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Abstract

Increasing availability of comprehensive experimental datasets and of high-performance

computing resources are driving rapid growth in scale, complexity, and biological realism of

computational models in neuroscience. To support construction and simulation, as well as

sharing of such large-scale models, a broadly applicable, flexible, and high-performance

data format is necessary. To address this need, we have developed the Scalable Open Net-

work Architecture TemplAte (SONATA) data format. It is designed for memory and compu-

tational efficiency and works across multiple platforms. The format represents neuronal

circuits and simulation inputs and outputs via standardized files and provides much flexibility

for adding new conventions or extensions. SONATA is used in multiple modeling and visual-

ization tools, and we also provide reference Application Programming Interfaces and model

examples to catalyze further adoption. SONATA format is free and open for the community

to use and build upon with the goal of enabling efficient model building, sharing, and

reproducibility.

Author summary

Neuroscience is experiencing a rapid growth of data streams characterizing composition,

connectivity, and activity of brain networks in ever increasing details. Data-driven model-

ing will be essential to integrate these multimodal and complex data into predictive simu-

lations to advance our understanding of brain function and mechanisms. To enable

efficient development and sharing of such large-scale models utilizing diverse data types,

we have developed the Scalable Open Network Architecture TemplAte (SONATA) data

format. The format represents neuronal circuits and simulation inputs and outputs via
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standardized files and provides much flexibility for adding new conventions or extensions.

SONATA is already supported by several popular tools for model building, simulations,

and visualization. It is free and open for everyone to use and build upon and will enable

increased efficiency, reproducibility, and scientific exchange in the community.

This is a PLOS Computational Biology Software paper.

Introduction

Modern systems neuroscience faces ever-widening streams of data on the composition, con-

nectivity, and in vivo activity of brain networks (e.g.,[1–8]), a trend supported by major fund-

ing initiatives around the world[9–14]. Turning these complex data into knowledge is a

challenging task requiring systematic analysis and modeling. Detailed, data-driven modeling

in particular will be essential to integrate the multitude of experimentally observed cell types,

intricate connectivity rules, and complex patterns of neuronal dynamics into predictive

computational frameworks [15].

For this task, scientists need tools that are up to the challenge. Simulation engines, such as

NEURON[16], NEST[17], Brian[18], GENESIS[19], MOOSE[20], Xolotl[21], and others offer

high computational performance, and recently a number of software interfaces (e.g., neuro-

Construct[22], PyNN[23], NetPyNE[24], Open Source Brain[25], and the Allen Institute’s

Brain Modeling ToolKit (BMTK, https://alleninstitute.github.io/bmtk/;[26]) have been devel-

oped that allow users to interact with these engines without mastering the underlying pro-

gramming environments of individual simulators. However, the utility of these tools is limited

without a broadly applicable, flexible, and high-performance modeling data format. The cur-

rent evolution of typical workstyles towards collaborative team projects demands standardized

formats for model sharing and reproducibility, as well as for interoperability between tools.

Meanwhile, high computational performance of such formats becomes increasingly important

to enable efficient representation of the growing biological complexity of models.

While existing solutions, such as the XML-based data formats NeuroML [27,28] and

NineML (http://incf.github.io/nineml-spec/), the PyNN language[23], and the NSDF standard

for simulator output[29], have proven useful, major challenges remain and are felt acutely in

the case of large data-driven network models. One problem is a performance bottleneck: stor-

ing data about thousands of neurons or millions of synapses in verbose text-based files pro-

duces a large disk space footprint and may be challenging for reading/writing in parallel

compute environments. Another is that existing formats describe either model structure or

simulation output, but not both. Finally, for broad adoption of a modeling data format, it

needs to be flexible enough to represent a variety of model types (point neuron, biophysically

detailed, etc.) and compatible with more specialized formats (e.g., SWC for neuronal morphol-

ogies[30]), without compromising computational performance.

Notably, similar challenges exist in experimental neuroscience (see, e.g.,[31]). The situation

is improving due to initiatives for experimental data formats, such as NWB:N[32], Neo[33],

BIDS[34], Loom (https://linnarssonlab.org/loompy), NIX (http://g-node.github.io/nix/), or

spacetx-starfish (https://github.com/spacetx/starfish), but for many types of experimental data

the community is still far from a widespread adoption of universally agreed-upon formats (see

also[35,36]). These challenges contribute to difficulties in closing the virtuous experiment/

modeling loop and to the overall reproducibility crisis[37,38,12].

The SONATA data format for efficient description of large-scale network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007696 February 24, 2020 2 / 24

Horizon 2020 Framework Programme for

Research and Innovation under the Specific Grant

Agreement No. 785907 (Human Brain Project

SGA2). This study was supported by funding to the

Blue Brain Project, a research center of the École
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Here we present the SONATA (Scalable Open Network Architecture TemplAte) data for-

mat, which provides an open-source framework for representing neuronal circuits, simulation

configurations, and simulation outputs. The format has been jointly developed by the Allen

Institute and the Blue Brain Project to facilitate exchange of their large scale cortical models

(e.g.,[39–41]) and is supported by these organizations’ software tools, such as BMTK (https://

alleninstitute.github.io/bmtk/; [26]). Support for the format has also been added by other sim-

ulation tools—pyNeuroML[27,28], PyNN[23], and NetPyNE [24]—and an interface between

SONATA and the NWB:N format [32] for neurophysiological data has been developed.

As described below, SONATA utilizes computationally efficient binary formats for storing

large datasets while also offering text-based formats for easy editing of less data-rich model

components. SONATA represents all aspects of models and simulations, from network struc-

ture, to simulation parameters, to input and output activity. It provides much flexibility for

describing models at different levels of resolution, including hybrid models. Importantly,

because SONATA is already supported by a number of widely used tools and applications,

users can get all of the benefits of the format with no extra work on their part. Full specification

of the format can be found at the SONATA GitHub page (https://github.com/AllenInstitute/

sonata), along with the open-source reference application programming interfaces (APIs). To

enable broad applications in the field, SONATA is freely available and open to contributions

from the community.

Results

Overview of the SONATA format

The major object in SONATA is the model network (Fig 1), which consists of nodes of two

types: explicitly simulated nodes and virtual nodes (the latter only providing inputs to the sim-

ulated system). In both cases, nodes are grouped in one or more populations for convenience.

Nodes within and between populations are connected via edges. Simulations of model net-

works are performed by applications that load SONATA files. Locations of these files and also

parameters of simulation (e.g., the time step and temperature) are stored in the SONATA con-

figuration (“config”) files. Finally, SONATA also provides specifications to store the incoming

activity or simulation output, in the form of events (spikes) or time series.

SONATA relies on existing file formats, HDF5, CSV, and JSON (see Methods), which

ensures that files can be read/written by existing libraries and applications and used on all

major operating systems. The SONATA specification which is built on top of these formats

accommodates multiple cell and synapse model types and is designed to optimally handle a

heterogeneous network. To achieve flexibility in defining models, SONATA provides recipes

for storing arbitrary attributes, with some attribute names being reserved for basic

standardization.

Below, we describe the details of these elements of the SONATA format. A more complete

description is given in the Online Documentation (https://github.com/AllenInstitute/sonata/

blob/master/docs/SONATA_DEVELOPER_GUIDE.md).

Node and edge types

Both nodes and edges can have attributes describing biological details (e.g. cell or synapse

properties). One major benefit of the SONATA format is its flexibility: while a small number

of attributes are reserved, users can create their own attributes for nodes or edges. Further-

more, attributes can be described either individually for each node or more globally for whole

subsets of nodes (same for edges), due to the concepts of node types and edge types. It is up to

the user to decide which attributes are stored on a per-type basis and which should be stored

The SONATA data format for efficient description of large-scale network models
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individually for each node or edge. Since the number of node/edge types in a network model is

usually much smaller than the number of nodes or edges, the node/edge type files are stored in

the plain-text CSV tabular format. This makes it easy for modelers to change and update the

network en-masse through a text editor. For example, Table 1 shows five different node types,

three of which (node_type_id 0, 1, and 2) are biophysically detailed models and two (node_ty-

pe_id 3 and 4) are much simpler, point neuron models. Whereas the total number of nodes in

this network can be many thousands, the five entries in Table 1 succinctly describe many attri-

butes of the nodes.

The lists of attributes and instructions for constructing individual nodes are determined by

each node type’s “model_type” (Table 1). The reserved values are “biophysical”, “point_-

neuron”, “single compartment”, or “virtual”. Both “single compartment” and “biophysical”

types use biophysical mechanisms, such as Hodgkin-Huxley mechanisms, but the former

always employs a single compartment whereas the latter allows for multi-compartmental

representation of morphologies. The “single compartment” type was created separately from

“biophysical” simply for convenience, due to user requests. The “point_neuron” type is geared

towards more abstract integrate-and-fire mechanisms, and “virtual” type represents inputs

providing pre-generated spikes into the model.

Fig 1. Overview of the SONATA data format. (Top) A simulated model consists of one or more explicitly simulated network

populations and external sources (virtual nodes) that provide inputs into the simulated populations. During and after simulation (by a

simulation platform which supports SONATA), output is created characterizing dynamics in the simulated model. (Bottom) The

SONATA data format reflects the major components of simulation in dedicated file structures. Information about the model is stored in

files (CSV and HDF5) describing nodes and edges of the network (left). Model metadata (e.g., path relations between files on disk) and

information about simulation are stored in JSON configuration files (middle), which are used to pass network files to the simulator

(network files are generated by model building software supporting SONATA, such as BMTK, PyNN, or NetPyNE; see below in

Ecosystem support). The spiking and time series output is stored in a tabular format, taking advantage of the HDF5 technology (right).

In the case of time series (bottom right), multiple variables can be stored for individual nodes (in this example, node ID 0 has three

variables stored), which can correspond, e.g., to multiple compartments of a neuron.

https://doi.org/10.1371/journal.pcbi.1007696.g001
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The mechanisms required for cell models are described by “model_template”, with possible

values including references to a NeuroML version 2 file or a NEURON hoc template. The

reserved “morphology” attribute references a morphology file (e.g., in the widely used SWC

format) and the “dynamics_params” references files that can be optionally used to initialize or

overwrite electrophysiological attribute values defined by the template. In Table 1, node types

with user chosen ids 0 and 1 are built using hoc templates from the Allen Cell Types Database

(http://celltypes.brain-map.org), which take parameter values from the JSON files in “dyna-

mics_params”. Node type 2 uses a NeuroML template file; dynamics_params = NONE means

that default values from the NeuroML model_template are used. Node types 3 and 4 are NEU-

RON built-in IntFire1 point processes taking parameter values from the JSON files under

“dynamics_params”. Note that for models like NEURON’s IntFire1, the definition of the

model is left up to the underlying software and potentially could change in newer versions of

the software (and also may not translate to another simulator). Thus, node types 3 and 4 are

provided as NEURON’s IntFire1 here only to illustrate SONATA’s capability to describe such

a choice; in most use cases, it may be recommended to avoid such simulator-specific defini-

tions and instead use simulator-independent definitions like a NeuroML template.

Edge types are described in similar ways (Table 1). The “model_template” attribute deter-

mines the synaptic model via a template file or a synaptic type defined in a particular simula-

tor, e.g., NEURON’s Exp2Syn (a conductance based synapse with exponential rising and

decaying activity), whereas the optional “dynamics_params” initializes or overwrites the

parameters of the synaptic mechanisms, e.g., time of rise and decay of synaptic conductance.

Other reserved attributes include synaptic weight, delay, and the afferent and efferent locations

of synapses (only the delays are shown in Table 1).

Nodes

Individual attributes of nodes are listed in “node tables”, stored as HDF5 files. As discussed,

users decide which attributes to store in node-type CSV and which in node table HDF5 files.

For example (Fig 2A), one can store only the coordinates of neurons (x, y, z locations) in the

node table with a pointer (the node_type_id) to the node types table for repeated information

such as morphology (see example in Table 1). Alternatively, each neuron may have its own

unique morphology (Fig 2B), and in that case the node table contains both the coordinates

and the morphology attribute.

Table 1. Examples of “node types” and “edge types”. In a network model, all individual nodes belonging to a particular node type share the respective attributes, and

likewise all edges belonging to the same edge type share attributes of that type.

Node types

node_type_id model_type model_template morphology dynamics_params

0 biophysical ctdb:Biophys1.hoc scnn1a_m.swc 472363762_fit.json

1 biophysical ctdb:Biophys1.hoc rorb_m.swc 473863510_fit.json

2 biophysical nml:PV1.nml.xml pv1_m.swc NONE

3 point_neuron nrn:IntFire1 NONE if1_exc.json

4 point_neuron nrn:IntFire1 NONE if1_inh.json

Edge types

edge_type_id model_template dynamics_params delay

0 exp2syn biophys_exc.json 2.0

1 exp2syn biophys_inh.json 2.0

2 NONE Instantaneous_exc.json 2.0

3 NONE Instantaneous_inh.json 2.0

https://doi.org/10.1371/journal.pcbi.1007696.t001
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SONATA allows for nodes to be hierarchically organized into populations and groups.

Different populations may be stored in different files, allowing modelers to mix and reuse pop-

ulations between simulations. For example, one may study one brain region—say, visual area

V1—in one simulation and visual area V2 in another simulation, and then build a simulation

of V1 and V2 together using the two populations without the need to create new nodes files.

Within a population, there are one or more node groups, each group using a homogeneous

collection of node attributes. This is useful for hybrid simulations. For example, compartmen-

tal neuron models often have many more (and radically different) attributes than point-neu-

ron integrate-and-fire models. Thus, for mixed populations it is practical to store attributes of

compartmental and point-neuron nodes in different groups. Note that nodes of multiple types

may be stored in each group, as long as all the nodes in the group have the same lists of attri-

butes. For instance, if a model has two types of neurons, “excitatory” and “inhibitory”, they

both may have the same lists of attributes, but different attribute values (e.g., different magni-

tudes of the potassium Hodgkin-Huxley conductance at the soma); both types can then be

stored in the same group, which simply provides different values for their attributes. The

SONATA implementation of populations and groups utilizes HDF5 groups and datasets (see

Online Documentation).

Fig 2. Nodes and edges in SONATA format. (A, B) Two examples are shown that demonstrate how for each node one can find its

model attributes in either the node_group (for individually unique attributes) or the node_types table (for globally shared attributes). In

(A), the unique attributes are only the node locations (x, y, z), indicated by empty triangles and circles on the left. Morphology and

dynamic parameters are shared among multiple nodes within a type. Hence, all red triangles share the same morphology, as do blue

circles (right). In (B), the morphology is unique for each node. The dynamics_params is the only attribute specified at the type level; it is

assigned to each node, as indicated by the triangles and circles being filled with color on the right. (C, D) Same for edges. In (C), the

synaptic locations are stored individually for each edge, whereas synaptic weights and dynamics_params attributes are stored at the edge

type level, as indicated by the uniform circle size and colored connections on the right (“dynamics_params” attributes here determine

the dynamical properties of synapses, such as the time of rise and time of decay of synaptic conductance). (D) The synaptic locations as

well as synaptic weights are stored individually (hence different circle sizes), whereas the dynamics_params attributes are stored at the

edge type level.

https://doi.org/10.1371/journal.pcbi.1007696.g002
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Edges

An edge typically represents a synapse from one neuron to another. Like for nodes, shared

attributes of many edges can be stored in CSV edge type files and individual attributes in

HDF5 edge tables files (Fig 2C and 2D). Users decide which attributes belong to edge types

and which to edge tables. In the edge tables, edges are grouped together into edge populations.

Each edge population contains directed connections between nodes in one node population to

nodes in another population (the target and source populations can be the same). Each edge

identifies the node_id of the source node and the node_id of the target, plus relevant attributes

like location of synapse and weight. There may be multiple edges for a single source/target

pair. Edge populations are similar to “projections” found in other languages like PyNN, but

with a key difference that edge populations may contain a heterogeneous array of connection

types, partitioned into separate edge groups. Edge populations are not nested.

Continuing our example of a model of V1 and V2 above, one can use one edge population

for all connections from V1 to V2, another for V2 to V1, another for V1 to V1, and one more

for V2 to V2. The specific partition is again up to users, but has to be consistent with the parti-

tion of nodes into populations. Within the V1-to-V1 edge population, one may need to have

two edge groups. One edge group would be used for connections to biophysically detailed cell

models, containing, for example, attributes of synapse location on the dendritic tree of the tar-

get cell, local synapse strength, time delay specific to that particular edge, and many others.

The other edge group would be used for connections to point-neuron models, perhaps con-

taining only the synaptic weight.

For technical details and benchmark examples of SONATA representation of edges, see

Methods.

Simulation configuration

SONATA provides a framework for storing the information about the location of the files

describing the model, as well as parameters of the simulation and metadata. This information

is stored in the config files that tie all the network, circuit, and output components together

(Fig 1). The SONATA configuration files, the primary config, the circuit config, and the sim-

ulation config, are JSON files containing key/value pairs. Table 2 lists the keys required in

each of these files (see Online Documentation for details).

The circuit config contains pointers to the files with the information about nodes and edges

that describe the network being simulated. It also includes paths to any external component

files so that machine-specific file paths are not included in the network description, but are

rather stored in easy-to-modify JSON files. The simulation config describes properties unique

to a specific simulation run, such as the inputs the network receives, the simulation parameters

(for example, duration, time-step), optional parameters such as the temperature, the outputs

to be recorded (for instance spike times, membrane potentials, internal calcium concentra-

tions, etc.), paths to writing the outputs, seed values for random generators, and others. For

reproducibility, it includes the option to specify simulation software and version. Both the sim-
ulation config and the circuit config may contain a manifest block that defines the paths to be

used throughout the JSON file. The primary config simply points to the simulation and circuit
configs.

Separating config files in this manner provides flexibility to mix and match models and sim-

ulations. For example, one can use a single circuit config and multiple simulation configs to run

many simulations of one model under different conditions, or alternatively use multiple circuit
configs with one simulation config to study multiple circuits under identical conditions.

The SONATA data format for efficient description of large-scale network models
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Input and output activity

In addition to representing models, SONATA also describes dynamical variables such as spikes

and time series, which is necessary for representing incoming activity or output of simulations.

For these types of data, SONATA’s format is in many ways similar and consistent to the exper-

imental neurophysiology format NWB:N[32], the two formats having been developed approxi-

mately simultaneously and with mutual influences due to interactions between the two

developer communities. Both are designed to be optimal for large-scale recordings or simula-

tions. At present, the SONATA output format and NWB:N are maintained in separate proj-

ects, but conversion between the two is straightforward and is achieved by a tool described

below (see Ecosystem support). In the future, it may be desirable to achieve full integration

between NWB:N and SONATA.

Activity format design. The SONATA activity format (also referred to as reports) is

designed to efficiently support three types of data: spike trains, time series for node elements

(e.g., membrane voltage or Ca2+ concentration in cell compartments) and time series that are

not associated with specific node elements (such as voltages recorded with extracellular

probes). The file formats are based on HDF5.

The data stored in a spike train report consists of a series of node identifiers and spike

times, stored in separate HDF5 datasets. Spike train reports are the default output of a simula-

tion. Note that a pre-computed spike train, stored in the same SONATA format, can also be

used to drive simulations with a desired input pattern. (SONATA format currently does not

include software-specific spike generators such as NEURON’s NetStim class, but support for

these can be added per user requests; as of now, the format instead utilizes the more general

approach of providing pre-generated spike trains.)

Table 2. Summary of the config files. Representative components are listed; additional entries can be used as

described in the Online Documentation.

Primary config: Defines relative location of each part of a network simulation

Key Description

network Defines the circuit config file

simulation Defines the simulation config file

Circuit config: Defines relative locations of circuit components

Key Description

components Directories for neuron morphologies, synaptic models, non-built-in mechanisms (e.g., mod files),

and neuron models (Typically defined relative to base paths from manifest in Circuit config or

Simulation config.)

network/

nodes

Specifies CSV file describing node types (key: node_types_file) and HDF5 file containing individual

nodes (key: nodes_file)

network/edges Specifies CSV file describing edge types (key: edge_types_file) and HDF5 file containing individual

edges (key: edges_file)

Simulation config: Defines simulation conditions and inputs for the circuit

Key Description

manifest Convenient handle on setting variables that point to base paths

run Specifies global parameters of the simulation run, such as total duration

conditions Specifies optional global parameters with reserved meaning associated with manipulation

node_sets Contains subsets of nodes that act as targets for separate reports or stimulations, or can also be used

to name and define the target subpopulation to simulate

inputs Specifies the inputs to the network with a separate block for every input (if more than one)

output Configures the location where output reports should be written, and if output should be

overwritten

reports Defines the specifications of the output variables

https://doi.org/10.1371/journal.pcbi.1007696.t002
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A node element report consists of a set of variables which are sampled at a fixed rate for

some elements of interest from a selected set of cells (an element can be an electrical compart-

ment or an individual synapse). Elements are given an identifier unique to the node and also

contain a reference to their parent node’s node_id. This allows elements of a specific node to

be readily accessed through its node_id. One can therefore easily alter elements local to a given

node without affecting the rest of the network. Note that elements can be divided into multiple

parts, each with an identifier composed of an integer and an optional float value. This allows,

e.g., for representation of multiple electrical compartments in a single morphological section,

with the datasets element_id and element_pos specifying the compartment’s section id and its

relative position within the node. If the element_pos dataset is not present, for every recorded

section all its compartments will be reported and they will appear in the dataset in morphologi-

cal order. The time series associated with each element can be membrane voltage, synaptic cur-

rent, or any other variable. In the report, a simulation frame is the set of all values reported at

a given timestamp and a trace is the full time series of all values associated with one element

(Fig 3A). The requirements we followed in designing the node element report were: (i) sup-

port for large data sets both in total size (terabytes) and number of elements (millions of cells

using multi-compartment models), (ii) random read access to specific frames and elements

within a frame, (iii) high performance for different read access patterns (especially full frames

and full cell traces) and (iv) high performance sequential parallel writing of full frames.

In the resulting design, data are stored in a single N×M matrix dataset, with rows being

frames and columns being traces, whereas extra metadata provides a mapping between (cell,

element) identifiers and columns within the frame (Fig 3A). The format provides substantial

flexibility, in particular permitting one to save different types and amounts of information for

different cells. For example, one can choose to save membrane voltage and synaptic currents

for all compartments and all synapses for a few cells, only somatic membrane voltage for sev-

eral other cells, and nothing at all for all the other cells. This design also readily represents

non-cell-element time series reports. In this case, instead of the cell elements, each row repre-

sents a channel storing a particular time series—for example, an electrode at which the extra-

cellular voltage is recorded.

Performance benchmarks. Fig 3B–3E illustrates the effective I/O bandwidth (amount of

useful data read/written per time unit) of SONATA multi-compartment and single-compart-

ment reports, using 26,576 neurons (41,389,269 reported cell elements) with 1,000 time steps

for the former and 217,000 neurons with 130,000 time steps for the latter (see Methods). We

considered (i) the amount of data read/written, (ii) HDF5 chunk dimensions, (iii) only for

write benchmarks ― the amount of data written at each write operation (block size per pro-

cess), and (iv) only for read benchmarks ― the direction in which data is accessed (by frames

or by traces). We did not consider the latter option in the write benchmark because simulators

typically generate data which is ordered temporally, i.e. in frames.

Note that HDF5 provides a storage layout in which the dataset is split into fixed size

“chunks” (see Methods). Chunking is essential for obtaining good performance with arbitrary

access patterns, and for that reason is supported in SONATA. However, SONATA does not

prescribe specific chunking, and taking advantage of chunking to optimize read/write perfor-

mance for specific applications is up to the specific software implementations that use

SONATA.

The benchmarks in Fig 3B–3E show that SONATA supports high read and write perfor-

mance. The write performance reaches several GiB/s. In the case of multi-compartment

reports, the HDF5 chunk size is the main determinant of the effective write performance (Fig

3B). This is due to the overhead caused when using smaller HDF5 chunk dimensions, as the

increase in absolute number of HDF5 chunks makes the support data structures in the file
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larger. On the contrary, in single-compartment reports (Fig 3C) the amount of data written by

each process at each write operation affects performance, since writing data in small block

sizes is not efficient. (Note that in the case of single-compartment reports, the total amount of

data generated is significantly smaller compared to a multi-compartment report with the same

simulation parameters, such as number of neurons and number of timesteps. Therefore, in

order to split the HDF5 dataset into multiple chunks, the write block size is smaller than the

Fig 3. Recordings of activity in SONATA format. (A) Layout of a multi-compartment report. The dataset is a matrix where each frame

(set of values at one point in time) is a row and columns represent traces (the time series of all values associated with one element). All

the elements of a node are contiguous within a frame, but nodes may not appear sorted by ID. The position of the first element of each

node is indicated by the offset array. Elements can be divided into multiple parts (e.g. morphological sections with multiple electrical

compartments). (B-E) Examples of read/write performance (see Methods). Write performance (B, C) and read performance (D, E) of

multi-compartment reports (B and D) and single compartment reports (C and E) is measured as bandwidth (amount of data written/

read per time unit). Three different HDF5 chunk dimensions (specified in the legend as N×M, where N refers to frames and M refers to

traces; note that the K suffix indicates multiplication by 1024) were evaluated to demonstrate that high effective bandwidth can be

obtained. In the reading evaluation, data was read by frames (continuous lines) and by traces (dotted lines) in single operations of

different sizes to demonstrate the flexibility and high performance of the SONATA format; in the writing evaluation, data was only

written by frames (continuous lines), which imitates the way most simulators generate data.

https://doi.org/10.1371/journal.pcbi.1007696.g003
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multi-compartment write block size.) Here the performance is also affected by the fact that, in

some cases, multiple processes write to the same HDF5 chunk, which leads to lower effective

bandwidth (compare 4K × 512 vs 4K × 1K). The read performance tests (Fig 3D and 3E) were

run on a single-node, single-thread configuration, because this is the typical scenario of analy-

sis and visualization use cases. In all cases, read bandwidth improves as the number of contigu-

ous cells per operation increases and reaches 1 GiB/s and above.

An example of a large-scale model: A network model of the layer 4 of

mouse cortical area V1

To provide a realistic example of handling large-scale biologically detailed networks with

SONATA, we consider the recently published network model of the layer 4 of the mouse pri-

mary visual cortex (area V1)[39]. The model consists of 45,000 neurons (representing more

than half of layer 4 neurons in V1) and employs realistic patterns of highly recurrent connec-

tivity. The central portion of the model (Fig 4A) consists of 10,000 neurons modeled using a

biophysically detailed, compartmental approach, whereas the remaining 35,000 neurons are

modeled using a much simpler point-neuron, leaky integrate-and-fire (LIF) approach and

serve mainly to prevent boundary artifacts. This hybrid model contains ~40 million edges for

connections between explicitly modeled nodes and another ~8 million edges from ~10,000

external virtual nodes providing spiking inputs. In the original study, the model was subjected

to a battery of visual stimuli (movies), and the results were compared to published work and

new in vivo experiments [39] (see an example of spiking output in Fig 4B).

Fig 4C shows benchmarks for loading the layer 4 model in SONATA format for simulation

in NEURON [16] using the BMTK’s BioNet module[26], performed on cluster partitions rang-

ing from 5 to 390 CPU cores. The time required to read and instantiate the network will vary

depending on the programming language and underlying simulation software. For a relatable

metric the recorded times include reading the files and instantiation of NEURON objects, a

widely used tool in the field. The scaling is close to ideal (i.e., increasing number of cores by a

certain factor leads to the decrease of simulation time by the same factor) for approximately 32

cores and above. The difference in scaling observed under 32 cores is due to the 32-core nodes

architecture used for benchmarking, resulting in better communication between cores within

a node vs across different nodes. The overall simulation setup time is dominated by the recur-

rent connections, which are about 5 times more numerous than the virtual input connections

and take about 5 times longer to set up.

For a typical use case of>150 CPU cores, the 45,000-neuron hybrid layer 4 network model

requires<10 s for instantiating nodes, <50 s for external edges, and ~4 minutes for recurrent

edges, resulting in ~5-minute setup time total. Using uncompressed HDF5 files, the total size

of network files, including recurrent and feedforward network connections, is ~2.4 GB (see

http://portal.brain-map.org/explore/models/l4-mv1). Thus, for this considerably large and

detailed model, SONATA supports modest loading times and storage space footprint. (Note

that the original Layer 4 model [39] predates SONATA and was developed using its own NEU-

RON code and data format; it was converted to SONATA to provide an example of a published

large-scale network model.)

Ecosystem support

SONATA is a free format, open for community development. Anyone wishing to add

SONATA support to a Python based application may use the PySONATA Python API hosted

at GitHub and developed jointly by the Allen Institute and Blue Brain Project (BBP). Multiple
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tools from these two organizations and other modeling and standardization initiatives already

implement SONATA support (Fig 5).

Below we briefly describe examples of using these tools to construct, read, write, visualize,

and simulate network models in SONATA format. Note that, in general, when different simu-

lators load one SONATA model for simulation, bitwise agreement between their outputs is

not guaranteed. The reasons for that are non-standardized processing of certain data in simu-

lation software packages, different approaches for instantiating initial conditions, etc. For a

real-life example, consider that loading SWC morphologies in NEURON can be done using

different functions (e.g., hoc or Python), which employ different numerical precisions; as a

result, simulation outputs will not be bitwise identical, but will be only statistically the same to

the level permitted by the precision discrepancy in morphologies. Nevertheless, SONATA con-

strains a vast variety of important degrees of freedom in network simulations, enabling statisti-

cally similar results between simulators and bitwise reproducibility within a simulator with

fixed software code.

Although SONATA has been originally developed to support very large and biologically

complex simulations, it is fully consistent with more typical smaller-scale and less complex

applications. For example, it is rather common for modelers to use conceptual rules imple-

mented in a few lines of code to generate model geometries and connections. These

approaches are fully supported by BMTK, Brion/Brain, pyNeuroML, PyNN, and NetPyNE

described below—in addition to the advanced capabilities of these tools to build and carry out

Fig 4. A 45,000-neuron hybrid network model of the layer 4 of mouse cortical area V1. (A) Visualization of the network model,

which consists of 10,000 biophysically detailed neurons (colored morphologies) in the center and 35,000 point neurons (white spheres)

forming an annulus around the biophysical neurons to prevent boundary artifacts. (B) An example raster plot output from a simulation

of the layer 4 model. Shown are the spikes of 10,000 biophysical neurons in response to a clip from a natural movie. Colors indicate the

five types of neurons: excitatory Scnn1a, Rorb, Nr5a1 and inhibitory PV1 and PV2. See details in[39]. (C) Benchmarks for instantiating

different parts of the layer 4 model against the number of CPU cores. The ideal scaling is indicated by a red line (ideal scaling is

computed based on the reported performance with 96 cores, which is a representative choice for simulations of such scale).

https://doi.org/10.1371/journal.pcbi.1007696.g004
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Fig 5. Support for SONATA in simulators and libraries. (A) Overview of applications which can generate SONATA

files (containing either a description of a network structure or simulation output) and the various categories of

applications which can read SONATA, including general purpose libraries, visualization tools, and simulation

packages. The software packages BMTK, NetPyNE, PyNN, and pyNeuroML can read SONATA network descriptions

for execution in the simulation engines NEURON and NEST. The pyNWB package provides a programming interface

for reading and writing neurophysiology data (either from experiments or from simulations) in the NWB:N 2.0

format. (B) RTNeuron visualization. Sample renderings at 3 simulation timesteps of an example network with 300

biophysically detailed cells, with somatic and dendritic compartments colored according to the simulated membrane

potential. The biophysical 300-cell network, as well as its point-neuron counterpart in (E), were created via the model-

building scripting interface in BMTK and saved using SONATA. These two models are used in all subsequent panels

here. (C) Rendering of the same model as in (B) using the NetPyNE GUI. Each cell is colored according to which of the

5 node types it belongs. (D) The 300-cell biophysically detailed example from (B) and (C) simulated in NEURON using

BMTK (left) and NetPyNE (right). (E) A network with 300 integrate and fire neurons generated by BMTK, and

simulated in NEST via BMTK (left), NEST after importing the SONATA files into PyNN (middle) and NEURON after

conversion of the network to NeuroML by pyNeuroML. Each raster plot in (D) and (E) is accompanied by a panel

underneath showing population firing rate (arbitrary units).

https://doi.org/10.1371/journal.pcbi.1007696.g005
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very sophisticated, data-driven, large-scale network simulations. Each of these software pack-

ages can generate models using such high-level conceptual definitions, and in fact the exam-

ples illustrated in Fig 5 were generated in such a simple way using the BMTK’s model building

module. The important new contribution that SONATA makes is a standardized, efficient for-

mat for exchanging generated network structures, as well as simulation results, between these

applications. That is showcased in Fig 5, where the BMTK-generated models are simulated

using several other tools. Furthermore, it is important to note that large scale biologically real-

istic models (e.g.,[39,41]) often require as much or even more time to build than to run a single

simulation, and then saving model instantiations becomes very important, whereas for small

models this may be simply unnecessary. However, for sharing models with the community,

and especially across simulator platforms, the ability to save all instantiated parameters of

models and simulations systematically—as provided by SONATA—becomes important for

large and small models alike. Commonly, smaller networks, like the 300-neuron model net-

works in Fig 5, are used as a practical means to test and analyze hypotheses, which is less com-

plex and computationally expensive than more realistic network simulations like those

illustrated in Fig 4.

Because many widely used tools already implement SONATA, a typical researcher’s work-

flow may not require direct interaction with SONATA itself. Instead, one would interact with

these other tools to build, simulate, and analyze models, with SONATA serving as a backbone

tying the different stages of the workflow together. For example, one may build a model net-

work in BMTK, saving the constructed network in SONATA format; then use NetPyNE to run

a simulation of that network, saving the output in SONATA format; and, finally, visualize the

network and its activity by loading these SONATA files into RTNeuron (Fig 5).

Currently, SONATA is not natively supported by the simulation engines NEURON and

NEST, but the tools described below provide convenient interfaces to NEURON and NEST

and enable simulations with SONATA using these two engines. In the future, implementation

of native support in NEURON and NEST could be useful for systematic conversion of older,

existing models (which are typically stored as software code) to SONATA format by instantiat-

ing these models in NEURON or NEST environment from the original code and then saving

as SONATA files.

PySONATA. PySONATA is a Python based API for reading SONATA files, open-

sourced under a BSD license and maintained at https://github.com/AllenInstitute/sonata.

Users wishing to begin integrating the SONATA format into their own software are encour-

aged to use the PySONATA Python modules. Examples of how to use the module can be

found at https://github.com/AllenInstitute/sonata/tree/master/tutorials/pySonata.

The brain modeling toolkit. The Brain Modeling Toolkit (BMTK; https://github.com/

AllenInstitute/bmtk) is a Python based package for building, simulating and analyzing large-

scale neural networks across different levels of resolution. The BMTK is open-sourced under a

BSD-3 license and has full support for generating and reading the SONATA data format (Fig

5). Modelers can use the BMTK Builder submodule to create their own SONATA based net-

works from scratch. It supports cell template files, electrophysiological parameters, and mor-

phology from the Allen Cell Types Database (http://celltypes.brain-map.org/) [42,43] as well as

other cell model formats, including NeuroML version 2[27,28], NEURON hoc files[16], or

even user defined Python functions. For simulations, BMTK relies on an increasing array of

simulation engines (NEURON[16], NEST[17], Dipde[44], etc.), which allow users to run sim-

ulations of SONATA networks using either multi-compartment, point, or population based

representations. The results of these simulations, regardless of the underlying simulator used

to run them, are transformed into SONATA output format, allowing networks built and run

with BMTK to be analyzed and visualized by any third-party software that supports SONATA.
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Fig 5B and 5C show a network with 300 biophysically detailed cells, in SONATA format, gen-

erated using BMTK and visualized with RTNeuron and NetPyNE, respectively. The results of

simulations of this network using BMTK and NetPyNE are shown in Fig 5D. Fig 5E shows

simulations of a network of 300 integrate and fire neurons created with BMTK and simulated

using BMTK, PyNN, and pyNeuroML.

Brion/Brain. The Blue Brain’s C++ libraries for handling large scale data and simulation

setup, Brion/Brain (https://github.com/BlueBrain/Brion), provide partial support for

SONATA. Currently Brion provides a low level API to read circuit and simulation JSON con-

figurations, spike and multi-compartment simulation outputs, SWC morphologies and query

nodes in HDF5 files. It also provides a single threaded writer for multi-compartment simula-

tion output reports. Brain provides a higher level API that makes it easier to work with full net-

works. All this functionality is also available in Python through the associated Python

wrapping module.

libSONATA. Blue Brain’s libSONATA (https://github.com/BlueBrain/libsonata) is a

library that provides support to read SONATA files. The library is open-sourced under a

LGPLv3 license and offers an API for both Python and C++ applications. Currently libSO-

NATA supports reading circuit files, including nodes and edges populations.

RTNeuron. Blue Brain’s RTNeuron [45] is a framework for visualizing detailed neuronal

network models and simulations. As it relies on Brion/Brain for data access, it currently pro-

vides basic support to visualize SONATA circuits and simulations. For instance, Fig 5B illus-

trates the RTNeuron visualization of a model of 300 biophysically detailed neurons, provided

as an example in the SONATA specification GitHub repository (https://github.com/

AllenInstitute/sonata/tree/master/examples/300_cells). Here, one can see neuronal morpholo-

gies and the distribution of membrane voltage across the electrical compartments comprising

these morphologies as the simulation evolves over time.

pyNeuroML. NeuroML [27,28] is a standardized format based on XML for declaratively

describing models of neurons and networks in computational neuroscience. Cellular models

which can be described range from simple point neurons (e.g. leaky integrate and fire) to mul-

ticompartmental neuron models with multiple active conductances. Networks of these cells

can be specified, detailing the 3D positions or populations, connectivity between them and

stimulus applied to drive the network activity.

Multiple libraries have been created to support user adoption of the NeuroML language,

including jNeuroML (https://github.com/NeuroML/jNeuroML) in the Java language and

pyNeuroML (https://github.com/NeuroML/pyNeuroML) in Python. The latter package also

gives access to all of the functionality of jNeuroML (including the ability to convert NeuroML

to simulator specific code, e.g. for NEURON) through Python scripts, by bundling a binary

copy of the library. PyNeuroML has recently added support for importing networks and simu-

lations specified in the SONATA format and converting them to NeuroML. A related package

currently under development, NeuroMLlite (https://github.com/NeuroML/NeuroMLlite)

allows compact description of networks and can export the generated structures to SONATA.

Fig 5E shows a simulation of 300 integrate and fire cells in SONATA which has been imported

by pyNeuroML, converted to NeuroML and executed in the NEURON simulator.

PyNN. PyNN is a simulator-agnostic Python API for describing network models of point

neurons, and simulation experiments with such models[23]. A reference implementation of

the API for the NEURON, NEST and Brian simulators is available (http://neuralensemble.org/

PyNN), and a number of other simulation tools, including neuromorphic hardware systems,

have implemented the API[46,47]. PyNN models can be converted to and from the NeuroML

and SONATA formats with a single function call. Fig 5E illustrates an example where a model

in SONATA format was loaded using the PyNN “serialization” module, a simulation was
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carried out using the PyNN NEST backend, and simulation output was saved in the SONATA

format.

NetPyNE. NetPyNE (www.netpyne.org; [24]) is a package developed in Python and build-

ing on the NEURON simulator[16]. It provides both programmatic and graphical interfaces

that facilitate the definition, parallel simulation, and analysis of data-driven multiscale models.

Users can provide specifications at a high level via its standardized declarative language. Net-

PyNE supports both point neurons and biophysically-detailed multi-compartment neurons, as

well as NEURON’s Reaction-Diffusion (RxD) molecular-level descriptions. The tool includes

built-in functions to visualize and analyze the model, including connectivity matrices, voltage

traces, raster plot, local field potential (LFP) plots and information transfer measures. Addi-

tionally, it facilitates parameter exploration and optimization by automating the submission of

batch parallel simulation on multicore machines and supercomputers.

NetPyNE network model instantiations can be converted to and from the NeuroML and

SONATA formats. SONATA complements NetPyNE by providing a standardized and effi-

cient format to store and exchange large network models. This enables using other simulation

tools to run and explore models developed with NetPyNE, and vice versa. As an example, we

imported the 300-cell SONATA example with multicompartment cells into NetPyNE, visual-

ized it using the NetPyNE GUI (Fig 5C), and carried out a simulation of network activity (Fig

5D).

Neurodata without borders: Neurophysiology 2.0. Neurodata Without Borders: Neuro-

physiology (NWB:N) 2.0 is a data format for standardizing experimental data across systems

neuroscience. We developed an extension for NWB:N 2.0 to accommodate large-scale simula-

tion data, and developed a conversion script from SONATA to NWB:N 2.0 (https://github.

com/ben-dichter-consulting/ndx-simulation-output) (Fig 5A). This allows simulated data to

be stored side-by-side with experimental data and facilitates comparative analysis between

simulation and electrophysiology or calcium imaging experiments.

Discussion

We have described SONATA, an open-source data format developed to answer the challenges

of modern computational neuroscience, especially those inherent in large-scale data-driven

modeling of brain networks. It is designed for memory and computational efficiency, as well

as for working across multiple platforms, and at the same time enabling as much flexibility as

possible for diverse applications. To achieve this, SONATA relies on commonly used data for-

mats such as CSV, HDF5, and JSON, which can be used across platforms, can be read and

written by many existing libraries in various programming languages, and (especially in the

case of HDF5) have been proven to work efficiently in parallel computations with very large

datasets. The SONATA specifications include network descriptions, simulation configuration,

and input or output activity. Close cooperation with existing standardization and simulator

independent specification initiatives like NeuroML, PyNN, and NWB:N has helped to increase

synergy with existing formats, and has ensured compatibility with languages and tools already

in use in the community.

The flexibility of the SONATA specification is enabled by several design criteria. First, the

design leaves it up to users to decide which attributes are shared within node or edge type vs.

which are unique to specific nodes or edges. Second, it allows limitless creation of user-defined

attributes and maintains only a small number of reserved fields. And third, via a hierarchy of

types, populations, and groups of nodes/edges, it permits specification of hybrid models that

may include biophysically detailed neurons, point neurons, and many other model types, all in

one network model.
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While SONATA offers computationally efficient solutions for storing many model proper-

ties, we did not attempt to reinvent file formats for all properties and instead designed

SONATA to refer to data in existing file formats, such as NeuroML for biophysical mecha-

nisms or SWC for morphologies. This choice was made for the cases where such files do not

typically constitute a bottleneck in terms of computing time. For example, SONATA utilizes

the well established ASCII-based SWC format for neuronal morphologies. We did not develop

a computationally optimized binary format for morphologies because their footprint in terms

of storage or computational demand is typically small. In the case of the Layer 4 model (Fig 4),

loading SWC morphologies takes ~60% of the time of building nodes, but that expense is

dwarfed by the time it takes to establish connections (~300 s for external and recurrent con-

nections vs. ~5 s for nodes). Thus, we opted to develop efficient binary solutions only for com-

putationally demanding model properties, otherwise relying on widely used formats such as

SWC.

SONATA was designed to address the necessity to make large-scale network simulations

readily reproducible and interoperable between existing software. However, it has certain limi-

tations. Although SONATA defines some of the more ubiquitous network parameters, full

instantiation sometimes requires simulator-specific definitions. This can create unintended

dependencies on the specific simulator software. Hence SONATA will benefit from the devel-

opment and community adoption of neuroscience based ontologies and schemas. Nor was

SONATA designed to handle all the different types of network models. To support approaches

like network modeling of voxel based fMRI data or intracellular molecular dynamics simula-

tions, major additional development will be required.

Human readability was another important factor in the design of SONATA. Allowing net-

work and simulation properties to be hierarchically defined in CSV and JSON files, while

introducing extra complexity, provides the user with a high-level overview of the model.

SONATA is not designed to replace documentation and diagrams, but in many aspects

adheres to the good model description practice put forward by Nordlie et al. [48]: it provides a

method to describe network composition, cell topology and connectivity, input and output

parameters, and everything required for model implementation and validation. An interesting

direction for future work will be development of a standardized automatic approach to provide

high-level summaries of network models for users, as a feature of SONATA.

The SONATA community and ecosystem include multiple groups with diverse interests

and are growing due to the open-source design. Initially developed jointly by the Allen Insti-

tute and the Blue Brain Project, SONATA is now supported by tools from many teams. As

described above, tools such as BMTK[26], RTNeuron[45], PyNN[23], NeuroML[27,28], and

NetPyNE [24] include SONATA support. Functionality for conversion between SONATA and

NWB:N [32] also exists. Further adoption of the SONATA framework will be beneficial for the

projects aiming at increasing reproducibility across neuroscience, such as in systematic valida-

tion of neural data in the SciUnit project (https://scidash.org/sciunit.html). The SONATA data

format and framework are reflected in the free and open-source PySONATA project hosted

on GitHub (https://github.com/AllenInstitute/sonata), which is intended as a key resource for

those wishing to add support for SONATA to their applications and includes specification

documentation, open-source reference application programming interfaces, and model and

simulation output examples.

As an open living format, SONATA may be extended in the future to reflect developments

in modeling and in experimental neuroscience. In turn, we invite experimentalist colleagues to

explore SONATA’s applicability to their circumstances, as the SONATA framework provides

an efficient description for a variety of network properties. Such cross-pollination will help
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improve reproducibility and facilitate collaboration between experimental and computational

neuroscientists.

Methods

JSON, CSV, and HDF5

JSON. JSON (JavaScript Object Notation) is a data exchange format that is easy for both

humans and machines to read and write. Being text based, JSON is platform and language

independent. Data organization is based on two common structures: key-value pairs and

ordered lists, which have equivalents in almost all programming languages.

CSV. CSV stands for “comma-separated values” and it is a very common way of laying out

tabular data in text files. CSV is not a standard per se; the choices that have been made for

SONATA are described in the official specification. It should be noted that, although the CSV

abbreviation suggests comma as a separator, CSV files can use many types of separator, and, in

fact, SONATA format specifies spaces as preferred separators for CSV.

HDF5. HDF5 (Hierarchical Data Format version 5) is a technology designed for storing

very large heterogeneous data collections and their metadata in a single container file. HDF5

defines a binary container file format for which the HDF Group provides an implementation

in C. Bindings for several other languages exist as well. Basic concepts of HDF5 include groups,

datasets and attributes. Making an analogy to filesystems, groups are similar to directories and

datasets to files. The main differences between HDF5 and a general purpose filesystem are that

a) a dataset is not a stream of bytes like a file, but consists of a multidimensional array with a

single data type for all values and that b) groups and datasets can be annotated by means of

attributes. HDF5 defines some basic data types common to most programming languages:

integers, floats, strings. Data can be stored linearly (the elements of a dataset are stored in

increasing order, according to their index and dimension) or in “chunks” for computational

efficiency (the order in how dataset elements is interleaved according to their index and

dimension; for details, see https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/).

Benchmarking

All benchmark data (Figs 3, 4 and 6) are provided in supplementary files.

Edge file benchmarks. The performance of navigating through an edge file in SONATA

format is illustrated in Fig 6, which shows the results of selecting 1000 neurons and accessing

one arbitrary property of all the edges of the selected neurons in the 45,000-cell recurrently

connected model of Layer 4 of mouse V1 [39] On average each cell receives input from 438.8

neighbors with the number and strength of synapses between any two cells being determined

by source and target cell types. The network file contains over 39.2 million unique synapses

partitioned into two groups, those synapses that target multicompartment neurons and those

that target point points. Connections that target point neurons only require synaptic strength

variable, while those that target multi-compartment neurons also require information about

section number and segment distance for each synapse. The HDF5 edge file is 1.9 GB in size.

The benchmarks were conducted on an HPE SGI 8600 supercomputer. Each compute node

had two Intel Xeon Gold 6140 CPUs (each with 18 cores at 2.30 GHz) and 768 GB of DRAM.

Nodes were connected through a Mellanox Infiniband (IB) EDR fabric to two GS14K storage

racks with a total storage capacity of 4 PB. The computing system was running Linux 3.10.0

and the filesystem was GPFS 4.2.3–6, configured with 4 MiB block size. The storage system did

not have dedicated metadata drivers. The software components used and their versions are the

following: glibc 2.25–49, gcc 6.4, boost 1.58, HDF5 1.10.1, Python 2.7, numpy 1.13.3 and MPI

2.16 provided by HPE.
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For reference, the maximum average read bandwidth obtained in pure I/O benchmark

experiments with IOR (https://ior.readthedocs.io/en/latest/) in this machine is 5.6 GiB/s using

1 single core accessing a 1 GiB file in 4 MiB blocks. The maximum average write bandwidth

measured is 9.5 GiB/s using 8 cores from 1 node writing 1 GiB per core in 4 MiB operations to

a shared file. POSIX I/O was used to obtain both measurements.

To illustrate SONATA’s performance and flexibility, we use examples of ordering the edges

data in two different ways (Fig 6A): target-major (Fig 6B), where data is sorted according to

the ID of the target neuron (increasing), and hybrid ordering (Fig 6C), where the connectivity

matrix is divided in blocks, and edges inside each block are enumerated, alternating (from

Fig 6. Target major and hybrid ordering of edges. (A) A simple example of connectivity matrix (the number within

each matrix element indicates the number of edges—i.e., synapses—between the two nodes) and schematics of target

major and hybrid orderings. (B) and (C) Edge lists representing edges from the connectivity matrix in (A), sorted

according to target major (B) or hybrid (C) ordering. (D) Throughput of accessing edge information for target major

or hybrid ordering of edges in the SONATA files in a 45,000-cell model of Layer 4 of mouse V1[39]. The target-to-

source and source-to-target access patterns are illustrated with either random or sequential selection of target or source

neurons.

https://doi.org/10.1371/journal.pcbi.1007696.g006
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block to block) between source-major and target major orderings. We also compare the impact

of selecting 1000 neurons randomly or sequentially.

Note that SONATA supports arbitrary ordering of edges, and the two variants tested in the

benchmarks are only for demonstration purposes.

A target-major sort is more efficient for instance in the case of a simulator creating the syn-

apses on the target cell when instantiating the network. A source-major sort (data sorted

according to the ID of the source neuron increasing) is favorable to analysis of efferent connec-

tivity of large network. The hybrid ordering is a compromise between the target-major and

source-major ordering.

Fig 6D shows that ordering has an impact on the performance of data access (whereas

selecting neurons randomly or sequentially does not impact performance substantially). By

using target-major ordering (or its symmetric source-major ordering) one can achieve optimal

performance when accessing data in the same access pattern as the ordering, but accessing

data in the opposite direction is much less efficient, by a factor of ~100. Ordering data in a

hybrid manner is a compromise to get balanced performance between the source-to-target

and target-to-source access patterns, but in this case the performance is not as good as the opti-

mal performance for non-hybrid ordering. Due to such large discrepancies, the SONATA for-

mat specification leaves the choice of ordering open to users. Note that source-target pairs for

each edge are always defined in the edge files in the same way; it is the indexing of these edges

that may differ depending on user requirements. This means that the edges can always be read,

but reading speed for a particular application will depend on the choice of indexing, and this

choice should be made based on the desired application. Examples in Fig 6D indicate that a

rather high performance can be achieved (close to 10,000 neurons processed per second for

their edge attributes) in optimal cases, but users should take advantage of the flexibility of

SONATA specification to use edge ordering that is most suitable for their needs. In situations

where high performance for various access patterns is essential, solutions may include two or

more copies of edge files with different orderings for different use cases.

Simulation output benchmarks. The simulation output benchmarks (Fig 3) were run on

the aforementioned HPE SGI 8600 system. Since most simulators can run in parallel (multi-

thread and/or multi-process), the benchmarking of the report generation was also done in par-

allel, on 16 nodes and 36 processes per node (using 1 core per process). All processes were

periodically dumping data to a single, shared HDF5 file in the SONATA format. At each write

operation, each process was writing several columns at its designated frame/trace region. The

amount of data written at each operation is presented as the “Write block size per process”

illustrated in the performance plots (the write block size applies for each process and for each

write operation).

Write benchmarks made use of the Neuromapp library (https://github.com/BlueBrain/

neuromapp, revision f03d3ea)[49], which uses parallel HDF5 and MPI underneath. Read

benchmarks were implemented using the Python binding of Brion/Brain (revision c16a694),

the testing and plotting code can be found in the SONATA github repository in the bench-

marks branch.

Loading of simulation data. Benchmarks for loading simulation data (Fig 4C) were

obtained for the full simulation of the 45,000-neuron recurrently connected model of Layer 4

of mouse V1[39]. Figure Fig 4C shows the amount of time required to parse through the

SONATA network files and instantiate the in-memory cell and synaptic objects to run a full

NEURON [16] simulation. Each simulation was instantiated with a computing cluster of Intel

Xeon E5 processors (each core either 2.1 or 2.2 GHz), using a minimum of 5 cores and a maxi-

mum of 390 cores. The network was built using the Brain Modeling Toolkit with Python 3.6

and NEURON 7.5 with Python bindings.
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Supporting information

S1 File. Supporting Information—Compressed/ZIP File Archive containing benchmark

data for Figs 3, 4 and 6 in the CSV format.

(ZIP)

S2 File. Supporting Information—Compressed/ZIP File Archive containing SONATA

source code, examples, and documentation from GitHub (https://github.com/

AllenInstitute/sonata).

(ZIP)
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29. Ray S, Chintaluri C, Bhalla US, Wójcik DK. NSDF: Neuroscience Simulation Data Format. Neuroinfor-

matics. 2016; 14:147–167. https://doi.org/10.1007/s12021-015-9282-5 PMID: 26585711

30. Cannon RC, Turner DA, Pyapali GK, Wheal HV. An on-line archive of reconstructed hippocampal neu-

rons. J. Neurosci. Methods. 1998; 84:49–54. https://doi.org/10.1016/s0165-0270(98)00091-0 PMID:

9821633

31. Koch C, Reid RC. Neuroscience: Observatories of the mind. Nature. 2012; 483:397–398. https://doi.

org/10.1038/483397a PMID: 22437592

32. Ruebel O, Tritt A, Dichter B, Braun T, Cain N, Clack N, Davidson TJ, Dougherty M, Fillion-Robin J-C,

Graddis N, et al. (2019). NWB:N 2.0: An Accessible Data Standard for Neurophysiology. bioRxiv.
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