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a b s t r a c t 

The ratiometric fluorescent calcium indicator Fura-2 plays a fundamental role in the investigation of cellular 

calcium dynamics. Despite of its widespread use in the last 30 years, only one publication (Joucla et al., 2010)) 

proposed a way of obtaining confidence intervals on fitted calcium dynamic model parameters from single 

‘calcium transients’. Shortcomings of this approach are its requirement for a ‘3 wavelengths’ protocol (excitation 

at 340 and 380 nm as usual plus at 360 nm, the isosbestic point) as well as the need for an autofluorence / 

background fluorescence model at each wavelength. Here, we propose a simpler method that eliminates both 

shortcommings: 

1. a precise estimation of the standard errors of the raw data is obtained first, 

2. the standard error of the ratiometric calcium estimator (a function of the raw data values) is derived using 

both the propagation of uncertainty and a Monte-Carlo method. 

Once meaningful standard errors for calcium estimates are available, standard errors on fitted model parameters 

follow directly from the use of nonlinear least-squares optimization algorithms. 
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Specifications table 

Subject Area: Neuroscience 

More specific subject area: Intracellular calcium dynamics 

Method name: Simple and quick standard error on the ratiometric calcium estimator 

Name and reference of original 

method: 

Sébastien Joucla, Andreas Pippow, Peter Kloppenburg and Christophe Pouzat (2010) 

Quantitative estimation of calcium dynamics from ratiometric measurements: A direct, 

non-ratioing, method Journal of Neurophysiology 103: 1130-1144 

Resource availability: Python codes, data and all the information required to reproduce the manuscript 

results can be found on GitLab: 

https://gitlab.com/c _ pouzat/gettingse- on- ratiometric- ca- estimator 

Method overview 

Rational 

Since its introduction by Grynkiewicz et al. [2] , the ratiometric indicator Fura-2 has led to a

revolution in our understanding of the role of calcium ions (Ca 2+ ) in neuronal and cellular function.

This indicator provides a straightforward estimation of the free Ca 2+ concentration ([Ca 2+ ]) in neurons

and cells with a fine spatial and time resolution. The experimentalist must determine a ‘region

of interest’ ( ROI ) within which the [Ca 2+ ] can be assumed to be uniform and is scientifically

relevant. Fluorescence must be measured following excitation at two different wavelengths: typically 

around 340 and 380 nm; and, since cells exhibit autofluorescence or ‘background fluorescence’ 

at those wavelengths, the measured fluorescence intensity is made of two sources: the Fura-2

linked fluorescence and the autofluorescence. The measured intensity within the ROI is therefore 

usually corrected by subtrating from it an estimation of the autofluorescence intensity obtained from 

simultaneous measurements from a ‘background measurement region’ ( BMR ); that is, a nearby region

where there is no Fura-2. At a given time the experimentalist will therefore collect a fluorescence

intensity measurement from the ROI at 340 and 380 nm; we are going to write adu 340 and adu 380 

these measurements, where ‘adu’ stands for ‘analog to digital unit’ and corresponds to the raw output

of the fluorescence measurement device, usually a charge-coupled device ( CCD ); if the experimentalist

is careful not to saturate the sensor, the adu count is proportional to the number of photo-electrons

present in the pixel, or in the group of pixels when on-chip binning is used, at the end of the exposure

period. The experimentalist will also collect intensity measurements from the BMR, measurements 

that we are going to write adu 340 ,B and adu 380 ,B . If P CCD pixels make the ROI and P B pixels make

the BMR and if the illumination time at 340 nm is T 340 , while the illumination time at 380 nm is T 380 

(both times are measured in s ), the experimentalist starts by estimating the fluorescence intensity per

pixel per time unit following an excitation by a light flash of wavelengths λ ( λ = 340 or 380 nm) as:

f λ = 

1 

T λ

(
adu λ

P 
− adu λ, B 

P B 

)
, with λ = 340 or 380 nm , (1) 

where an assumption of autofluorescence uniformity is implicitly made. The following ratio is then 

computed: 

r = 

f 340 

f 380 
. (2) 

This is an important and attractive feature of the method as well as the origin of its name. Since only

ratios are subsequently used, geometric factors like the volume of the Fura loaded region under the

ROI do not need to be estimated. 

The estimated [Ca 2+ ] that we will write ̂ Ca for short (the ’ ̂  ’ sign is used for marking estimated

values) is then obtained, following [2 , Eq. (5) , p. 3447], with: 

̂ Ca = K e f f 

r − R min 

R max − r 
, (3) 

https://gitlab.com/c_pouzat/gettingse-on-ratiometric-ca-estimator
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here K e f f (measured in μM), R min and R max are calibrated parameters (the last two parameters are

atios and are dimensionless). R min is the ratio ( Eq. (2) ) observed in the absence of calcium, while

 max is the ratio observed with a saturating concentration. K e f f is the calcium concentration at which

he ratio is half way between R min and R max . If a set of experiments is performed on a given cell

ype with the same batch of Fura, as in the companion paper [3] , the calibration errors on these

hree parameters will be the same for each experiment. If different cell types are considered and/or

ifferent Fura batches are used, the calibration errors should be taken into account before making

omparison of estimated calcium dynamics parameters (see [1] for discussion). 

If we now want to rigorously fit [Ca 2+ ] dynamics models to sequences of ̂ Ca , we need to get

tandard errors , σ̂ Ca 
, on our estimates. This is where the ratiometric method gets ‘more involved’, at

east if we want standard errors from a single transient as opposed to a mean of many transients. We

ypically work ( e.g. [1,3] ) in a setting, using the so called ‘added buffer approach’, where we cannot get

ore than a single transient in given conditions since Fura is constantly diffusing into the recorded

ell modifying thereby the time constant of calcium transients. It is worth pointing out that there is a

ore general interest in obtaining standard errors from a single transient: getting these fluorescence

easurements requires shining UV light on the neurons we are recording from and generates

hotodamage. Despite the ubiquity of ratiometric measurements in neuroscience and cell physiology,

e are aware of a single paper–by some of us [1] –where the ’standard error question’ was directly

ddressed. The method proposed in [1] requires a 3 wavelengths protocol: measurements at 340, 380

nd 360 (the isosbestic wavelength) nm; it drops, so to speak, the above advantage of working with a

atiometric estimator since it fits directly the adu 340 and adu 380 data (at the cost of estimating some

eometry related parameters) and it requires a model of the autofluorescence dynamics if the latter is

ot stationnary. It therefore requires a slightly more complicated ’3 wavelengths’ recording protocol as

ell as a more involved fitting procedure. The dataset of the companion paper [3] exhibits a clear but

eversible autofluorescence rundown that cannot be ignored since autofluorescence accounts for half

f the signal in the ROI. Rather that constructing / tailoring the accurate enough autofluorence models

equired by the ’direct approach’ of [1] we looked for an alternative method providing standard errors

or the ratiometric estimator. 

atiometric estimator variance 

luorescence intensity 

As detailed in [1,2] , the fluorescence intensities giving rise to the adu 340 , adu 340 ,B , adu 380 and

du 380 ,B signals can be written as: 

I 340 = 

{
[ F ura ] total φ

K F ura + [ Ca 2+ ] 

(
R min K e f f + R max [ Ca 2+ ] 

)
+ F 340 B 

}
T 340 P , (4)

I 340 B = F 340 B T 340 P B , (5)

I 380 = 

{
[ F ura ] total φ

K F ura + [ Ca 2+ ] 

(
K e f f + [ Ca 2+ ] 

)
+ F 380 B 

}
T 380 P , (6)

I 380 B = F 380 B T 380 P B , (7)

here F λB is the autofluorescence intensity per pixel per time unit at wavelength λ, K F ura is the Fura

issociation constant (a calibrated parameter measured in μM), [ F ura ] total , is the total (bound plus

ree) concentration of Fura in the cell (measured in μM) and φ is an experiment specific parameter

measured in 1 /μM/s ) lumping together the quantum efficiency, the neurite volume, etc (see [1] for

etails). 



4 S. Hess, C. Pouzat and P. Kloppenburg / MethodsX 8 (2021) 101548 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recorded signals adu 340 , adu 340 ,B , adu 380 and adu 380 ,B 

As detailed and discussed in [1,4] , the signal adu λ recorded with a CCD chip whose gain is G and

whose read-out variance is σ 2 
read−out 

can be modeled as the realization of a Gaussian random variable

ADU λ with parameters: 

μADU λ
= G I λ , (8) 

σ 2 
ADU λ

= G μADU λ
+ G 

2 P σ 2 
read−out , (9) 

with the obvious adaptation when dealing with the BMR signal: I λ is replaced by I λB and P is replaced

by P B . Parameters G and σ 2 
read−out 

are CCD chip parameters provided by the manufacturer. Calibration

procedures are discussed in [1,4] and a comprehensive example with data and codes can be found in

[5] . Our experience is that the values provided by manufacturers are good starting points; the user

calibrated read-out noise is sometime slightly larger than the one specified by the manufacturer. 

Variance estimates for adu 340 , adu 340 ,B , adu 380 and adu 380 ,B 

So, to have the variance of ADU λ we need to know I λ and for that we need to know [ Ca 2+ ] ( Eqs. (4)

and (6) ) precisely what we want to estimate. But the expected value of ADU λ is G I λ ( Eq. (8) ), we can

therefore use as a first approximation the observed value adu λ of ADU λ as a guess for G I λ, so in

Eq. (9) we plug-in adu λ for G I λ, leading to: 

ˆ σ 2 
ADU λ

= G adu λ + G 

2 P σ 2 
read−out ≈ σ 2 

ADU λ
. (10) 

In other words, we will use the observed adu λ as if it were the actual fluorescence intensity times the

CCD chip gain, ADU λ = G I λ, in order to estimate the variance. In doing so we will sometime slightly

underestimate the actual variance (when the observed adu λ turns out to be smaller than ADU λ) and

sometime slightly overestimate it (when the observed adu λ turns out to be larger than ADU λ). Since

we are going to combine many such approximations, we expect–and we will substantiate this claim

in Section 3 –that overall the under-estimations will be compensated for by the over-estimations. 

Variance estimate for ̂ Ca 

Now that we have a ˆ σ 2 
ADU λ

we can work with – that is, an estimate from the data alone –, we

want to get ˆ σ 2 
r ( Eq. (2) ) and ˆ σ 2 ̂ Ca 

. We can either use the propagation of uncertainty (also referred to

as error propagation, compounding of errors or delta method ) [6,7] together with Eqs. (2) and (3) , or

a ’quick’ Monte Carlo approach. We drop any explicit time index in the sequel in order to keep the

equations more readable, but it should be clear that such variance estimates have to be obtained for

each sampled point. 

Propagation of uncertainty 

This method requires, in the general case, an assumption of ‘small enough’ standard error since

it is based on a first order Taylor expansion (see Section Appendix A for details). It leads first to the

following expression for the variance, ˆ σ 2 
f λ

, of f λ in Eq. (1) : 

ˆ σ 2 
f λ

≈ 1 

T 2 
λ

( 

ˆ σ 2 
ADU λ

P 2 
+ 

ˆ σ 2 
ADU λB 

P 2 
B 

) 

. (11) 

The variance ˆ σ 2 
r of r in Eq. (2) is then: 

ˆ σ 2 
r ≈ 1 

f 2 
380 

( ̂  σ 2 
f 340 

+ r 2 ˆ σ 2 
f 380 

) (12) 

and the variance ˆ σ 2 ̂ Ca 
of ̂ Ca in Eq. (3) is: 

ˆ σ 2 ̂ Ca 
≈

(
K e f f 

)2 

(1 + ̂

 Ca ) 2 ˆ σ 2 
r . (13) 
R max − r 

https://en.wikipedia.org/wiki/Propagation_of_uncertainty
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Fig. 1. Observed (red) and simulated (blue) ADU at 340 (left) and 380 nm (right) for the first transient (only the late phase of 

the transient was simulated). 
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 remark on ˆ σ 2 ̂ Ca 
behavior 

The last three Eqs. (11) –(13) can be used together with Eqs. (8) and (9) to understand why ˆ σ 2 
Ĉa

ill increase with the calcium concentration and therefore why a weighted nonlinear least-square

rocedure is required [8–10] in order to get proper confidence intervals on calcium dynamics model

arameters. Eq. (9) tells us that the variance of the raw signals is an increasing linear function of their

eans. When the calcium concentration increases, the recorded signal at 340 nm increases while the

ne at 380 nm decreases ( Fig. 1 ). So according to Eq. (11) , ˆ σ 2 
f 340 

increases while ˆ σ 2 
f 380 

decreases in

roportion to [Ca 2+ ]. From Eq. (12) we see that ˆ σ 2 
r also increases since ˆ σ 2 

f 340 
does increase and r 2 ˆ σ 2 

f 380 

s roughly proportional to f 2 
340 

/ f 380 and increases. Then from Eq. (13) we see that r is getting closer

o R max , therefore the denominator is decreasing, while we just argued that ˆ σ 2 
r increases. Together,

he two imply that ˆ σ 2 ̂ Ca 
is an increasing function of [Ca 2+ ]. This can be seen on the bottom panel of

ig. 2 where the error bars on the left side (corresponding to larger [Ca 2+ ]) are about twice as large

s the ones on the right side (corresponding to smaller [Ca 2+ ]). 

onte-Carlo method 

Here we draw, k quadruple of vectors (
ad u 

[ j] 
340 

, ad u 
[ j] 
340 B 

, ad u 
[ j] 
380 

, ad u 
[ j] 
380 B 

)
, j = 1 , . . . , k , 

rom four independent Gaussian distributions of the general form: 

ad u 
[ j] 

λ
= ad u λ + z 

[ j] 

λ
ˆ σADU λ

, (14)

here adu λ is the observed value and z 
[ j] 

λ
is drawn from a standard normal distribution. We then

lug-in these quadruples into Eq. (1) leading to k couples: 

f 
[ j] 
340 

= 

1 

T 340 

( 

adu 
[ j] 
340 

P 
− adu 

[ j] 
340 B 

P B 

) 

, 

f 
[ j] 
380 

= 

1 

T 380 

( 

adu 
[ j] 
380 

P 
− adu 

[ j] 
380 B 

P B 

) 

, j = 1 , . . . , k . 
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Fig. 2. Top: Simulated ratiometric estimator - ‘actual’ [Ca 2+ ] divided by ratiometric estimator standard error (if everything goes 

well we should see draws from a standard normal distribution); bottom: Simulated ratiometric estimator (with error bars given 

by the standard error) in black and ‘actual’ [Ca 2+ ] in red. 

 

 

 

 

 

 

 

 

 

These k couples are ‘plugged-in Eq. (2) ’ leading to k r [ j] : 

r [ j] = 

f 
[ j] 
340 

f 
[ j] 
380 

j = 1 , . . . , k , 

before plugging in the latter into Eq. (3) to get k ̂ Ca 
[ j] 

: 

̂ Ca 
[ j] = K e f f 

r [ j] − R min 

R max − r [ j] 
j = 1 , . . . , k . 

The empirical variance of these simulated observations will be our ˆ σ 2 ̂ Ca 
: 

ˆ σ 2 ̂ Ca 
= 

1 

k − 1 

k ∑ 

j=1 

( ̂  Ca 
[ j] − ̂ Ca •) 2 , where ̂ Ca • = 

1 

k 

k ∑ 

j=1 ̂

 Ca 
[ j] 

. (15) 

Since the Monte-Carlo method requires milder assumptions (the variances do not have to be small)

and is easy to adapt, we tend to favor it; to be on the safe side, users can use both methods and,

if they disagree, plot a histogram of the ̂ Ca 
[ j] 

to make sure that the discrepancy source is the non-

normality of the latter. 

Comment 

The present approach based on a ˆ σ 2 ̂ Ca 
estimation is slightly less rigorous than the ‘direct approach’

of [1] but it is far more flexible since it does not require an independent estimation / measurement

of [ F ura ] total . In line with the discussion following Eq. (3) , in the companion paper [3] we chose to

consider the calibrated parameters K e f f , R min and R max as fixed. 

Empirical validation 

Rational 

Eqs. (4) –(7) , together with Eqs. (8) and (9) can be viewed as a data generation model. This means

that if we choose model parameters values as well as an arbitrary [Ca 2+ ] time course, we can simulate

measurements ( adu ) at both wavelengths in the ROI as well as in the BMR. We can then use these
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Table 1 

’Static’ parameters used for the 

simulation. 

Parameter Value 

R min 0.147 

R max 1.599 

K e f f 1.093 ( μM) 

K Fura 0.225 ( μM) 

[ F ura ] total φ 1.89e+05 ( s −1 ) 

T 340 0.01 (s) 

T 380 0.003 (s) 

P 3 

P B 448 

G 0.146 

σ 2 
read−out 

268.96 

F 340 B 189512 ( s −1 ) 

F 380 B 711589 ( s −1 ) 

Table 2 

Calcium dynamics parameters 

used for the simulation. Time 

0 is when seal is obtained. 

Parameter Value 

t 0 2283.415 (s) 

Ca 0 0.059 ( μM) 

δ 0.114 ( μM) 

τ 2.339 (s) 

s  

w

 

t

s

S

 

‘  

a

a  

c

 

d  

i

imulated adu exactly as we used the actual data, namely get r(t i ) ( Eq. (2) ) and 

̂ Ca (t i ) ( Eq. (3) ) as

ell as the (squared) standard errors ˆ σ 2 ̂ Ca 
(t i ) ( Section 2.4 ). 

Now if the ˆ σ 2 ̂ Ca 
(t i ) are good approximations for the actual but unknown σ 2 

Ca 
(t i ) , the distribution of

he normalized residuals : 

̂ Ca (t i ) − Ca (t i ) 

ˆ σ̂ Ca (t i ) 
, 

hould be very close to a standard normal distribution. This is precisely what we are going to check . 

imulated data 

We are going to use the first transient of dataset DA_121219_E1 of the companion paper [3] . The

static’ parameters – that is the parameters not link to the calcium dynamics – used for the simulation

re the actual experimental parameters rounded to the third decimal ( Table 1 ). 

The simulated calcium dynamics is a monoexponential decay mimicking the tail of the transient: 

Ca (t) = Ca 0 + 

{
0 if t < t 0 
δ exp (−(t − t 0 ) /τ ) if t ≥ t 0 

nd the parameter values ( Table 2 ) are just a rounded version of the fitting procedure output (see

ompanion paper [3] ). 

The simulated data obtained in that way are shown on Fig. 1 (blue traces) together with the actual

ata (red curves) they are supposed to mimic. At a qualitative level at least, our data generation model

s able to produce realistic looking simulations. 



8 S. Hess, C. Pouzat and P. Kloppenburg / MethodsX 8 (2021) 101548 

Fig. 3. Empirical cumulative distribution function (ECDF) of the normalized residuals (red) together with 95% (grey) and 99% 

(blue) Kolomogorov confidence bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software and simulation details 

The methodological details of the measurements to which the analysis presented in the present

manuscript was applied are described in the companion paper [3] . 

The simulations, computations and figures of the present manuscript were done with Python 3 
( https://www.python.org/ ), numpy ( https://numpy.org/ ), scipy and matplotlib ( https://matplotlib. 

org/ ). The Python codes and the data required to reproduce the simulations and figures

presented in this manuscript can be downloaded from GitLab ( https://gitlab.com/c _ pouzat/ 

getting- se- on- ratiometric- ca- estimator ). 

The use of scipy was kept to a bare minimum to maximize code lifeduration ( scipy tends to

evolve too fast with minimal concern for backward compatibility). The random number generators 

used were therefore the ones of numpy : the uniform random number generator derives from

the Permuted Congruential Generator (64-bit, PCG64) ( https://www.pcg-random.org/ ) 

[11] while the normal random number generator is an adaptation of the Ziggurat method [12] of

Julia ( https://docs.julialang.org/en/v1/ ); unfortunately one has to check the source code of both 

numpy and Julia to find that out. 

Are the standard errors of ratiometric estimator accurate? 

Since the two ˆ σ 2 ̂ Ca 
estimation methods, propagation of uncertainty and Monte-Carlo, agree at each 

time point within 2%, we illustrate in this section the results obtained with the Monte-Carlo method. 

We take next the simulated data (blue curves on Fig. 1 ) together with the simulated background

signals (not shown) as if they were actual data and we compute the ratiometric estimator and its

standard error as described in Section 2.4 , using k = 10 4 replicates. Fig. 2 shows the standardized

residuals as well as the simulated data together with the true [Ca 2+ ], we know it since we used it to

simulate the data! 

The upper part of Fig. 2 is only a qualitative way of checking that the normalized residuals follow

a standard normal distribution. A quantitative assessment is provided by the Shapiro-Wilk W statistic, 

that is here: 0.987 ; giving a p-value of 0.128 . There is therefore no ground for rejecting the null

hypothesis that the normalized residuals are IID draws from a standard normal distribution. 

As an additional, visual but less powerful test, we plot the empirical cumulative distribution

function (ECDF) of the normalized residuals together with the theoretical (normal) one and with 

Kolmogorov ’ s confidence bands ( Fig. 3 ). If the empirical ECDF arises from a normally distributed

sample with mean 0 and SD 1, it should be completely contained in the 95% confidence band 95% of

https://www.python.org/
https://numpy.org/
https://matplotlib.org/
https://gitlab.com/c_pouzat/getting-se-on-ratiometric-ca-estimator
https://www.pcg-random.org/
https://docs.julialang.org/en/v1/
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Kolmogorov_distribution
https://en.wikipedia.org/wiki/Confidence_and_prediction_bands
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he time and in the 99% band, 99% of the time (these are confidence bands not collections of pointwise

onfidence intervals). 

We conclude from these visual representations and formal tests that our normalized residuals

ollow the expected standard normal distribution, implying that our proposed method for getting the

tandard errors of the ratiometric estimator is fundamentally correct. 

iscussion 

We have presented a new and simple method for getting standard errors on calcium concentration

stimates from ratiometric measurements. This method does not require any more data than what

xperimentalists using ratiometric dyes like Fura-2 are usually collecting: measurements at 340 and

80 nm both within a region of interest and within a background measurement region. Once the

rrors bars have been obtained, arbitrary models can be fitted to the calcium transients – by weighted

onlinear least-squares [10] – and meaningful confidence intervals for the parameters of these models

ill follow as illustrated in the companion paper [3] . The present contribution is therefore best

iewed as a major simplification of the ‘direct approach’ of [1] . In contrast to the latter, the new

ethod does not require a ‘3 wavelengths protocol’, it does not require either a precise fit of the

utofluorescence dynamics at the three wavelengths and is therefore much easier to implement. We

rovide moreover two independent implementations, one in C and one in Python , they are open

ource and freely available. The rather verbose Python implementation of the heart of the method

 Section 2.4 ) requires 25 lines of code and nothing beyond basic numpy functions. We are therefore

onfident that this method could help experimental physiologists getting much more quantitative

esults at a very modest extra cost. 
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This manuscript is a co-submission associated with Analysis of neuronal Ca 2+ handling properties
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ppendix A Propagation of uncertainty 

We outline in this section how to reach Eqs. (11) –(13) of Section 2.4.1 . We first need to remember

hat is X and Y are two independent random variables with mean E X = μX and E Y = μY and variance

 X = σ 2 
X and V Y = σ 2 

Y , then if Z = a + bX + cY ( a, b, c ∈ R ) we have: 

E Z = a + b μX + c μY , 

V Z = b 2 σ 2 
X + c 2 σ 2 

Y . 

q. (11) is a direct consequence of the last equality. If X is (approximately) normally distributed with

 X ∼ N (μX , σ
2 
X ) ) as well as Y , we can write: X ≈ μX + Z 1 σX and Y ≈ μY + Z 2 σY , where Z 1 and Z 2 are

ndependent and follow a standard normal distribution, N (0 , 1) . If now Z = f (X, Y ) and the partial

erivatives of f at (μX , μY ) exist then: 

Z = f (μX + Z 1 σX , μY + Z 2 σY ) 

≈ f (μX , μY ) + Z 1 σX 
∂ f (μX , μY ) 

∂X 
+ Z 2 σY 

∂ f (μX , μY ) 

∂Y 
. 

his is just a first order Taylor expansion and that is where the ‘small enough standard error’

ssumption is necessary. Z is then (approximately) a linear combination of two independent standard

https://doi.org/10.1016/j.ceca.2021.102411
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Fig. 4. Autofluorescence at 3 excitation wavelengths, 340 nm (red), 360 (blue), 380 (brown). Both during low frequency 

Stimulation (four portions made of dots) and during the transients where a higher frequency stimulation was applied (3 groups 

with almost vertical lines). 
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normal random variables and we immediately get: 

E Z = f (μX , μY ) , 

V Z = 

(
∂ f (μX , μY ) 

∂X 

)2 

σ 2 
X + 

(
∂ f (μX , μY ) 

∂Y 

)2 

σ 2 
Y . 

Eq. (12) follows directly by computing the necessary partial derivatives, while Eq. (13) requires the

computation of a single derivative. 

Appendix B Auto-fluorescence dynamics 

B1 General features 

The evolution of the aduλB is shown on Fig. 4 . We see that the autofluorescence runs down when

high frequency flashes are applied during the 3 transients, with a partial recovery between transients.

B2 Within transient dynamics 

The ‘direct method’ of [1] requires the knowledge of the autofluorescence value at each time point

during a transient at both 340, 360 and 380 nm, since Eqs. (4) and (6) are fitted directly to the

recorded adu 340 and adu 380 and they depend on the total Fura concentration at transient time that

is estimated from the difference of the 360 nm measurements in the ROI and the BMR. We therefore

take a closer look a the autofluorescence dynamics during the first transient ( Fig. 5 ). 

At that stage we can fit a straight line plus a cosine function whose period is the duration of

a transient. That’s a good way to capture the main structure in the transient, but is still does not

account for the full signal variability ( Fig. 5 ). As can be seen from the normalized residuals – the

residuals divided by the standard deviation – that should be very nearly independent random draws 

from a standard normal distribution if the model is correct, there are finer structures left (like the

double valley on the 380 nm residuals) meaning that those fits won’t pass formal goodness of fit

tests. Indeed if we apply Pearson’s χ2 tests to these stabilized residuals we get: 

at 340 nm a residual sum of squares (RSS) 326 , leading to a P (χ2 
197 

> 326) = 0.0 , 
at 360 nm a RSS of 288 , leading to a P (χ2 

197 > 288) = 2.6e-05 , 
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Fig. 5. Normalized autofluorescence at 3 excitation wavelengths, 340 nm (red), 360 nm (blue) and 380 (brown) during the first 

transient. At each wavelength, the normalization is performed by dividing each value by the maximal one. 

Fig. 6. Bottom: Autofluorescence (red) at 340 nm (left), 360 nm (middle) and 380 nm (right) together with a straight line plus 

cosine function fit (blue). Top, the normalized residuals: ( adu − fit ) / 
√ 

G fit + P B G 2 σ 2 
read−out 

. 

•

 

 

a

at 380 nm a RSS of 275 , leading to a P (χ2 
197 

> 275) = 0.000203 . 

We are then left with three possibilities: 

1. try to refine the ‘straight line plus cosine function’ empirical model in order to get acceptable

fits, 

2. try to get a better understanding of the autofluorescence dynamics, 

3. find another way to get error bars on our estimates. 

Since we wanted to propose an ‘as general and easy as possible’ method we chose the third

pproach in the present manuscript. 
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