen et al., 2008 N/A

Mouse ESC V6.5 Laboratory of R. Jaenisch N/A

Tet1 KO ESCs Laboratory of R. Jaenisch N/A

Tet1/2/3 KO ESCs Laboratory of R. Jaenisch N/A

Dnmt1/3a/3b KO ESC Laboratory of T. Chen N/A

Nono KO ESC Laboratory of F. Lan N/A

Oligonucleotides

Oligonucleotides (see Table S4) This paper N/A

Software and algorithms

STAR 2.7.6a https://github.com/alexdobin/STAR

Cufflinks 2.2.1 http://cole-trapnell-lab.github.io/cufflinks/

Bowtie2 2.3.5 http://bowtie-bio.sourceforge.net/bowtie2/

IGV 2.10.2 https://software.broadinstitute.org/software/igv

samtools 1.10 http://www.htslib.org/

PICARD 2.18.5 https://broadinstitute.github.io/picard/

HOMER 4.11.1 http://homer.ucsd.edu/homer/

MACS2 2.2.7 https://github.com/macs3-project/MACS

NGSplot 2.61 https://github.com/shenlab-sinai/ngsplot
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