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Abstract: Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins,
that promote their survival and cause serious damage to the host. Host cells reply to membrane
stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional
and translational level, to recover from the toxin attack. The fact that the majority of the
human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells
deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e.,
host translation—to counteract the infection? Here, we discuss the intriguing possibility that
membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding
RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding
target mRNAs to depress their translation efficiency. Unravelling the function of host-produced
lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host
lncRNA expression patterns, their association with polysomes and their function during this stress.
This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel
approaches to counteract antibiotic-resistant infections.

Keywords: host–pathogen interaction; bacterial toxins; pore-forming toxins (PFTs); long non-coding
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1. Membrane Damaging Toxins, Osmotic Imbalance and Translation

According to the World Health Organization (WHO), drug-resistant pathogenic bacteria are
estimated to cause 25,000 deaths every year in the European Union alone. These bacteria also lead to
high medical costs, prolonged hospital stays and increased mortality [1]. Bacterial pathogens possess
a plethora of strategies to subvert host defenses, by secreting biological macromolecules, such as
toxins [2,3], which promote bacterial survival within the host environment, for example, by escaping
recognition from the immune response. Infections mediated by pathogens often impact the protein
synthesis efficiency of the host cell, limiting the production of proteins involved in cellular recovery,
like cytokines [4]. Protein synthesis is, in fact, the most energy consuming cellular process, justifying
why cells have evolved finely tuned translational control mechanisms to conserve energy and respond
quickly to stimuli, if needed [5]. Thus, it is reasonable to presume that translation regulation should be
tightly modulated upon bacterial infection through, as yet, poorly understood mechanisms.

One of the most ancient forms of attack exerted by bacterial virulence factors is the formation of
proteinaceous pores that cross plasmatic or intracellular membranes [3,6]. These proteins, called
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Pore-Forming Toxins (PFTs), account for about 25–30% of all bacterial toxins [7]. The intimate
relationship between different PFTs and host cell membranes is based on an amazingly large variety
of highly specific interactions between toxins and various types of host receptors: sugars, membrane
lipids or proteins. While different PFTs use different binding strategies, they all share a common
multi-step mechanism of action, for pore formation: (i) release of water-soluble monomers, (ii) binding
of monomers to the target membrane, (iii) oligomerization in a non-lytic pre-pore, (iv) insertion of the
pore-forming protein portion into the lipid bilayer and opening of nanosized aqueous pores in the
host membrane [3,8]. At high toxin doses, this intimate inter-species interaction leads to a massive
number of pores, followed by an ionic imbalance [9,10] and indirect or direct membrane damage [8,11].
Cells reply to the osmotic stress by deploying sophisticated mechanisms that counteract the damaging
effects of toxins [9,12]. If the activation of host survival or membrane repair mechanisms [10] does not
succeed in opposing the stress, cells die, via apoptosis, necrosis or membrane damage. Activation of
autophagy and necroptosis have been described as responses to many PFTs, such as aerolysin, vibrio
cholerae cytolysin (VCC), S. aureus cytolysins [3] and listeriolysin O (LLO) [13]. Even at sub-lytic doses,
the binding of toxin monomers or the insertion of a few pores into membranes are still able to provoke
extremely diverse cellular responses [11,14]. In fact, the local perturbation of the lipid bilayer upon
toxin binding can impact the physiology of the host membrane, by rewiring the physico-chemical
organization of the lipid bilayer and altering the proper functionality of host membrane proteins
involved in intracellular signaling [15,16].

The proteinaceous pores formed in the host membrane have a wide variety of ionic selectivity
and distribution of lumen diameters, ranging from few to tens of nanometers [17]. In any case the pore
induces a re-equilibration of ion concentrations across the plasma membrane, resulting in calcium influx
and potassium efflux. By a still unclear mechanism, cells are able to detect decreases in the cytosolic
potassium concentration, caused by changes in membrane permeability [18]. Calcium is a potent
secondary messenger in cells and its ionic imbalance triggers the activation of various signaling cascades
to repair the damaged membrane and restore homeostasis. Calcium release from intracellular stores
was shown to induce Endoplasmic Reticulum (ER) stress, activating the Unfolded Protein Response
(UPR), Ca2+ dependent proteases, and Ca2+ dependent membrane repair strategies [19]. In addition,
the activation of several defense mechanisms, such as MAPK/p38/ERK/JNK, AKT/mTORC
pathways [3,18,20] and the inflammasome complex, have been observed [18].

All these events act in concert to control protein synthesis. Potassium efflux induces a transient stop
in protein synthesis upon PFT treatment [14,18], a somehow expected outcome since translation can be
controlled directly [21] or indirectly through ion fluxes [22]. Moreover, the abovementioned activation
of MAPK/p38/ERK/JNK and AKT/mTORC controls the functionality of general translational factors,
i.e., eIF4E, eIF2α and eEF2 [5]. Similarly, the crosstalk between potassium efflux and calcium influx
can activate the PERK signaling pathway through the UPR, a sensor of ER stress. PERK controls
translation via phosphorylation of eIF2α, thereby globally suppressing translation initiation [23].
Overall, the equilibrium between activation and inactivation of translation factors allows cells to
enter a low-energy consumption state, in parallel to a rewiring of protein synthesis. Such expedients
can facilitate cell survival until recovery of membrane integrity, pointing towards translation as a major
hub in promoting cell endurance upon infection and osmotic stress.

Despite this evidence, very few studies have explored the global landscape of changes at the
translational (Table 1) or transcriptional [7] levels, occurring as a host response to virulent attacks.
Indeed, most of the available studies have focused on transcriptional variations induced by defined
immune-stimulatory ligands, such as lipopolysaccharide, with a very recent exception where the host
translation response to pathogen infection was monitored by ribosome profiling [24]. Given these
still sparse observations, a clear gap of knowledge exists on the precise involvement of translational
control in tuning host protein synthesis after exposure to pathogens. This fact preludes a new and
interesting field of investigation.
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Table 1. Genome-wide translatome/protein synthesis analyses of host response to virulent factors.

Method System Reference

Ribosome profiling macrophages infected with the intracellular
bacterial pathogen Legionella pneumophila [24]

Ribosome profiling macrophages treated with LPS [25]

Sucrose gradient ultracentrifugation
followed by microarray analysis

SH-SY5Y cells treated with lytic and sub-lytic
doses of α-haemolysin [14]

Pulsed SILAC proteomics dendritic cells treated with LPS [26]

Sucrose gradient ultracentrifugation
followed by PCR array analysis

RAW 264.7 murine macrophages treated with
ribotoxic mycotoxin DON [27]

Sucrose gradient ultracentrifugation
followed by microarray analysis

human monocyte-derived dendritic cells
treated with LPS [28]

Sucrose gradient ultracentrifugation
followed by microarray analysis macrophage-like J774.1 cells treated with LPS [29]

2. Host Long Non-Coding RNAs (LncRNAs): An Overlooked Toolkit for Controlling Gene
Expression in Host–Pathogen Interaction Studies

Non-coding RNAs (ncRNAs) are very good candidates for the specific and tight regulation
of protein synthesis in cells experiencing stresses, such as pore formation and ionic imbalance.
Among ncRNAs, long non-coding RNAs (lncRNAs) represent a long-time neglected class of molecules,
found in animals and plants. What is striking is that in humans, the number of genes encoding for
lncRNAs almost matches the number of protein-coding genes [30]. Importantly, the Encyclopedia of
DNA Elements (ENCODE) project, as well as the RIKEN Functional Annotation of the Mammalian
Genome (FANTOM 5) consortium, proposed a biochemical function for most lncRNAs. Even if the
scientific community is far from being concordant on this matter, with many scientists arguing that
the term “functional” is misleading, it is possible that the production of these RNAs represents an
ideal playground for evolving new mechanisms to control gene expression across all levels, from
transcription to translation.

LncRNAs are a sub-group of non-coding RNAs, loosely defined as transcripts that are longer than
200 nt with no apparent protein coding potential. They can be classified according to two criteria: their
genomic position and their mechanism of action or function (Table 2). A significant fraction of lncRNAs
appears to be 5′-capped and polyadenylated [31], and presents a similar chromatin arrangement to
their actively-transcribed, protein-coding counterparts [32]. However, they do share some common
characteristics that distinguish them from bona fide protein coding mRNAs (Table 3).

Table 2. Classification of lncRNAs according to genomic position or mechanism function.

Genomic Position Mechanism or Function

Name Description Reference Name Description Reference

Intergenic
lncRNAs

(lincRNAs)

do not overlap with any
part of a protein coding
gene and are at least 1 kb
distant from it

[33]
Competing
endogenous

RNAs (ceRNAs)

also called miRNA
“sponges”, which
participate in a
microRNA-dependent
crosstalk. These
lncRNAs share miRNA
response elements
(MREs) with some
mRNAs, thereby
sequestering miRNAs

[34]
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Table 2. Cont.

Genomic Position Mechanism or Function

Name Description Reference Name Description Reference

Trans-Natural
Antisense

Transcripts (NATs)

antisense lncRNAs
acting on mRNAs and
complementary to
transcripts from
remote loci.

[35] Protein “sponges”

bind regulatory proteins,
disabling them from
interacting with their
potential targets

[36]

Cis-Natural
Antisense

Transcripts (NATs)

antisense lncRNAs
acting on mRNAs.
These lncRNAs are
transcribed from the same
genomic region as
their complementary
sense transcript

[35] Scaffolding
lncRNAs

act as a scaffold for
multiple chromatin
remodelling complexes

[37]

Sense-overlapping
or transcribed
pseudogene

lncRNAs

are considered transcript
variants of protein
coding mRNAs, and
overlap with a protein
coding gene on the same
DNA strand

[38] SINEUPs

antisense lncRNAs
that stimulate
cap-independent
translation of target
sense mRNAs through
the activity of
an embedded
repetitive element

[39,40]

Intronic lncRNAs

located in the introns of
protein coding genes
without overlapping
with their exons

[41]
Stress-induced

lncRNAs
(silncRNAs)

Induced upon cell stress,
permit a faster recovery
of the cell cycle delay
caused by stress

[42]

Modulators of
Post Translational

Modifications

Act on post-translational
modifications of
proteins, such as
ubiquitination and
phosphorylation

[43]

Table 3. Characteristics of lncRNAs.

Features Reference

Lack of a single long open reading frame (ORF) > 300 nt [44,45]
Low expression levels, compared to mRNAs [46,47]
Longer but fewer exons than protein-coding genes, with a bias toward two-exons transcripts [48]
Exons with a significantly lower GC content, compared to protein-coding RNAs [44]
Paucity or absence of introns [44]
Enrichments in nucleus [49]
High degree of tissue specificity [46,48]
Co-expression with neighboring genes [46]
Low evolutionary conservation of primary sequence [50]

Interestingly, a growing amount of evidence supports the involvement of lncRNAs in regulating
post-transcriptional processes and translation [39]. Surprisingly, several lncRNAs have been found to
associate with ribosomes [51] and polysomes containing one, two or three ribosomes [52,53]. As to what
function they may perform on translation is still a matter of debate. Ribosome profiling experiments
have demonstrated that several lncRNAs are in fact engaged by ribosomes as mRNAs [51], raising
questions about their classification as non-coding. In accordance with this finding, some lncRNAs were
in fact shown to produce short peptides [54] with still unknown functions. Alternative hypotheses to
short-peptide production, propose that lncRNAs can rather serve as scaffolds or regulatory platforms,
facilitating the recruitment of mRNAs on polysomes. New natural antisense lncRNA classes, that
hybridize head-to-head to protein-coding genes, have been described as stimulating cap-independent
and cap-dependent translation of target sense mRNAs [55]. These antisense lncRNAs are in fact
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able to specifically bind to the corresponding sense transcript and, by a still debated mechanism,
function as ‘ribosome recruiters’. The “ribosome recruitment” activity of these lncRNAs, implicated
in cap-independent translation, resides on embedded repetitive elements (SINEB2 in mouse and
FRAM/MIRb in human) [39,40], likely inducing a peculiar RNA structural organization that acts as a
scaffold for ribosome engagement to protein-coding transcripts. Importantly, this activity is completely
independent of transcriptional effects in the sense transcript [39,40].

It is fair to say that when it comes to the involvement of ncRNAs in host–pathogen interaction
studies, the class of lncRNAs has taken the back seat. Most studies on host–pathogen crosstalk are
focused on the role played by small ncRNAs, specifically miRNAs [56–59]. Studies addressing specific
lncRNAs are mainly restricted to their involvement in viral infection [43,56–59]. Indeed, studies
considering the role of host lncRNAs transcription during bacterial infection are currently limited to
only a handful of examples, nicely reviewed very recently [60]. These pioneering studies shed light
on lncRNAs possibly playing an important role in the cell’s response to bacterial infection or in the
induction of inflammation, through Toll-like receptor ligands [61].

3. Are LncRNAs Overlooked Translation Regulators in Host–Pathogen Crosstalk?

To our knowledge, no information has been collected yet concerning the involvement of lncRNAs
in modulating host translation upon either bacterial infection or treatment with virulent factors as PFTs.
Indeed, we illustrated that translation is a major hotspot amid the host–pathogen fight for survival.
Hence, the impact of PFTs in tuning host protein synthesis efficiency to limit the production of proteins,
by triggering the expression and direct recruitment of lncRNAs on ribosomes or polysomes, is likely
more than a simple hypothesis.

Interestingly, combined transcriptomics and proteomics have demonstrated that during
hyperosmotic stress, yeast is able to adapt by deploying numerous lncRNAs. The transcriptional
interplay between stress-activated protein kinases and the induction of a number of non-coding
transcripts [42,62], in turn, regulates the transcription of mRNAs coding for downstream factors of
the MAPK pathway [62]. Despite the lack of clear mechanisms of action, these lncRNAs have the
potential to induce a time-controlled depression of protein synthesis of their target transcripts, helping
adaptation to hyperosmotic conditions [62]. Moreover, in higher eukaryotes, evidence accrued over
the very last few years has revealed several examples of associations between lncRNA expression
and regulation of the MAPK and AKT pathways in cancer [63–65] or of the PERK pathway and ER
stress in viral infections [66]. Even if the cause and effect relationship between lncRNA expression
and modulation of these well-known pathways is not yet clear, it is tempting to speculate that host
cells could take advantage of this class of ncRNAs to finely tune translation and cope with the ionic
imbalance triggered by PFT attack (Figure 1).

Given these observations, discovering the functions of other infection-induced lncRNAs
and determining their mechanism of action will unquestionably expand our knowledge of the
host–pathogen crosstalk. Ribosome profiling and polysome profiling experiments, performed in
cells treated with pathogenic bacteria, could greatly improve our comprehension of the role of
infection-induced lncRNAs in translation control. Comparing the host’s response to invading bacterial
strains, either expressing or lacking specific virulent factors, may give valuable insight into their role
in the host–pathogen crosstalk, yielding important advances in understanding the interaction between
organisms. Moreover, integration of in vivo and in vitro studies, using silencing and in vitro translation
systems, can help to address the coding or non-coding functions of several lncRNAs, already found to
be up- or down-regulated in cells, upon exposure to virulent factors. Therefore, further research on
how cells use lncRNAs to cope with either bacterial infection or the damage caused by PFTs has a huge
potential for unveiling, till now unforeseen, scenarios that might shed new light on host–pathogen
crosstalk and reveal, as yet unpredicted, approaches to counteract antibiotic-resistant infections.
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Figure 1. Hypothesis of interplay between lncRNA expression changes and the control of protein
synthesis upon pore formation. Upon pore formation, efflux of potassium ions and influx of calcium
ions are well known to occur, due to the activity of a large variety of PFTs. A simplified connection
between ion imbalance and the activation of three major pathways is depicted (for a complete discussion
please refer to the excellent review in [12]). These pathways control downstream target proteins,
which are general factors of translation. Straight arrows connect processes related to the activation of
pathways that control translation, proven to be involved in the response to ion imbalance triggered
by pore-forming toxins or bacterial pathogens. In several cases, an association between lncRNA
expression changes and regulation of these pathways has been demonstrated in cancer [63–65] or
viral infections [66]. The cause and effect relationship of lncRNAs expression and the activation of
pathways that control translation is at present not clear, as well as the mechanism of action behind
such a connection. Therefore, we used dashed arrows to link lncRNA expression changes to pathways
controlling translation, a connection that has been demonstrated for some lncRNAs but not with respect
to bacterial infections, ion imbalance or pore formation by bacterial virulent factors.
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