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Abstract

Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal
insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately
associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it
has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat
shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to
infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach.
Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the
dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have
used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient
molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing
explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this
response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
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Introduction

Stress adaptation is essential for the survival of all organisms. In

particular, the heat shock response is a fundamentally important

process that has been highly conserved from yeasts to humans. In

response to a sudden and acute temperature up-shift, cells rapidly

induce the expression of genes that encode molecular chaperones,

proteases and other classes of protein [1]. These proteins function

in the synthesis, folding, maturation, trafficking and degradation of

proteins, and are essential for protection against, and recovery

from the cellular damage associated with the presence of the

aberrantly folded proteins generated by the heat shock [2,3,4].

In eukaryotic cells the expression of heat shock protein (HSP)

genes is controlled by the heat shock transcription factor [5,6],

which is evolutionarily conserved from Saccharomyces cerevisiae (Hsf1)

to humans (HSF1/2). S. cerevisiae Hsf1 is an essential protein that

binds to heat shock elements (HSEs) in the promoter regions of

target genes, which include HSP genes. Hsf1 activation leads to the

up-regulation of these target genes in response to heat shock [7,8]

thereby promoting cellular adaptation to the thermal insult.

The major fungal pathogen of humans, Candida albicans, has

retained a heat shock response [9], even though this yeast is

obligately associated with warm-blooded animals [10,11]. Like S.

cerevisiae, HSP gene activation in C. albicans is mediated by an

essential, evolutionarily conserved heat shock transcription factor,

Hsf1 [12]. It is thought that, via this heat shock regulon, C. albicans

cells tune the levels of essential chaperones to their ambient growth

temperature [9]. C. albicans appears to be well adapted to its human

host. It exists as a relatively harmless commensal organism within

the microbial flora of the oral and gastrointestinal tracts in many

individuals [13]. However, it often causes mucosal infections in

otherwise healthy individuals (thrush), and can instigate life-

threatening systemic infections in immunocompromised patients

[10,11]. Indeed, approximately 40% of haematogenously dissem-

inated Candida infections are fatal in some patient groups [14,15,16].

Historically, the heat shock response in C. albicans has been of

interest for a number of reasons. First, temperature up-shifts

promote morphological transitions from the yeast to hyphal

growth forms [17,18], and this cellular morphogenesis is a major

virulence trait in C. albicans [19,20,21]. Second, mutations that

block Hsf1 activation in C. albicans prevent thermal adaptation and

significantly reduce the virulence of this major pathogen [12].

Third, antifungal drug resistance is abrogated both by Hsp90

inhibitors and by elevated temperatures equivalent to those in

febrile patients [22]. Fourth, C. albicans heat shock proteins are

immunogenic, thereby directly affecting host-pathogen interac-

tions during infection [23,24]. Finally, autoantibodies against

Hsp90 are immunoprotective against C. albicans infections

[25,26,27]. Taken together, the heat shock response of fungal

pathogens is of fundamental importance because it is essential for

virulence [12], and because heat shock proteins represent targets

for novel therapeutic strategies [28].
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The exact mechanisms by which thermal adaptation is

regulated in eukaryotic cells have been extensively studied, but

are still not yet fully understood. When human cells are exposed to

heat or a chemical stress, protein unfolding increases, and non-

native proteins begin to accumulate [29,30,31]. These non-native

proteins are believed to compete with HSF1 for binding to Hsp90,

resulting in an increase in unbound HSF1 molecules which rapidly

trimerize [32,33]. In yeast, when cells are exposed to an acute

thermal stress, proteins unfold, the heat shock transcription factor

becomes activated by phosphorylation [9], and this induces the

expression of heat shock genes [34]. However, key questions

remain unanswered in fungi. For example, do heat shock proteins

play a role in regulating the heat shock response, for instance

possibly by down-regulating Hsf1 following stress adaptation?

Almost three decades ago, Lindquist [35] and Didomenico et al.

[36] postulated that feedback components exist to down-regulate

the heat shock response. Initially, Hsp70 was proposed to be a key

repressor of Hsf1 activation [37,38,39,40,41], but later evidence

indicated that Hsp70 is in fact a prerequisite for Hsp90-dependent

functions [42]. Indeed, a role for Hsp90 in Hsf1 repression was

suggested following the observation that pharmacological inhibi-

tion of Hsp90 correlates with HSF1 activation in mammalian cells

[33,43]. Zou and colleagues demonstrated that HSF1 can be

cross-linked to Hsp90 in unstressed HeLa cells, suggesting that

HSF1 might interact with Hsp90 [33]. Additionally, the trimeric

form of human HSF1 has been shown to associate with an Hsp90-

immunophilin-p23 complex, and this is thought to repress HSF1

transcriptional activity [44]. Furthermore, HSP90 modulates

HSF1 regulation in Xenopus oocytes [45]. In yeast, mutations that

interfere with Hsp90 function have been shown to derepress the

expression of Hsf1-dependent reporter genes in S. cerevisiae [46].

These data infer the existence of an autoregulatory loop in yeast,

whereby Hsf1 activates HSP90 expression, and then Hsp90 down-

regulates Hsf1 activity. How could this autoregulatory loop control

the dynamics of heat shock adaptation over time?

The functionality of biological systems depends upon both

negative and positive feedback loops, such that system inputs

reinforce or oppose the system output, respectively. Systems

biology approaches are being increasingly utilised as a tool to

examine the functionality, behaviour and dynamic properties of

complex biological systems. However, despite the fundamental

importance of heat shock regulation, the application of mathe-

matical modelling to this adaptive response has been very limited.

A few studies have examined the robustness of bacterial heat shock

systems, which involve the transcriptional control of heat shock

functions by the sigma factor s32 [47,48]. Also, there has been

minimal modelling of heat shock systems in eukaryotic cells.

Rieger and co-workers examined the regulation of HSP70 gene

transcription by HSF1 in response to heat shock in cultured

mammalian cells [49]. Meanwhile Vilaprinyo and co-workers

modelled the metabolic adaptation of yeast cells to heat shock

[50]. However, there has been no mathematical examination of

the relationship between Hsp90 and Hsf1 in any system.

Furthermore, few dynamic models have been reported for any

molecular systems in C. albicans or other fungal pathogens. Yet it is

clear that mathematical modelling will provide useful comple-

mentary approaches to the experimental dissection of these

organisms, and will help to accelerate our progress in elucidating

how pathogens adapt to the complex and dynamic microenviron-

ments they encounter in their human host.

Modelling biochemical networks allows the integration of

experimental knowledge into a logical framework to test, support

or falsify hypotheses about underlying biological mechanisms.

Indeed, modelling can emphasise holistic aspects of systems which

can often disappear in the experimental dissection of individual

components of large systems. Moreover, when a model has been

established, it can be used to further test hypotheses, or simulate

behaviours that would be difficult to test in the laboratory. We

reasoned that a combination of mathematical modelling and

experimental dissection will enhance our understanding of how

pathogens adapt to the temperature shifts they encounter in febrile

patients, for example.

Therefore, in this study we have exploited an integrative systems

biology approach to study the dynamic regulation of the heat

shock response in C. albicans. Our model was constructed around

the assumption that an autoregulatory loop involving Hsf1 and

Hsp90 plays a central role in the control of thermal adaptation.

The model was parameterised using experimental data that

defined the dynamics of the heat shock response in this pathogen.

The model was then utilised to make well-defined predictions

about the behaviour of this system that were subsequently

confirmed experimentally. This has allowed us to draw several

important conclusions. In particular we have shown that the heat

shock system displays so-called perfect adaptation [51], in that

Hsf1 activation returns to basal levels following adaptation to a

new ambient temperature. We also predicted and then confirmed

experimentally how the system responds to sequential thermal

insults, or stepwise increases in temperature. In this way our

mathematical modelling has provided important insights into the

behaviour of an invading fungal pathogen under physiologically

relevant but experimentally intransigent conditions.

Results

Development of a dynamic model of heat shock
adaptation in C. albicans

With a view to understanding the conserved and dynamic

mechanisms by which organisms control thermal adaptation, we

firstly constructed a predictive mathematical model of the heat

shock response using a number of assumptions (stated below). This

model focuses on the interaction between Hsf1 and Hsp90. This is

because while other chaperones (such as Hsp70) were initially

thought to repress HSF1 [37,38,39,40,41], more recent experi-

mental evidence has indicated that Hsp90 is the major repressor of

mammalian HSF1 [33,43]. We do not exclude the possibility that

other molecules may contribute to this regulation. However, for

the sake of simplicity, only the major repressor (Hsp90) is included

in our model. In brief, the model describes the temporal changes

of components involved in the mechanism with ordinary

differential equations (ODE). Every process that alters the

concentration of a compound enters the right hand side of the

ODE with either a positive (producing) or negative (degrading

reaction) sign. These processes are nonlinear and coupled, and

thus their evolution is not predictable from intuition, but requires

simulation. Having constructed the model we parameterised it

using experimental data generated for tractable heat shocks in vitro.

We then exploited this model to examine thermal adaptation

during sequential and stepwise thermal insults as well as during less

tractable temperature fluctuations that occur in vivo.

Several assumptions were made in the initial construction of this

model. First, we assumed that Hsp90 interacts with and negatively

regulates Hsf1 under steady state conditions, in the absence of

thermal fluctuation [46]. Second, we reasoned that in response to

heat shock, proteins become unfolded, that Hsp90 becomes

sequestered in complexes with these unfolded proteins, and that

this leads to the release of Hsf1 from Hsp90-Hsf1 complexes.

Third, we assumed that free Hsf1 becomes phosphorylated and

activated by its protein kinase, leading to the induction of heat
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shock protein genes including HSP90 [9,52]. Fourth, we predicted

that this protein kinase is down-regulated by an unknown

inhibitor. Fifth, on the basis that Hsp90 negatively regulates

Hsf1 (assumption 1), we predicted that the subsequent increase in

Hsp90 levels would then lead to the down-regulation of Hsf1.

Our goal was to keep the mathematical model as simple as

possible, reducing the complexity of the system to include the

following key components: the inactive (unphosphorylated) and

active (phosphorylated) forms of Hsf1; the interaction of Hsf1 with

Hsp90; free Hsp90; the Hsp90 complex with unfolded proteins;

and HSP90 mRNA production (Figure 1). Therefore, we

considered three main forms of Hsp90: the free form (Hsp90),

the complex with unfolded proteins (Hsp90Complex) and the

complex with Hsf1 (Hsf1Hsp90). We made this assumption on the

basis that: (a) molecular chaperones participate in the (re)folding of

many proteins in eukaryotic cells [2,3,4]; (b) in mammalian cells,

unfolded proteins accumulate during heat shock [29,30,31]; and

(c) these unfolded proteins are thought to compete with HSF1 for

binding to Hsp90, leading to the release of free HSF1 [32,33].

Therefore, we proposed that Hsf1 is present in an equilibrium with

Hsp90, constantly associating with and dissociating from Hsp90

(5f; 5b). At elevated temperatures the protein kinase(s) that

phosphorylates Hsf1 (K) becomes activated (K*) (1f), and this

leads to the subsequent activation of an inhibitor I* (2b) which

inactivates K* (1b). The identities of the Hsf1 kinase(s) (K/K*) and

Hsf1 phosphatase(s) (I/I*) are currently unknown. The active K*

binds free Hsf1, forming the complex Hsf1K* (3), mediating Hsf1

phosphorylation to form Hsf1P (3). Activated Hsf1 (Hsf1P) induces

the transcription of HSP90 mRNA via heat shock elements within

promoter regions (9), and subsequently induces the synthesis of

new Hsp90 (11). The model also accounts for the degradation of

HSP90 mRNA (10). The transcriptional activity of Hsf1P can be

repressed through the binding of Hsp90 and the formation of the

complex Hsf1Hsp90 (4). Thus Hsf1 is assumed to be negatively

regulated by Hsp90 in the model. During heat shock, Hsp90

(together with other chaperones in the heat shock protein families)

binds unfolded and/or damaged proteins, preventing their

aggregation and helping them to refold (6f) [53]. This is considered

a reversible process (6b). In addition, both the Hsp90Complex (8)

and Hsp90 can be degraded (7). The degradation of Hsp90

protein and HSP90 mRNA are not explicitly regulated by heat

shock in the model. However, the increased formation of

Hsp90Complex due to a temperature up-shift indirectly promotes

Hsp90 degradation by affecting the equilibrium between free and

Hsf1-bound Hsp90. The initial conditions, the ODEs that define

this model, and the parameter values are presented in Tables 1, 2,

3, and 4. Details about how the initial conditions and parameter

values were determined are provided in the section on Modelling

reaction kinetics and parameter estimation in the Materials and Methods.

Dynamics of heat shock adaptation in C. albicans
Having constructed the model, it was parameterised to fit the

experimentally determined dynamics of thermal adaptation in C.

albicans. (For more information about the parameter fitting see the

Materials and Methods section.) These included the kinetics of

Hsf1 phosphorylation, (a proxy for Hsf1 activation [9]) (Figure 2)

and the temporal induction of HSP90 mRNA levels (Figure 3)

during 30uC–37uC and 30uC–42uC heat shocks.

Replicate time series measurements of Hsf1 phosphorylation

were completed for both 30uC–37uC and 30uC–42uC heat shocks

(Figures 2 and 3). Protein extracts were prepared, subjected to

western blotting, and Hsf1 phosphorylation levels quantified

(Figure 2B). Lambda phosphatase controls were run routinely to

confirm band-shifts representing Hsf1 phosphorylation (Figures 2C

and 2D). Low levels of Hsf1 phosphorylation were reproducibly

detected during a 30uC–37uC heat shock (Figure 2C). These subtle

band-shifts were resolvable by lambda phosphatase at 2, 5 and

10 minutes post heat shock, but no band-shifts were observed after

10 minutes indicating that by 20 minutes Hsf1 phosphorylation

levels had returned to basal levels equivalent to the no heat shock

controls (Figure 2C). Hsf1 phosphorylation levels were assayed up

to 120 minutes post heat shock, but no detectable phosphorylation

was observed after 20 minutes (not shown). In contrast, cells that

received a 30uC–42uC heat shock routinely displayed strong levels

of Hsf1 phosphorylation within two minutes, the activation

continuing to increase up to 20 minutes post heat shock before

starting to decline again (Figure 2D). Hsf1 phosphorylation levels

had returned to low levels by the 120 minute time point. Once

again, the band-shifts corresponding to Hsf1 phosphorylation were

confirmed by the lambda phosphatase controls (Figure 2D). These

observations were reproducible in multiple independent experi-

ments.

HSP90 mRNA levels were also measured experimentally.

During a 30uC–37uC heat shock, HSP90 mRNA levels increased

approximately three-fold relative to the internal ACT1 mRNA

control (Figure 3C), whereas HSP90 mRNA levels increased

approximately sixteen-fold in response to a 30uC–42uC heat shock

(Figure 3D). This was experimentally consistent with the stronger

Hsf1 phosphorylation observed during a 30uC–42uC heat shock.

Furthermore the peaks of HSP90 mRNA followed after the peaks

of Hsf1 activation (Figure 2). Similar observations were made in

three independent experiments.

Following parameterisation the model simulated the experi-

mentally determined dynamics of Hsf1 phosphorylation and

HSP90 mRNA induction with reasonable accuracy. The simula-

tions predicted the rapid and transient phosphorylation of Hsf1

during 30uC–37uC and 30uC–42uC heat shocks (Figure 2A – grey

and black lines, respectively). Furthermore, the model correctly

predicted that during a 30uC–37uC heat shock, the amplitude of

Hsf1 phosphorylation is lower and of a shorter duration than

during a 30uC–42uC heat shock (Figure 2A). In addition, the

model correctly predicted that HSP90 mRNA levels are induced

about four-fold more strongly during a 30uC–42uC heat shock

compared with a 30uC–37uC heat shock (Figure 3A).

Our model does not include Hsf1 production. This is because

we considered the dynamics of thermal adaptation over a

120 minute timescale, which corresponds to less than two

generations of growth under our experimental conditions. We

have shown previously that Hsf1 levels change after protracted

growth of C. albicans at different temperatures [46]. However, in

this study we did not observe significant changes in Hsf1 levels

over the 120 minute timescale examined. Before excluding Hsf1

production from the model we tested the theoretical impact of

Hsf1 production upon the dynamics of the system. To achieve this

we conceptually doubled the amount of Hsf1 present in the cell.

Interestingly, this did not change the dynamics of Hsf1

phosphorylation during a 30uC–42uC heat shock, the concentra-

tion of phosphorylated Hsf1 always tending to zero after

120 minutes.

Sensitivity analyses
We performed sensitivity analyses to investigate the sensitivity of

the system during the adaptation to thermal challenges. A classical

approach to sensitivity analysis (Metabolic control analysis: MCA)

can be used to assess infinitesimally small changes in individual

reactions (parameter values or the initial concentrations of

regulators and enzymes) influence the steady state concentrations

in the model. MCA was initially founded to investigate metabolic

Autoregulation of Thermal Adaptation
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networks but is now also used to examine the sensitivity of

signalling pathways or gene regulatory networks [54]. In order to

address specifically the influence of parameter choice upon the

dynamics of our system, we used time-varying response coefficients

that allowed us to test responses to individual parameter

perturbations along the entire trajectory rather than its influence

on a steady state only.

By studying time-varying response coefficients we examined

whether there are single reactions or parameters that greatly

influence the dynamics of the thermal adaptation system. We used

the mathematical formalism to describe firstly the non-scaled

response coefficients [55].

RS
p (t)~LS(t,p)

Lp

�
�
�
p~p0

, with p~p0|q0 and p0 being a set of param-

eters employed in the model and q0 being a set of initial conditions.

Our point of reference was the nominal trajectory of Hsf1

phosphorylation over time simulated with the model following

exposure to a 30uC–42uC thermal shock.

We perturbed every parameter from the set p and studied the

impact upon the Hsf1 phosphorylation trajectory over a

120 minute period. A positive value for the response coefficient

RHsf1P
p (t) indicated a temporal or sustained increase in the relevant

substrate concentration (Hsf1P) as the value of the parameter p was

increased, whereas a negative value for RHsf1P
p (t) translated into a

decrease in the Hsf1 phosphorylation level. To compare the

Figure 1. Model depicting heat shock adaptation in C. albicans. In this minimal molecular model of heat shock response the arrows represent
mass flow or chemical reaction. The numbers in circles specify the respective step in the model. The lines ended with circles indicate positive
regulation and lines with blind ends indicate negative regulation. Dashed arrows represent transcription (9) or translation (11) of HSP90. See text for
detailed description of the molecular mechanism: Hsp90complex, Hsp90 complexes with unfolded proteins; K and K*, inactive and active forms of an
activating protein kinase; I and I*, inactive and active forms of an inactivating protein phosphatase.
doi:10.1371/journal.pone.0032467.g001

Table 1. Notations used throughout.

Definition Comment Initial Value

K Inactive protein kinase K0~1|10{2

K* Active protein kinase K�0 ~1|10{6

I Inactive inhibitor I0~3:56|100

I* Active inhibitor I�0 ~1|10{10

Hsp90 Heat Shock Protein Hsp90 Hsp900~3:67|10{1

Hsp90Complex Hsp90 bound to other unfolded proteins Hsp90Complex~5:02|10{1

Hsf1Hsp90 Hsp90 coupled with Hsf1, mainly available before the stress Hsf 1Hsp900~1|10{2

Hsf1 Heat shock transcription factor Hsf1 Hsf 10~2:05|10{4

Hsf1P Phosphorylated Hsf1 Hsf 1P0~1|10{8

HSP90mRNA HSP90 mRNA HSP90mRNA0~3:53|10{1

doi:10.1371/journal.pone.0032467.t001
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response coefficients they were scaled (and hence dimensionless)

according to the formula:
~RRS

p (t)~(DS(t)){1:RS
p (t):Dp, where DX ~diagX is a diagonal

matrix [55].

Selected non-zero response coefficients are presented in

Figure 4. As expected, perturbations in the phosphorylation

reaction (reaction 3) increased the initial level of phosphorylated

Hsf1 (Hsf1P), but the response after 120 minutes essentially

remained unchanged (Figure 4A). In contrast, an increase in the

rate of association of Hsp90 with Hsf1P, which leads to its

dephosphorylation (parameter k4), resulted in a negative RHsf1P
k4

(t)
value for t = 120 minutes (Figure 4B). In other words, increasing

the value of k4 leads to lower levels of Hsf1 phosphorylation at

120 minutes. (This would be the case during the whole adaptation

process as the value of RHsf1P
k4

(t) was negative for all

t[(0min,120min). It is also worth noting that RHsf1P
k4

(t) is a late

response coefficient in that it impacts upon the dynamics of the

system about 15 minutes after the application of the heat shock

(Figure 4B).

Interestingly, the initial concentration of free Hsf1 did not

influence the final result of the adaptation (RHsf1P
Hsf10

(120)&0). One

might have assumed that having more free Hsf1 in the system

would result in higher Hsf1 phosphorylation levels at 120 minutes,

but this was not the case, which was counter intuitive (Figure 4C).

The same held for the initial concentration of free Hsp90, which

gave a RHsf1P
Hsp900

(t)&0, for all t[(0min,120min). One could expect

to have lower Hsf1 phosphorylation levels throughout the

trajectory, which again was not the case.

In summary in our thermal adaptation model, the parameters

that had the most impact upon Hsf1 phosphorylation dynamics

were those involved in the reactions describing the complex

formation between Hsp90 and Hsf1P (k4), the interaction between

Hsp90 with other malfunctioning proteins (TH, k6f ), and Hsp90

translation itself (k11, ktr). All the other parameters either

influenced Hsf1 phosphorylation dynamics to a low extent (for

instance for HSP90 mRNA processing, kpr, k10), or to minimal

extents within the considered timescale (the remaining parame-

ters).

Impact of sequential heat shocks
Having demonstrated that this model simulates the molecular

responses of C. albicans during thermal adaptation with reasonable

accuracy, we then exploited the model to predict molecular

responses under other conditions. It is well known in a variety of

systems including mammalian cells [56,57], Drosophila cells [58,59],

S. cerevisiae [60,61], Dictyostelium sp. [62], plant cells [63] and

bacteria [64,65] that an initial treatment with a mild heat shock

leads to an increased resistance to subsequent exposure to

otherwise lethal temperatures. This phenomenon is termed

acquired thermotolerance. A related phenomenon has also been

demonstrated in C. albicans, whereby a prior heat shock protects

cells against a high oxidative stress [66,67]. This phenomenon

infers that the thermal adaptation system retains a molecular

‘‘memory’’ of the first heat shock that leads to the protection of

cells against the second heat shock. From a molecular perspective

we predicted that this might be reflected in reduced Hsf1

phosphorylation during a second heat shock. We tested this

prediction using our model to simulate the effects of exposing cells

to sequential heat shocks.

Using the model, cells were exposed to a conceptual heat shock

of 30uC–42uC for 30 minutes. They were then placed back at

30uC for a specific time interval (20 or 120 minutes) before

subjecting them to a second 30uC–42uC heat shock (Figure 5A).

Two main predictions arose from these simulations. Firstly, the

model predicted that, with an interval of 20 minutes between heat

shocks, Hsf1 does become rephosphorylated during the second

heat shock, albeit not to the same extent as control cells that have

not received a prior heat shock (Figure 5B). This unexpected

prediction was then tested experimentally. As predicted, significant

Hsf1 band shifts were routinely observed in cells following a

second 30uC–42uC heat shock. Once again, lambda phosphatase

controls were included confirming that these band shifts

represented Hsf1 phosphorylation (Figure 5C). Also as predicted,

the levels of Hsf1 phosphorylation were reproducibly reduced

compared with control cells that did not receive the prior heat

shock.

A second important prediction was that this memory would be

lost when the period between 30uC–42uC heat shocks was

extended to 120 minutes (Figure 5D). Under these conditions,

the model predicted that the levels of Hsf1 phosphorylation during

the second heat shock would be equivalent to Hsf1 phosphory-

Table 2. Ordinary Differential Equations used in the model.

ODEs

dK
dt

~zv1b{v1f

dK�

dt
~{v1bzv1f

dI
dt

~{v2bzv2f

dI�

dt
~zv2b{v2f

dHsf1
dt

~{v3zv5b{v5f

dHsf1P
dt

~zv3{v4

dHsf1Hsp90
dt

~zv4{v5bzv5f

dHsp90
dt

~{v4zv5b{v5f zv6b{v6f {v7zv11

dHsp90Complex
dt

~{v6bzv6f {v8

dHSP90mRNA
dt

~zv9{v10

doi:10.1371/journal.pone.0032467.t002

Table 3. Kinetic rate laws used in the model.

Kinetic rate laws

v1f ~k1f
:TK

K
KM1

zK

v1b~k1b
:I� K�

KM2
zK�

v2f ~k2f
: 1

TK

I�

KM3
zI�

v2b~k2b
:K� I

KM4
zI

v3~k3
:K� Hsf1

K3zHsf1

v4~k4
:Hsf1P:Hsp90

v5f ~k5f
:Hsf1:Hsp90

v5b~k5b
:Hsf1Hsp90

v6f ~k6f
:TH

:Hsp90

v6b~k6b
:Hsp90Complex

v7~k7
:Hsp90

v8~k8
:Hsp90Complex

v9~k9
:Hsf 1P0zkpr(Hsf1P{Hsf 1P0)

v10~k10
:HSP90mRNA

v11~k11
:HSP90mRNA0zktr(HSP90mRNA{HSP90mRNA0)

doi:10.1371/journal.pone.0032467.t003
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lation levels in control cells that do not receive a prior heat shock

(Figure 5E). Once again this prediction was confirmed experi-

mentally (Figure 5F). We consistently observed an equivalent Hsf1

band shift between samples whether or not the cells had received a

prior heat shock. As before, we confirmed that this band shift was

due to Hsf1 phosphorylation by treating control samples with

lambda phosphatase (Figure 5F). Furthermore to highlight the loss

of molecular memory following the extended interval between

heat shocks, the samples for the 20 minute and 120 minute

intervals were compared alongside each other. There was a

striking difference in their Hsf1 phosphorylation levels (Figure 5G)

further confirming that the molecular memory observed after a

20 minute interval between heat shocks was lost after 120 minutes.

The transient nature of the molecular memory was tested

further in the laboratory by comparing the viabilities of C. albicans

cells that received different regimes of sequential heat shocks

(Figure 5H). Cells that received a prior 30uC–42uC heat shock

30 minutes before the second heat shock displayed a significant

increase in survival in comparison with control cells that did not

receive a prior heat shock. In contrast, and as predicted by the

model, this increase in survival was no longer observed in cells that

received the prior heat shock 120 minutes before the second heat

shock (Figure 5H). A number of factors could contribute to the loss

of viability, including a reduction in the levels of heat shock

proteins following thermal adaptation, and/or a decrease in the

protectant trehalose [68]. However, the model correctly predicted

that the molecular memory, and hence acquired thermotolerance,

is transient. This memory protects cells against sequential heat

shocks that occur within a short period, but is lost if subsequent

heat shocks occur after this period.

Impact of stepwise heat shocks
As discussed above, the acute heat shocks that tend to be studied

in vitro do not accurately reflect the thermal fluctuations that cells

generally encounter in the wild. Therefore, we used the model to

examine the effects of temperature changes that are more closely

related to those in the wild. The generation of fevers is a primary

response of patients to systemic candidiasis. These fevers expose C.

albicans cells to temperature fluctuations from approximately 37uC
up to about 42uC. Therefore we used the model to examine such

changes. Our first step was to predict the effects of stepwise

temperature increases that are experimentally tractable.

The model was used to predict the impact of moving cells firstly

to 37uC from 30uC (the starting condition in the model) and then

allowing them to adapt to this new ambient temperature for

30 minutes before shifting them from 37uC to 42uC (Figure 6A).

The model predicted that once cells have adapted to an ambient

temperature of 37uC, they would still display rapid Hsf1

phosphorylation following a relatively minor thermal upshift from

37uC to 42uC (Figure 6B). This prediction was then tested

Table 4. Parameter values and assumptions.

Parameter Value Comment

TK ~1, TH~1 30uC

TK ~1:49|103 , TH~1:14|101 37uC

TK ~2:57|103 , TH~1:68|102 42uC

k1f ~7:74|10{8 , KM1
~6:11|10{3 Rate constant of protein kinase activation and Michaelis Menten constant

KM2
~1|10{10 Michaelis Menten constant for protein kinase deactivation

k2f ~1:2|10{6 , KM3
~3:87|10{3 Rate constant of inhibitor activation and Michaelis Menten constant

KM4
~4:31|10{4 Michaelis Menten constant for inhibitor deactivation

k3~3:22|101

K5~2:52|101

Hsf1 phosphorylation rate constant
And Michaelis Menten constant

k5f ~1:1|107 Rate constant of Hsf1 and Hsp90 association

k6b~1|10{2 Rate constant dissociation of Hsp90 from Hsp90Complex

k7~2:26|100 Rate constant of Hsp90 degradation

k8~2:35|100 Rate constant of Hsp90Complex degradation

k9~3:24|104 Basal HSP90mRNA production

kpr~5:38|10{1 Rate constant of HSP90mRNA production

ktr~3:88|10{1 Rate constant of Hsp90 protein production

Steady state assumption:

k1b~k1f
K0

KM1
zK0

K�
0
zKM2

K�
0

:
I�

0

Rate constant of K* to K transition

k2b~k2f
I�

0

KM3
zI�

0

I0zKM4

I0
:
K�

0

Rate constant of I to I* transition

k4~k3
K�

0

:
Hsf 10

K5zHsf 10

1
Hsf 1P0

:
Hsp900

Hsf1 dephosphorylation rate constant

k5b~
k5f

:
Hsp900

:
Hsf 10zk4

:
Hsf 1P0

:
Hsp900

Hsf 1Hsp900

Rate constant of Hsf1 dissociation from the complex Hsf1Hsp90

k6f ~(k6bzk8) Hsp90Complex0

Hsp900

Rate constant of Hsp90 binding to unfolded proteins

k10~k9
Hsf 1P0

HSP90mRNA0

HSP90mRNA degradation rate constant

k11~
k7
:
Hsp900zk8

:
Hsp90Complex0

HSP90mRNA0

Basal production of Hsp90 protein

doi:10.1371/journal.pone.0032467.t004
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experimentally (Figure 6C). Firstly, these experiments reconfirmed

that Hsf1 phosphorylation is transiently induced during a 30uC–

37uC heat shock, returning to basal levels within 20 minutes

(compare Figure 6C: 37uC 30 minutes with Figure 2C). Then

when these C. albicans cells were subjected to the second thermal

step from 37uC–42uC, Hsf1 phosphorylation was shown to be

transiently induced for a second time, as predicted by the model

(Figure 6C: 42uC 5 minutes). These reproducible observations

were validated with lambda phosphatase controls, which resolved

Hsf1 band shifts caused by phosphorylation. Therefore, once

again, novel predictions generated by the model were confirmed

experimentally.

Having confirmed the validity of our model, our next goal was

to exploit this model to examine thermal adaptation scenarios that

are more clinically relevant but not as easy to test experimentally.

In particular we were interested in the molecular responses of this

system to slow thermal transitions from 37uC–42uC that more

closely reflect the onset of fevers in patients. Following adaptation

to the initial thermal step from the initial condition to 37uC, we

simulated slow thermal transitions from 37uC to 42uC over 20, 60,

90 or 180 minute periods (Figure 7A). Interestingly, Hsf1 was

predicted to become phosphorylated even during these slow

temperature transitions (Figure 7B). This would suggest that Hsf1

activation is required for the types of thermal adaptation that are

encountered in vivo. This suggestion is consistent with our

experimental observations. We have shown previously that

mutations that block Hsf1 activation attenuate the virulence of

C. albicans in a mouse model of systemic candidiasis [12].

Figure 2. Dynamic changes in Hsf1 phosphorylation during the heat shock response. Comparison of model simulations and experimental
evidence depicting Hsf1activation during heat shock. (A) Model simulations of the dynamic changes in Hsf1 phosphorylation levels following heat
shock: grey line 30uC–37uC, black line: 30uC–42uC. (B) Graphical illustration of experimentally determined Hsf1 phosphorylation levels following heat
shock from experiments such as those shown in (C) and (D): grey line 30uC–37uC, black line: 30uC–42uC. (C) The upper panel shows Hsf1
phosphorylation levels during a 30uC–37uC heat shock. The lower panel shows lambda phosphatase controls (l Ppase) that confirm that Hsf1 is
phosphorylated at the 2, 5 and 10 minute time points in the upper panel. (D) The upper panel shows Hsf1 phosphorylation levels during a 30uC–42uC
heat shock. The lower panel shows lambda phosphatase controls (l Ppase) that confirm Hsf1 phosphorylation for the 5, 30 and 120 minute time
points in the upper panel. White and black arrows depict the unphosphorylated and phosphorylated forms respectively. Data reflect the outcomes
for at least three independent replicate experiments.
doi:10.1371/journal.pone.0032467.g002
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The thermal adaptation system displays perfect
adaptation

A biological system is described as displaying ‘‘perfect

adaptation’’ when its steady-state output is independent of the

steady-state input. Osmoadaptation in S. cerevisiae provides an

excellent example of this because Hog1 signalling returns to basal

levels once cells have adapted to new ambient conditions [51].

According to our computational simulations the thermal adapta-

tion system is predicted to display perfect adaptation because Hsf1

phosphorylation declines to basal levels once cells have adapted to

a new ambient temperature (Figures 2A and 6B). This prediction

has been confirmed experimentally (Figures 2B 2C and 2D). For

example, when a 30uC–37uC heat shock is applied the system

recovers rapidly, with Hsf1 phosphorylation returning to basal

levels within 20 minutes (Figures 2B and 2C). After a 30uC–42uC
heat shock the system recovers after about 2 hours (Figures 2B and

2D). Therefore, the heat shock regulatory network adapts perfectly

to changes in ambient temperature.

This observation is significant because it accounts for another

experimental result that was not initially obvious. Previously we

were surprised to find that while Hsf1 is phosphorylated in

response to mild heat shocks, Hsf1 is not phosphorylated in C.

albicans cells that have adapted to different growth temperatures

ranging from 15uC–40uC [9]. However, the perfect adaptation

displayed by the thermal adaptation system can account for this

experimental result. According to the model, Hsf1 is rapidly and

transiently activated when cells are adapting to a temperature

upshift. However Hsf1 phosphorylation returns to basal levels once

this adaptation to the new ambient temperature is complete.

Discussion

The heat shock response is a fundamentally important adaptive

response that is highly conserved across eukaryotic systems. A key

function of this response is to maintain protein quality and

homeostasis in the face of thermal insults through the induction of

genes encoding chaperones and components of the protein

degradation machinery. Our current understanding of heat shock

adaptation is primarily based on a strong experimental platform

that has largely focussed on dramatic and acute heat shocks

[6,69,70,71]. In this study we have exploited an integrative systems

biology approach with a view to understanding thermal adaptation

under conditions that are more relevant physiologically but less

tractable experimentally. This represents one of the first

applications of mathematical modelling to understand a dynamic

adaptive response in a fungal pathogen.

Our mathematical model of thermal adaptation was based on a

number of assumptions and upon published observations from our

own and other laboratories. A previous model focused on the

feedback regulatory mechanisms of heat shock proteins on HSF

function in mammalian systems [49]. However, these models did

not address Hsp90 specifically, although experimental inhibition of

Hsp90 has been shown to activate Hsf1 in mammalian cells and

yeast [33,46]. Therefore, our model was based on the hypothesis

that an autoregulatory loop involving Hsf1 and Hsp90 lies at the

heart of thermal adaptation. Our experimentally verified assump-

tion that Hsp90 is a major player in thermal adaptation does not

exclude the possibility that other factors probably contribute to

thermal adaptation (such as other chaperones or trehalose, for

example). Furthermore, our model includes interactions between

Figure 3. Dynamic changes in HSP90 mRNA during the heat shock response. Comparison of model simulations and experimental evidence
representing HSP90 mRNA levels during thermal upshifts. (A) Model simulations of the dynamic changes in HSP90 mRNA levels following heat shock:
grey line 30uC–37uC, black line: 30uC–42uC. (B) Graphical illustration of experimentally determined HSP90 mRNA levels following heat shock generated
in experiments such as those shown in (C) and (D): grey line 30uC–37uC, black line: 30uC–42uC. (C) qRT-PCR quantification of HSP90 mRNA levels
relative to the internal ACT1 mRNA control were analysed during a 30uC–37uC heat shock. (D) qRT-PCR quantification of HSP90 mRNA levels relative to
the internal ACT1 mRNA control were analysed during a 30uC–42uC heat shock.
doi:10.1371/journal.pone.0032467.g003
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Hsf1 and its protein kinase(s) and phosphatase(s). The identity of

the protein kinase(s) that phosphorylate Hsf1 in yeast is not known,

and relatively little is known about the signalling cascades that

trigger Hsf1 activation. The phosphatase(s) activity appears to be

equally important in regulating thermal adaptation, as Hsf1 is

rapidly dephosphorylated in C. albicans upon a cold shock (Leach

and Brown, unpublished). The model accurately predicted

numerous molecular behaviours of the thermal adaptation system,

suggesting that our underlying hypotheses are valid (Figures 2, 3, 5

and 6). Nevertheless, in the future, the boundaries of our model

could be extended to include, for example, other molecules that

might contribute to the regulation of Hsf1 [42,43,44,46],

additional genes that are controlled by Hsf1 [8], and downstream

metabolic events that contribute to thermal adaptation [50].

Interestingly, the thermal adaptation system displays perfect

adaptation. Perfect adaptation, which represents a fundamental

property of this system, has been reported for other eukaryotic

systems and in prokaryotes [51,72,73,74,75]. This perfect

adaptation accounts for a previous observation that was not

intuitively obvious and remained unexplained at the time, namely

that while Hsf1 is phosphorylated in response to heat shock, no

Hsf1 phosphorylation is observed in cells that have had time to

adapt to elevated growth temperatures [9].

For a system to display perfect adaptation it must contain a

negative feedback loop [75]. In the thermal adaptation system this

negative feedback loop is manifested by the Hsp90-Hsf1

autoregulatory loop, which represents a central component of

the model (Figure 1). There is considerable experimental evidence

for this regulatory loop in diverse systems. For example, Hsf1 is

known to activate HSP90 in yeasts [9], and Hsp90 down-regulates

Hsf1 in mammalian cells and yeasts [33,46]. The predictive

accuracy of our model reinforced the validity of this autoregula-

tory loop.

The model was able to account for the well-known phenom-

enon of ‘‘induced thermotolerance’’, whereby prior exposure to a

heat shock protects cells against a subsequent heat shock

[56,57,58,59,60,61,62,63,64,65]. The prevailing view is that this

phenomenon is mediated by the up-regulation of chaperone

proteins that are retained by the cell for a certain period before

being degraded. Our simulations of sequential heat shocks

correctly predicted that C. albicans cells retain a molecular memory

for a short period, and that this memory is transient, being lost

within two hours. Indeed, these data fit with a decrease in HSP90

mRNA levels, as well as Hsf1 phosphorylation 120 minutes after

the imposition of a 30uC–42uC heat shock. Therefore, compo-

nents of the essential machinery that would normally be present

only 20 minutes after a prior heat shock appear to have been

(partially) degraded after 120 minutes, meaning that if the system

is subjected to a second thermal insult at this point, the cell must

remount a ‘‘normal’’ heat shock response in order to adapt and

survive. This was confirmed by assaying the viability of C. albicans

cells that were exposed to sequential heat shocks separated by

differing time intervals (Figure 4C). This infers that the chaperone

Hsp90 plays a key role in the phenomenon of induced

thermotolerance.

We also exploited our model to examine thermal adaptation

during step-wise heat shocks, extending this to examine responses

to slow temperature transitions that are more reminiscent of fevers

in patients with systemic candidiasis. Interestingly the model

indicates that Hsf1 is phosphorylated during slow temperature

transitions and the system is still able to adapt perfectly. It is not

possible to impose slow temperature transitions upon mice, and

hence to test this experimentally in vivo. Nevertheless, these

predictions were entirely consistent with our published work,

which revealed that although Hsf1 is not phosphorylated during

growth at elevated temperatures [9], the inability to phosphorylate

Hsf1 attenuates the virulence of C. albicans [12]. These

observations were difficult to rationalise at the time, but have

been explained by our modelling of thermal adaptation

Figure 4. Sensitivity analyses. Selected time-varying response
coefficients for phosphorylated Hsf1 for a 37uC–42uC heat shock are
presented. The parameters not presented in this figure had negligible
influence upon the Hsf1 phosphorylation dynamics over the 120 min-
ute timescale examined. (A) Early response coefficients are shown.
These influence the Hsf1 phosphorylation dynamics during the first
,10 minutes, but do not significantly affect thermal adaptation in the
longer term. (B) Late response coefficients. These mainly influence Hsf1
phosphorylation dynamics after ,15 minutes leading to differences in
the concentration of phosphorylated Hsf1 at the 120 minute time
point. For instance, the parameter TH has a positive response coefficient
at 120 minutes, which means that an increment in its numerical value
will result in increased accumulation of phosphorylated Hsf1 at
120 minutes. (C) Response coefficients calculated for the initial
concentrations. An increased initial concentration of the Hsf1-Hsp90
complex leads to higher Hsf1 phosphorylation levels throughout the
period of thermal adaptation examined.
doi:10.1371/journal.pone.0032467.g004
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Figure 5. Impact of sequential heat shocks. The model was used to simulate sequential 30 minute heat shocks of 30uC–42uC separated either
by 20 or 120 minutes. Outcomes were then tested experimentally by determining Hsf1 phosphorylation levels. (A) Representations of the thermal
transitions with the 20 minute recovery period. (B) Model simulations of Hsf1 phosphorylation for a 20 minute recovery period between heat shocks:
solid black line simulates Hsf1 phosphorylation in cells that have seen a prior heat shock, dashed black line simulates Hsf1 phosphorylation in control
cells that have had no prior heat shock. (C) These predictions were tested experimentally by moving exponentially growing cells from 30uC to 42uC
for 30 minutes. Cells were then placed back at 30uC for 20 minutes before they received a second heat shock at 42uC. Control cells only received the
second heat shock with no prior heat shock. Proteins were extracted and subjected to western blotting to measure Hsf1 phosphorylation (upper
panel). The lower panel shows lambda phosphatase controls (l Ppase) that confirm the Hsf1 phosphorylation states shown in the upper panel. (D)
Representations of the thermal transition with a 120 minute recovery period between heat shocks. (E) Model simulation of Hsf1 phosphorylation for a
120 minute recovery period between heat shocks: solid black line, predicted Hsf1 phosphorylation in cells that have seen a prior heat shock; dashed
black line, predicted Hsf1 phosphorylation in control cells that have had no prior heat shock. (F) These predictions were tested experimentally by
moving exponentially growing cells from 30uC to 42uC for 30 minutes. Cells were then placed back at 30uC for 120 minutes before they received a
second heat shock at 42uC. Control cells only received the second heat shock with no prior heat shock. Protein extracts were subjected to western
blotting to measure Hsf1 phosphorylation (upper panel). The lower panel includes lambda phosphatase controls (l Ppase) that confirm the
phosphorylation status of samples from the upper panel. (G) Further controls involving direct comparison of 20 and 120 minute memory samples to
confirm the differential Hsf1 phosphorylation in these samples, and hence the loss of molecular memory after 120 minutes. (H) The loss of molecular
memory is reflected in reduced cellular resistance to the second heat shock. Cell viabilities (CFUs) were measured 0 and 15 minutes after the
imposition of the second 30uC–42uC heat shock: grey bars, cells that received a 20 minute interval between heat shocks; grey bars, cells that received
a 120 minute interval between heat shocks (* p,0.05, students t-test). Data reflect the outcomes for at least two independent replicate experiments.
doi:10.1371/journal.pone.0032467.g005
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(Figure 5C). Our observations can also account for the

conservation of the heat shock response in a fungal pathogen that

occupies thermally buffered niches.

In conclusion, the success of the model in predicting key aspects

of observed molecular responses highlights the utility of systems

approaches to understand biological behaviours and regulatory

modules in particular. This integrative systems biology approach

has provided valuable insights into the dynamic behaviours of the

thermal adaptation system in C. albicans under conditions that are

relevant to its lifestyle as a fungal pathogen that is obligately

associated with warm-blooded animals. Given the highly con-

served nature of the heat shock response, we suggest that our

model will prove useful for the analysis of thermal adaptation in

other eukaryotic systems, including mammalian cells.

Figure 6. Impact of stepwise heat shocks. The model was used to simulate stepwise thermal transitions from 30uC (the starting condition) to
37uC, and then from 37uC to 42uC. Outcomes were then tested experimentally by determining Hsf1 phosphorylation levels. (A) Representations of the
thermal transitions. (B) Model simulation of Hsf1 phosphorylation during stepwise 30uC–37uC and 37uC–42uC heat shocks. (C) These predictions were
tested experimentally by moving exponentially growing cells from 30uC to 37uC for 30 minutes, and then transferring them from 37uC to 42uC for
30 minutes. Proteins were extracted at various time intervals and Hsf1 phosphorylation measured by western blotting. Hsf1 was shown to be
transiently induced during the 37uC–42uC transitions. Lambda phosphatase (l Ppase) controls were included to confirm that Hsf1 phosphorylation
had returned to basal levels 30 minutes after a 30uC–37uC heat shock (see Figure 2), but that Hsf1 is rapidly phosphorylated following the next 37uC–
42uC heat shock. The data reflect the outcomes for at least two independent replicate experiments.
doi:10.1371/journal.pone.0032467.g006

Figure 7. The impact of slow thermal upshifts. The model was used to simulate slow thermal transitions from 37uC–42uC over 20, 60, 90 or
180 minute periods after a 37uC heat shock for 30 minutes. (A) Representations of a subset of the thermal transitions examined, some of which might
mimic fevers in patients. (B) Model simulations of Hsf1 phosphorylation levels during slow temperature transitions from 37uC–42uC: 0 minute
transition, solid black line; 20 minute transition, dotted black line; 60 minute transition, dashed black line; 90 minute transition, solid grey line;
180 minute transition, dotted grey line.
doi:10.1371/journal.pone.0032467.g007
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Materials and Methods

Strains and growth conditions
C. albicans strains (Table 5) were grown in YPD [76]. To impose

a heat shock, cells were grown to exponential phase in YPD at

30uC, and then added to pre-warmed flasks at either 37uC or 42uC
together with an equal amount of pre-warmed medium at either

44uC or 54uC, thereby imposing rapid heat shocks of 30uC–37uC
or 30uC–42uC, respectively.

Western blotting
Total soluble protein was extracted and subjected to Western

blotting using published protocols [77]. Briefly, cells were

resuspended in 250 ml lysis buffer (0.1 M Tris-HCl, pH 8, 10%

glycerol, 1mM DTT, pepstatin A, Protease Inhibitor Cocktail) and

sheared with glass beads in a Mini-bead beater (6630 s with

1 minute intervals on ice). Lysates were centrifuged at 13000 rpm

for 10 minutes at 4uC. Proteins (15 mg) were separated by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) using the XCell

SureLockTM Mini-Cell system (Invitrogen: Paisley, UK) with

NuPAGEHNovex Bis-Tris 4–12% pre-cast gels (Invitrogen) in

NuPAGEH MOPS-SDS Running Buffer (Invitrogen) containing

NuPAGEH Antioxidant (Invitrogen) as per the manufacturer’s

instructions. Proteins were transferred to InvitrolonTM PVDF

Membranes (Invitrogen) in NuPAGEH Transfer Buffer containing

methanol using the XCell IITM Blot Module (Invitrogen) as per

the manufacturer’s instructions. Following transfer, the mem-

branes were rinsed in PBS and blocked in PBS-T+5% milk [PBS

0.1% Tween-20, 5% (w/v) milk] for 1 hour at room temperature.

The membranes were then incubated for 1 hour at room

temperature in PBST+5% milk containing antibody. To detect

FLAG-Hsf1, a 1:10000 dilution of anti-FLAG HRP conjugated

antibody was used (Sigma A8592: Gillingham, UK). Membranes

were incubated for 1 hour at room temperature. Membranes were

washed in PBS-T and signals detected using an ECL Western

blotting kit (Amersham: Little Chalfont, Buckinghamshire, UK) as

per the manufacturer’s instructions.

mRNA analyses
HSP90 mRNA levels were measured by qRT-PCR. C. albicans

cells were grown in YPD at 30uC to mid-log phase (OD600 = 0.5),

harvested and frozen rapidly in liquid N2. RNA was extracted with

Triazol (GibcoBRL: Grand Island, NY) as described previously

[78], and RNA integrity assayed on an Agilent Bioanalyser 2100

(Stockport, UK). For qRT-PCR, samples were incubated at room

temperature for 15 minutes in a 20 ml reaction mix containing

2 mg RNA, 2 ml DNase I buffer (Invitrogen), 1.5 ml DNase I and

1.5 ml RNase OUT (Invitrogen). cDNA was prepared using

Superscript II (Invitrogen) as per the manufacturer’s protocol.

Realtime PCR was performed in triplicate in optical multiwall

plate 384 using the LightCycler 480 Probes Master (Roche

Applied Science; Burgess Hill, UK) as previously [79,80]. Briefly,

probes were chosen for the target transcripts, HSP90 and ACT1,

using the ProbeFinder Software Version 2.45 (Roche, www.

universalprobelibrary.com). PCR was performed in a 20 ml

reaction containing 10 ml LightCycler 480 Probes Master Mix,

3 ml of 1:5 diluted cDNA, 0.2 ml of forward and reverse primers,

0.2 ml selective probe (Roche) and 6.4 ml water, PCR grade.

Negative controls were performed using water instead of cDNA.

Reactions were performed in a LightCycler 480 system (Roche

Applied Science) using the following parameters: preincubation at

95uC for 5 minutes, 50 cycles of amplification at 95uC for

10 seconds and 60uC for 30 seconds, and a final cooling at 40uC
for 1 minute. Standard curves were prepared using four dilutions

of the control, wild type. HSP90 mRNA levels were normalised

against the ACT1 mRNA (in arbitrary units).

Model formulation and assumptions
The mathematical model considers the relationship between

Hsf1 and Hsp90. During the course of model development the

following assumptions were made based on data for Hsf1 and

Hsp90:

(1) Constant concentration of [Hsf1]TOTAL = [Hsf1Hsp90]+
[Hsf1]+[Hsf1P]

(whereby Hsf1Hsp90 represents the Hsf1-Hsp90 complex, Hsf1

represents unphosphorylated Hsf1, and Hsf1P represents phos-

phorylated Hsf1);

(2) We assumed the system to be in a homeostatic state before heat

shock, which allowed us to set the model to the steady state for

unstressed conditions;

(3) The following relation holds: Hsf1Hsp900,Hsp900,Hsp90Com-

plex0;

Hsp900<10 Hsf1Hsp900;

Hsp900<0.6 Hsp90Complex0.

(whereby Hsp90 represents free Hsp90, and Hsp90Complex

represents Hsp90 that is complexed with unfolded proteins);

(4) Before stress, the amount of inactive kinase is approximately the

same as the amount of Hsf1 coupled with Hsp90, K0<Hsf1Hsp900.

Analysis of the system
When modelling temperature changes, we assumed that an

active protein kinase, K*, accumulates during heat shock, which

leads to Hsf1 phosphorylation. The activation of K during a heat

shock is characterised by the parameter TK. Additionally, upon

temperature elevation, proteins unfold causing sequestration of

Hsp90, thereby forming Hsp90 complexes with these unfolded

proteins that help them to refold. It is unlikely that both events, K*

accumulation and Hsp90 binding, occur with the same rate

constant. This allowed us to introduce the parameter TH, which

describes this process of Hsp90 complex formation. Hence, when

simulating a heat shock, we perturbed the system through changes

of the parameters TK and TH. For different heat shocks, TK and

TH have different numerical values, which were determined based

on the response of the system (Table 2).

Table 5. C. albicans strains.

Strain Genotype Source

THE1 ade2::hisG/ade2::hisG, ura3::l imm434/ura3::l imm434, ENO1/eno1::ENO1-tetR-ScHAP4AD-3XHA-ADE2 [86]

ML250 ade2::hisG/ade2::hisG, ura3::l imm434/ura3::l imm434, ENO1/eno1::ENO1-tetR-ScHAP4AD-3XHA-ADE2 HSF1/HSF1, pACT1-FLAG-HSF1 this study

doi:10.1371/journal.pone.0032467.t005
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Modelling reaction kinetics and parameter estimation
For modelling we used a set of ordinary differential equations

(ODEs) with mass action or Michaelis Menten kinetics for the

individual reactions (Tables 3–4). Initially, in our model we had 22

unknown kinetic parameters. We assumed the system to be in a

steady state before a stress is imposed, and thus the number of

unknown parameters was reduced to 15. Information about the

total number of molecules per cell for the proteins Hsp90 and Hsf1

is not available for C. albicans, and therefore we estimated the

initial conditions from the model together with other parameters,

using the tool COPASI [81]. In this estimation process we

included a range for the parameter search space for every variable

in the model with the help of the yeast GFP Fusion Localization

Database (http://yeastgfp.ucsf.edu) [82]. We set these ranges

estimating the ratio of Hsf1Hsp900:Hsp900:Hsp90Complex0 to be

conserved at 1:10:100. In addition, we assumed low numbers of

molecules per cell for free Hsf10, Hsf1P0, K*0, I0 and I*0 (with

respect to Hsf1Hsp900). We used the tool COPASI and its in built

Evolutionary Programming algorithm against the experimental

data to estimate these parameters [81]. The algorithm minimized

the sum of squared differences between model simulation results

and experimental data [83].

The initial conditions, the system of ODEs and the parameter

values are given in Tables 2–5. The full model is available in

systems biology markup language (SBML) file and the model

annotation was done with use of semanticSBML [84]. For

presenting computational results we used Mathematica7 [85].
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