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Abstract

We describe a novel autosomal dominant hereditary inclusion body myopathy (HIBM) that clinically mimics limb girdle
muscular dystrophy in a Chinese family. We performed a detailed clinical assessment of 36 individuals spanning four
generations. The age of onset ranged from the 30s to the 50s. Hip girdle, neck flexion and axial muscle weakness were
involved at an early stage. This disease progressed slowly, and a shoulder girdle weakness appeared later in the disease
course. Muscle biopsies showed necrotic, regenerating, and rimmed vacuolated fibers as well as congophilic inclusions in
some of the fibers. Electron micrograph revealed cytoplasmic inclusions of 15–21 nm filaments. A genomewide scan and
haplotype analyses were performed using an Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM), which traced
the disease to a new locus on chromosome 7q22.1–31.1 with a maximum multi-point LOD score of 3.65. The critical locus
for this unique disorder, which is currently referred to as hereditary inclusion body myopathy 4 (HIBM4), spans 8.78 Mb and
contains 65 genes. This localization raises the possibility that one of the genes clustered within this region may be involved
in this disorder.
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Introduction

Hereditary inclusion body myopathy (HIBM) constitutes a

heterogeneous group of disorders,histologically characterized by

muscle fibers with rimmed vacuoles and inclusions consisting of

filaments with a diameter of 15–21 nm. Currently, five different

HIBMs have been reported: one for the autosomal recessive (AR)

IBM, which is also known as HIBM2 (MIM #600737), Distal

Myopathy with Rimmed Vacuoles (DMRV) or Nonaka Myopathy

(MIM #605820) [1,2], and four for the autosomal dominant (AD)

IBMs. The AD IBM includes HIBM1 (MIM #601419), HIBM3

(MIM #605637), HIBM associated with Paget disease of the bone

and/or frontotemporal dementia (HIBM-PFD, MIM #167320)

and HIBM with early respiratory failure (HIBM-ERF, MIM

#607569). HIBM1 is now referred to desmin-related myofibrillar

myopathy, which is caused by a mutation in the desmin gene[3–5].

HIBM2 is characterized by muscle weakness that initiates within

the distal muscles of the lower limbs with relative sparing of the

quadriceps [6,7]. HIBM2 is caused by UDP-N-acetyl-glucosamine

2-epimerase/N-acetylmannosamine kinase (GNE), which is locat-

ed at 9p13.3 [8,9]. HIBM3 (MIM #605637) is characterized by

congenital joint contractions, external ophthalmoplegia, and a

predominant proximal muscle weakness and is caused by a defect

in the myosin heavy chain IIa gene located at 17p13.1[10–12].

HIBM-PFD, which is located at 9p13, is caused by a defect in the

valosin-containing protein gene [13–15]. The locus of HIBM-ERF

has not yet been identified.

In this study, we describe clinical, myopathological, and genetic

findings in a family of Chinese Han decent, which includes 15

cases with IBM. These cases are distributed over three generations

with an autosomal dominant pattern of inheritance (figure 1). The

GNE mutation was excluded. This disorder is clinically charac-

terized by a late adult-onset weakness that begins in the proximal

lower limbs and axial muscles and slowly progress to the proximal

upper limbs, which differs from the other AD IBMs. Thus, we

performed a genome-wide scan using single nucleotide polymor-

phism (SNP) markers. Here, we report the identification of a new

HIBM locus at 7q22.1-31.1, which we named HIBM4, thus

increasing the subtype for HIBM.

Results

Pedigree Analysis
The index case developed mild difficulty doing sit-ups and could

not jump as high as before at the age of 36. The analysis of his

family’s pedigree revealed the existence of 16 affected patients

(12 female patients and 4 male patients) distributed in three

generations, displaying probably autosomal dominant (AD)

inheritance (Figure 1). However, case I-5 did not demonstrate

any symptoms when he was suddenly killed in a traffic accident at
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40 years of age. According to the pedigree analysis, he was most

likely also affected.

Clinical Features and Course
Our clinical findings for the individual patients are summarized

in table 1. All affected individuals had a normal birth and motor

development. The age at onset varied from 30s to 50s years and

the age at ascertainment ranged from 4 to 83 years in 2009. It

appeared that the age at onset of the affected male individuals

(range 36–38 years) was earlier than that of the females (range 40–

50 years). The initial symptoms were hip girdle and proximal

lower limbs involvement in 8 patients. The patients noted difficulty

in climbing stairs as well as arising from a squatting position or

doing sit-ups. Five patients (patient II-7, 17, 19, 23, III-14) were

unaware of limb muscle weakness, but examination revealed

weakness of hip flexors. Patient III-3 denied any muscle weakness,

however, examination revealed the neck flexor weakness. Accu-

rately, most of the patients demonstrated asymptomatic neck

flexor weakness, except patient II-25. The mild shoulder girdle

and proximate upper extremity weakness were observed in 5 of the

15 affected individuals. However, 4 of these patients were

asymptomatic and the disease course was more than 5 years in

all five patients. Distal lower limb weakness was observed in four

patients, who were unable to walk on their heels or on their toes

(patient I-1, II-1, 3, 13). One patient (Patient I-1) had a distal

upper limb weakness. Cranial nerve innervated muscles were

spared. In affected muscles, myotatic reflexes were reduced or

abolished and no myotonia was detected. The patients showed no

inflammatory signs such as pain, swelling or redness. The sensory

examination was normal in all patients. Furthermore, muscle

atrophy was not prominent in the early stage but was moderate in

the advanced stage.

The disability slowly progressed over the years and the

prognosis was relatively benign. Nineteen years after onset, patient

II-1 could climb stairs or arise from a squatting position with the

help of her hands. Moreover, patient I-1 could maintain daily life

activities without any assistance for two decades after onset;

however, she was bedridden due to a fall at the age of 78. She was

the only patient who had an ankle contracture, and her ankle

flexor/extensor strength was difficult to assess because of her

reduced joint mobility. All of the other patients were still able to

walk independently and none of them had joint movement range

limitations.

Laboratory Investigations
Laboratory examinations of patient III-1 (index case) and

patient II-13 were normal including a complete blood count,

electrolytes, fasting glucose, blood urea nitrogen, creatinine,

aspartate aminotransferase, alanine aminotransferase, thyroxine,

thyroid stimulating hormone, sedimentation rate, and C reactive

protein. Electrocardiogram and echocardiogram results were

normal for the two patients that were subjected to these

examinations within the last 6 months.

The serum creatine kinase level was mildly elevated in patient

II-13 (377IU/L, normal value was 18-198 IU/L) and patient III-1

(342 IU/L). Needle electromyography revealed a myopathic

pattern in patient II-13 and patient III-1 (fibrillation potentials

and positive sharp waves, low amplitude, short duration motor

unit action potentials demonstrating early recruitment). Further-

more, the upper and lower extremity sensory and motor nerve

conduction studies were normal. In addition, a muscle magnetic

resonance imaging (MRI) performed at 37 years of age in the

index case showed a diffuse involvement of the thigh muscles, with

slight involvement in the lateral and medial muscles (Figure 2),

compared with the hamstring muscles.

Muscle Pathology
Muscle biopsy from patient III-1 showed myopathic and

neuropathic changes with marked fiber size variation, scattered

or clusters of small atrophic angulated fibers, occasional degen-

erating and necrotic fibers (Figure 3A). Inflammatory changes

were absent. On cryostat sections, the most prominent finding was

the presence of rimmed vacuoles in many atrophic fibers, lined by

basophilic granular material on hematoxylin-eosin (H&E) staining

(Figure3B) and purple-red in color with the modified Gormori

trichrome (MGT) stain (Figure 3C). Several fibers contained

cytoplasmic bodies. In NADH dehydrogenase reacted sections,

several fibers harbored focal decreases of enzyme activity

(Figure 3D). The atrophic fibers are of either histochemical type,

some of which overreact for nonspecific esterase, indicate

denervation atrophy. A mosaic of type I/II fibers was detected

in the ATPases reactions, with no evidence of fiber type grouping.

Figure 1. Pedigree of the family. (% male; # female; 8 index patient; & definitely affected; probably affected).
doi:10.1371/journal.pone.0039288.g001
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There was no unusual reactivity for CD4 or CD20. Occasional

cells were CD8 positive and several cells were CD68 positive. Rare

atrophic fibers harbored abnormal accumulations of desmin.

Congo red stained sections viewed under rhodamine optics

showed small congophilic deposits in a few fibers (Figure 3E,

3F). Occasional fibers showed increased, focal reactivity for alpha

B-crystallin. No abnormal reactivity for myotilin was observed.

Electron micrograph showed cytoplasmic inclusions of 15–21 nm

filaments aggregated in a muscle fiber (Figure 3G, 3H). Muscle

biopsy from patient II-13 showed combined neuropathic and

myopathic changes, including marked fiber size variation,

scattered or clusters of small atrophic angulated fibers, occasional

degenerating and necrotic fibers. Inflammatory changes were

absent. Rimmed vacuoles were present in some fibers.

GNE Gene Sequencing
Polymerase chain reactions and analysis of the eleven coding

exons (exons 2–12) of GNE were performed but no mutations

were detected (data not shown).

Table 1. Clinical findings in 15 affected individuals with muscle weakness.

Case I-1 II-1 II-3 II-5 II-7 II-11 II-13 II-15
II-
17

II-
19

II-
23 II-25 III-1 III-2 III-14

Sex F F F F F F M M F F F M M F F

Age at
examination(yr)

83 62 52 47 45 46 44 41 58 55 46 40 37 34 32

Age at onset(yr) 50s 43 45 43 D 40 37 38 D D D D 36 D D

First symptoms ProxLeg-
weak

ProxLeg-
weak

ProxLeg-
weak

ProxLeg-
weak

N ProxLeg-
weak

ProxLeg-
weak

ProxLeg-
weak

N N N N ProxLeg-
weak

N N

Cervical muscle
weak

Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes No Yes Yes Yes

Difficulty doing sit-
ups

P P P P P P P P P P P P P N P

Proximal arm 2–3 4 5 5 5 5 4- 4 4 5 5 5 5 5 5

Distal arm 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Proximal leg 2 4 4 4 4 4 4- 3 4 4 5- 5 4 5 5-

Distal leg 0 5- 5- 5 5 5 5- 5 5 5 5 5 5 5 5

F = female; M = male; D = deny to have any muscle weakness; N = no symptom.
doi:10.1371/journal.pone.0039288.t001

Figure 2. Muscle MRI imaging of the index case showing slight atrophy in the lateral and medial muscles of the thigh.
doi:10.1371/journal.pone.0039288.g002
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Linkage Analysis and Haplotyping
The unaffected offsprings were not included in the linkage

analysis, because a multipoint analysis in MERLIN showed

pedigree size and program memory constraints. This would not

affect the result of the nonparametric linkage (NPL) analysis which

per se uses only affected individuals. For the parametric linkage, this

would result in a loss of information. However, most of the

currently unaffected individuals in the pedigree were under the

average age of onset, thus phenotypic mis-specification may be

introduced if these individuals were treated as truly ‘‘unaffected’’

in the linkage analysis. Therefore, to ensure the accuracy of the

linkage results and to keep MERLIN running smoothly, we

excluded the currently unaffected individuals.

The results of the genome-wide linkage analysis are presented in

Figure 4. The prominent linkage signal across the genome was

found on chromosome 7q22.1-31.1, with a LOD score of 3.608

and a NPL score of 55.440 (P,0.00001). Two other regions with

LOD scores greater than 2.0 were observed on chromosome 2

(LOD = 2.512, NPL = 15.89 at 204.2 cM) and chromosome 21

(LOD = 2.50, NPL = 4.87 at 11.83 cM).

Haplotypes were constructed to determine the minimal

cosegregating interval on chromosome 7q22.1-31.1 in the affected

Figure 3. Serial sections of a muscle biopsy obtained from the left quadriceps femoris muscle of the index patient (patient III-1). A,
Hematoxylin and eosin-stained cryostat section of muscle showing variations in fiber size and single or grouped atrophic fibers. B and C,
Hematoxylin-eosin and modified Gomori trichrome stains demonstrating rimmed vacuoles (arrows). D, NADH dehydrogenase reacted section
showing several fibers harbored focal decreases of enzyme activity. E and F, Congo red stained sections viewed under rhodamine optics showing
small congophilic deposits in a few fibers (arrows). G and H, Electron micrograph showing cytoplasmic filamentous aggregates in a muscle fiber.
doi:10.1371/journal.pone.0039288.g003
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individuals. The suggested haplotypes of this pedigree are shown

in the Figure5. The centromeric boundary of the interval on 7q

was defined by a recombination event between the SNP markers

rs727708 and rs11234 which was observed in patient III-14. The

telomeric boundary of the interval corresponds to a recombination

event between rs1476517 and rs7817 in patient III-3. These

recombination events defined the susceptibility region on 7q to a

7.97 cM interval (112.53 - 120.50 cM; 103.12–111.90 Mb)

between rs727708 and rs7817.

Discussion

The family reported here demonstrates autosomal dominant

trait inheritance based on the following observations: (1) multiple

affected members in three generations; (2) both sexes are affected;

(3) direct male-to-male transmission (I-5 to II-25); and (4) of the 19

family members over thirty years old at risk for inheriting the

disease, fifteen (79%) were affected. However, the most important

observation in this family was that the linkage analysis provided

strong evidence for linkage at 7q22.1-31.1. Moreover, in this

family, there was an increased frequency of the disorder in females

(twelve of the thirteen were at-risk females and four of the five

were at-risk males). This may reflect the smaller total number of

males in the kindred. However, we could not explain exactly why

three of the four male patients exhibited more severe weakness

clinically than that of the female patients. In some extent, it may

be due to performing more exercises before onset (patient III-1

was a national 2-level athlete, and patients II-13 and II-15 had

practiced Chinese kung fu since childhood).

The phenotype of this chromosome 7q22.3-31.2 linked

autosomal dominant muscle disease includes the onset of

symptoms between the ages of 30 and 50 years and a slowly

progressive proximal limb and neck flexor muscle weakness that

remains benign. Serum CK was mildly elevated and EMG was

myopathic. Muscle biopsy from the index patient showed a

myopathic and neurogenic pattern and rimmed vacuoles with

inclusions of 15–21 nm filaments in the cytoplasma. The

progressive proximal limb weakness with rimmed vacuoles in the

skeletal muscle is also observed in some autosomal dominant limb-

girdle muscular dystrophies such as LGMD1A, LGMD1G and

LGMD1D/E [16–18]. LGMD1A exhibits a distinctive dysarthric

pattern of speech and is caused by mutations in the gene coding

myotilin (mapped to 5q31) [19,20]. However, we did not detect

the deposition of myotilin protein in the affected muscles of our

patient (the myotilin staining was negative). LGMD1G is

associated with progressive fingers and toes flexion limitation that

is mapped to 4p21 [17]. These symptoms were not present in our

family. Recently, Harms and his colleagues [21] found that the

genetic etiology of LGMD1D/E was the DNAJB6 gene mutations

on 7q36. Muscle biopsies from 3 individuals in one family showed

a chronic myopathy with vacuoles whithout available electron

microscopy data in these cases. Given the non-specificity of the

presence of rimmed vacuoles, Jongen PJH et al. [22] reviewed

1,600 muscle biopsies for rimmed vacuoles and 750 biopsies for

filamentous inclusions. Their results revealed that 3 LGMD

patients with RVs with light microscopy, but absence of 15–

21 nm filamentous inclusions by electron microscopy. However,

recently Hackman and colleagues [23] reported five Finnish

families with LGMD1D/E linked to 7q36. The muscle biopsies

from their patients showed myopathic and/or dystrophic features

with rimmed vacuoles varied from a few to abundant. Tubulo-

filamentous inclusions were seen in close to autophagic vacuoles

and in a few myonuclei. In our index patient, other than only

myopathic and/or dystrophic features in LGMD, the prominent

features of the muscle biopsy were vacuolated myofibers associated

with myopathic and neurogenic pattern which are typical

histological features in HIBM [24]. Neurogenic changes can be

found in HIBM muscle and include the presence of scattered

angulated, atrophic fibers and nuclear clumps. This may be a

predominating feature in some biopsies leading to erroneous

Figure 4. The multipoint parametric and nonparametric linkage scores across the genome. The nonparametric linkage (NPL) scores are
shown in red on the left vertical axis, and the parametric LOD scores assuming a dominant inheritance are shown in black on the right vertical axis.
doi:10.1371/journal.pone.0039288.g004
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diagnosis of a primary neurogenic disease. Consistent with above

mentioned, the muscle biopsy from patient II-13 showed

combined neuropathic and myopathic changes that include

marked fiber size variation, scattered or clusters of small atrophic

angulated fibers, and occasional degenerating and necrotic fibers.

Based on these findings, the patients were considered as HIBM in

the family [25].

However, the clinical features of our family members are not

compatible with any known autosomal dominant or recessive

HIBM. With the exception of the mode of inheritance, the clinical

phenotype of this new form of IBM is similar to an atypical adult

onset HIBM2/DMRV which is characterized by muscle weakness

and atrophy beginning in the distal muscles of the lower limbs with

relative sparing of the quadriceps. However, proximal weakness of

the lower limbs and absence of distal weakness were also reported

in HIBM2 patients [26]. These findings were consistent with the

results obtained in our patients. HIBM2/DMRV is autosomal-

recessive and caused by mutations in the GNE gene on

chromosome 9p13.3. Over the last ten years, there are now over

60 GNE mutations have been described worldwide associated

Figure 5. Suggested haplotypes of chromosome 7q22.1-31.1 linked to HIBM in the pedigree. The common region shared by all affected
individuals of the pedigree is indicated by the red bars.
doi:10.1371/journal.pone.0039288.g005
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with IBM2/DMRV in patients of different ethnic backgrounds

[7]. In this family, the exons 2–12 of the GNE gene were detected

by direct sequencing, but no mutation was identified.

A genetic genome-wide linkage allowed us to map the disease

locus to a region at 7q22.1-31.1 that spans 8.78-Mb. Forty-two

described genes as well as 23 pseudo genes have been reported in

this refined linked area. The analysis of these 42 genes showed that

LHFPL3, SLC26A4, SLC26A3, NRCAM, DOCK4, DLD,

RELN are associated with some congenital diseases or cancers,

and COG5, CBLL1, DNAJB9, IMMP2L, PNPLA8, GPR22,

Table 2. The known or putative functions of the candidate genes in this refined linked area.

Gene microsatellite marker coded
protein

Genomic
location(Kbs) Information

LHFPL3 lipoma HMGIC fusion
partner-like 3

103969104–104549005 This gene is a member of the lipoma HMGIC fusion partner (LHFP) gene family, which is a
subset of the superfamily of tetraspan transmembrane protein encoding genes. Mutations in
one LHFP-like gene result in deafness in humans and mice, and a second LHFP-like gene is
fused to a high-mobility group gene in a translocation-associated lipoma.

SLC26A4 solute carrier family 26,
member 4

107301080–107358254 Mutations in this gene are associated with Pendred syndrome, the most common form of
syndromic deafness, an autosomal-recessive disease.

SLC26A3 solute carrier family 26,
member 3

107405912–107443678 mutations in this gene have been associated with congenital chloride diarrhea

NRCAM neuronal cell adhesion
molecule

107788071–108096841 Cell adhesion molecules (CAMs) are members of the immunoglobulin superfamily. Allelic
variants of this gene have been associated with autism and addiction vulnerability.

DOCK4 dedicator of cytokinesis 4 111366164–111846462 This gene is a member of the dedicator of cytokinesis (DOCK) family. Mutations in this gene
have been associated with ovarian, prostate, glioma, and colorectal cancers.

DLD dihydrolipoamide dehydrogenase 107531586–107561643 Encodes the L protein of the mitochondrial glycine cleavage system. Mutations in this gene
have been identified in patients with E3-deficient maple syrup urine disease and lipoamide
dehydrogenase deficiency.

RELN reelin 103112231–103629963 Encodes a large secreted extracellular matrix protein thought to control cell-cell interactions
critical for cell positioning and neuronal migration during brain development. Mutations of this
gene are associated with autosomal recessive lissencephaly with cerebellar hypoplasia.

ORC5 origin recognition complex,
subunit 5

103766788–103848463 ORC is a highly conserved six subunit protein complex essential for the initiation of the DNA
replication in eukaryotic cells.

CBLL1 Cbl proto-oncogene, E3 ubiquitin
protein ligase-like 1

107384279–107402083 This gene encodes an E3 ubiquitin-ligase for the E-cadherin complex and mediates its
ubiquitination, endocytosis, and degradation in the lysosomes.

DNAJB9 DnaJ (Hsp40) homolog,
subfamily B, member 9

108210356–108215294 This gene is a member of the J protein family. J proteins function in many cellular processes by
regulating the ATPase activity of 70 kDa heat shock proteins. The encoded protein is localized
to the endoplasmic reticulum and is induced by endoplasmic reticulum stress and plays a role
in protecting stressed cells from apoptosis.

IMMP2L IMP2 inner mitochondrial
membrane peptidase-like (S. cerevisiae)

110303110–111202347 Encodes a protein involved in processing the signal peptide sequences used to direct
mitochondrial proteins to the mitochondria.

PNPLA8 patatin-like phospholipase
domain containing 8

108112071–108166638 Encodes a member of the patatin-like phospholipase domain containing protein family.
Members of this family are phospholipases which catalyze the cleavage of fatty acids from
membrane phospholipids. The product of this gene is a calcium-independent phospholipase.

GPR22 G protein- coupled receptor 22 107110502–107116125 This gene is a member of the G-protein coupled receptor 1 family and encodes a multi-pass
membrane protein.

PIK3CG phosphoinositide-3-kinase,
catalytic, gamma polypeptide

106505924–106547592 This gene encodes a protein that belongs to the pi3/pi4-kinase family of proteins. The gene
product is an important modulator of extracellular signals and maintains the structural and
functional integrity of epithelia.

PRKAR2B protein kinase, cAMP-
dependent,
regulatory, type II, beta

106685178–106802256 Encoded one of the regulatory subunits of cAMP-dependent protein kinase. cAMP is a signaling
molecule important for a variety of cellular functions.

NAMPT nicotinamide
phosphoribosyltransferase

105888731–105925638 The protein belongs to the nicotinic acid phosphoribosyltransferase (NAPRTase) family and is
thought to be involved in many important biological processes, including metabolism, stress
response and aging.

RINT1 RAD50 inter- actor 1 105172532–105208124 RINT1 may play a role in cell cycle control after DNA damage.

MLL5 myeloid/lymph- oid or
mixed-lineage leukemia 5

104654637–104754532 encodes a protein with an N-terminal PHD zinc finger and a central SET domain. Overexpression
of the protein inhibits cell cycle progression.

SRPK2 SRSF protein kinase 2 104756823–105029341 RNAi-mediated depletion in HeLa cells showed that SRPK2 is essential for cell viability

LAMB1 laminin, beta 1 107564246- 107643804 Laminins, a family of extracellular matrix glycoproteins, are the major noncollagenous
constituent of basement membranes. They have been implicated in a wide variety of biological
processes including cell adhesion, differentiation, migration, signaling, neurite outgrowth and
metastasis. Laminins are composed of 3 non identical chains: laminin alpha, beta and gamma

COG5 component of oligomeric golgi
complex 5

106842189–107204959 Encoded one of eight proteins (Cog1-8) which form a Golgi-localized complex (COG) required
for normal Golgi morphology and function.

The gene information was obtained from: http://www.ncbi.nlm.nih.gov.
doi:10.1371/journal.pone.0039288.t002
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PIK3CG, PRKAR2B, NAMPT, RINT1, MLL5 express proteins

that may be involved in cellular and structural functions might be

good candidates for HIBM4. The known or putative functions of

these candidate genes are listed in table 2.

We conclude that this familial disorder is a new variant of

HIBM. The genome-wide linkage scan revealed a novel suscep-

tibility region on chromosome 7q22.1-31.1. We propose to classify

this AD form of HIBM as HIBM4. Furthermore, exon-trapping

studies, and the identification of the gene and gene product

responsible for the phenotype in this family will be important for

understanding the molecular mechanisms and the pathogenesis of

HIBM.

Materials and Methods

The Pedigree of the Family
The index case (patient III-1, Figure 1.) was a 37-year-old male,

who was referred to our department for progressive weakness in

his lower limbs. His mother and maternal grandmother also

exhibited similar symptoms. An extended family investigation was

performed. We carried out a detailed clinical assessment of 36

individuals spanning four generations. These cases were clinically

and neurologically examined by one of the authors (Da Y.W.). The

muscle power degree was determined according to the Medical

Research Council (MRC) grading scale. Family members were

classified as definitely affected if they exhibited symptoms and

clinical signs of muscle weakness. The study was conducted after

receiving written informed consent from the patients. In addition,

this study was approved by the Institutional Ethics Committee of

Xuan Wu Hospital, the Capital Medical University.

Laboratory Tests
Laboratory examinations of the index case and patient II-13

included electrocardiography, echocardiography, electromyogra-

phy, and routine laboratory tests. Biochemical analysis included

serum creatine kinase, electrolytes, fasting glucose, blood urea

nitrogen, creatinine, aspartate aminotransferase, alanine amino-

transferase, thyroxine, thyroid stimulating hormone, sedimenta-

tion rate, and C reactive protein.

Muscle Imaging
Muscle imaging studies were performed in the index case.

Transverse, coronal T1-weighted, T2-weighted and fat-suppressed

magnetic resonance imaging (MRI) were performed on a 1.5-T

machine (Siemens 1.5T Sonata).

Myopathological Studies
Muscle biopsy from the quadriceps was performed in the index

patient. The sample was snap-frozen in liquid isopentane.

Histological and histochemical studies were performed on cryostat

sections using hematoxylin-eosin (H&E), modified Gormori

trichrome (MGT), NADH-tetrazolium reductase, succinate dehy-

drogenase, periodic acid–Schiff, nonspecific esterase, Oil red,

myofibrillar ATPase, and Congo red. Immunohistochemical

analyses were performed to examine the expression of CD4,

CD8, CD20, CD68, desmin, myotilin, and alpha B-crystallin

(Novocastra). The sections were fixed in acetone and the

immunoreactive material was visualized by the ABC system as

instruction by manufacturer. Electron microscopic examination

was performed using standard techniques. In addition, the muscle

biopsy from the triceps was performed in patient II-13 in another

hospital (Peking Union Medical College Hospital) in 2007.

Molecular Tests
Peripheral blood samples from 36 family members were

collected. DNA was extracted from whole blood using phenol-

chloroform extraction, followed by ethanol precipitation. DNA

was diluted in TE to a concentration of 100 ng/ml and stored at

4uC. The entire coding region (exons 2–12) of GNE gene was

amplified and sequenced.

SNP Microarray Genotyping
We genotyped 26 family members using Illumina Infinium

HumanLinkage-12 panel (Illumina, San Diego, USA). A genome-

wide scan was performed with a total 6,090 single nucleotide

polymorphism (SNP) markers within an average gap of 441 kb

and 0.58 cM. All reactions were performed according to the

manufacturer’s recommendations. Fluorescence signals were

scanned using Illumina Bead-station, and a genotype was assigned

using the IlluminaBeadStudio Software v3.1.8.

Linkage Analysis
Mendelian inconsistencies of the genotype data were investi-

gated with Pedcheck for SNPs [27]. All problematic genotypes and

markers that were not polymorphic were removed from the data

set prior to further processing. After filtering the data, a total of

4,828 informative autosomal SNP markers remained. We used a

genetic map provided by Illumina based on the deCODE genetic

map for the linkage analysis. Both the parametric and non-

parametric linkage analysis were performed using MERLIN

[28].The parametric linkage assumed an autosomal dominant

model with a risk allele frequency of 0.0001, a penetrance of 0.90

for genotypes with 1 or 2 copies of the risk allele, and a phenocopy

rate of 0.00001. We also performed linkage analysis for the X

chromosome, assuming a dominant penetrance of 0.90 with

MINX [28]. Marker allele frequencies were estimated from the

founders of the pedigree via MERLIN. The most probable

haplotypes of the pedigree members were also constructed using

MERLIN.
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