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Abstract
Background: Neurons in the mammalian pretectum are involved in the control of various visual
and oculomotor tasks. Because functionally independent pretectal cell populations show a wide
variation of response types to visual stimulation in vivo, they may also differ in their intrinsic
properties when recorded in vitro. We therefore performed whole-cell patch clamp recordings
from neurons in the caudal third of the pretectal nuclear complex in frontal brain slices obtained
from 3 to 6 week old hooded rats and tried to classify pretectal neurons electrophysiologically.

Results: Pretectal neurons showed various response types to intracellular depolarizations,
including bursting and regular firing behavior. One population of pretectal nuclear complex neurons
could be particularly distinguished from others because they displayed spontaneous activity in vitro.
These cells had more positive resting potentials and higher input resistances than cells that were
not spontaneously active. The maintained firing of spontaneously active pretectal cells was
characterized by only small variances in interspike intervals and thus showed a regular temporal
patterning. The firing rate was directly correlated to the membrane potential. Removing excitatory
inputs by blockade of AMPA and/or NMDA receptors did not change the spontaneous activity.
Simultaneous blockade of excitatory and inhibitory synaptic input by a substitution of extracellular
calcium with cobalt neither changed the firing rate nor its temporal patterning. Each action
potential was preceeded by a depolarizing inward current which was insensitive to calcium removal
but which disappeared in the presence of tetrodotoxin.

Conclusions: Our results indicate that a specific subpopulation of pretectal neurons is capable of
generating maintained activity in the absence of any external synaptic input. This maintained activity
depends on a sodium conductance and is independent from calcium currents.

Background
Neurons in the mammalian pretectal nuclear complex
(PNC) are involved in the control of various oculomotor
reflexes, like the pupillary light reflex and the optokinetic
reflex (OKR). Pupil constriction is controlled by neurons
in the olivary pretectal nucleus that project bilaterally to
the Edinger-Westphal nucleus [1-7]. Slow eye movements

during OKR are generated by neurons in the nucleus of
the optic tract (NOT) and in the adjacent dorsal terminal
nucleus (DTN) of the accessory optic system (AOS) which
project to the inferior olive (IO) and the nucleus preposi-
tus hypoglossi [8-13]. In addition, PNC neurons carry sig-
nals related to saccadic eye movements to the dorsal
lateral geniculate nucleus (LGNd) [14-16] and to the
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extrageniculate thalamus [17]. Other, reciprocal, projec-
tions connect the PNC to its contralateral counterpart, to
the ipsilateral superior colliculus, and to the other AOS
nuclei. The functions of those projections, however, are
still under debate [18-23].

Each projection target receives input from an independent
PNC neuronal population. Therefore, multiple retrograde
tracing, e.g. from contralateral PNC and IO [24], or LGNd
and Pulvinar [25], does not double label PNC cells. Fur-
thermore, neurons with different projection targets show
different response properties in vivo. Thus, neurons
involved in the pupillary light reflex respond tonically to
the overall retinal luminance [1,3,6,26]. OKR-related neu-
rons are directionally selective in response to slow move-
ments of large visual stimuli [8,27-33]. Finally, PNC
neurons that project to thalamic visual centers only
respond to fast moving visual stimuli without directional
selectivity [15,17,25,34-36]. Furthermore, activity pat-
terns of visual responses also differ significantly between
PNC cell populations. Thus, saccade-related PNC neurons
show short high frequency activity bursts, while lumi-
nance neurons or OKR-related neurons exhibit tonic
activity at moderate firing levels. Although such differ-
ences to some extent directly reflect the response proper-
ties of specific input systems, different intracellular
properties might enforce activity patterns provided by dif-
ferent input systems.

We therefore studied intrinsic properties of rat PNC cells
in vitro. In particular, we describe a population of cells in
the caudo-lateral PNC that is characterized by intrinsically
generated spontaneous activity in vitro, which is an unu-
sual property for neurons in a sensory relay structure.

Results
In total, we obtained whole-cell recordings from 114 pre-
tectal nuclear complex (PNC) neurons. Slices included the
caudal part of the pretectum (Fig. 1), cells were recorded
from the NOT, the posterior pretectal nucleus (PPN), and
the olivary pretectal nucleus (OPN). Depolarizing current
injections induced various spike patterns, like bursting
(Fig. 2A,2B,2C), non-adapting regular spiking (Fig. 2D),
or irregular spiking (Fig. 2E). Usually, increasing the cur-
rent amplitude also increased the firing rate, however, in
about 31% (n = 35) of the cells, the firing rate showed a
clear maximum in response to intermediate depolarizing
current injections and decreased upon further depolariza-
tion (Fig. 2C). Input resistances ranged from 201.0 to
776.3 MΩ (mean 410 ± 166.5 MΩ), resting potentials var-
ied between -41.0 and -74.3 mV (mean -54.6 ± 8.5 mV).
All cells tested, irrespective of the response type,
responded to OT stimulation.

Characteristics of spontaneous activity
Of the cells recorded, 73 PNC neurons showed spontane-
ous firing at resting potential. Camera lucida reconstruc-
tions revealed that these cells were characterized by large
fusiform cell bodies (diam. 15 µm and above) and
multipolar dendritic trees that did not show any prefer-
ence in their orientation. Whenever axons were also visi-
ble, they could be followed to leave the pretectal area in a
ventro-lateral direction which indicates that these cells
project to extrapretectal targets (arrowheads in Fig. 3A).
Their dendritic morphologies, however, did not allow to
distinguish spontaneously active cells from PNC neurons
that were not spontaneously active.

Physiologically, all spontaneously active PNC neurons
were characterized by a regular firing pattern when
recorded at resting potential without any injected current
(Fig. 3C). The firing rate at resting potential of spontane-
ously active PNC cells varied between 0.9 and 9.4 imp/s
(mean 3.0 ± 2.1 imp/s). Depolarizing current injections
induced tonic firing patterns with only marginal adapta-
tion (Fig. 3D). Responses to hyperpolarizing current injec-
tions showed no sign of inward rectification.
Furthermore, following cessation of hyperpolarizing

Schematic view of stimulation and recording sitesFigure 1
Schematic view of stimulation and recording sites. The box in 
the reconstructed section from the right midbrain in the left 
panel indicates the position of the PNC shown at higher mag-
nification in the right panel (dorsal is up, medial is to the left). 
Neurons were recorded from the most dorsal and caudal 
nuclei of the PNC, the nucleus of the optic tract (NOT) and 
the posterior pretectal nucleus (PPN). No topographical seg-
regation between spontaneously active cells (indicated by 
asterisks) and neurons without spontaneous activity (filled 
circles) was observed within the PNC. The stimulation elec-
trode (black bar) was placed in the optic tract at the dorso-
lateral border of the PNC medial to the lateral posterior tha-
lamic nucleus (LP). Other abbreviations used, APN, anterior 
pretectal nucleus, OPN, olivary pretectal nucleus, LGN, lat-
eral geniculate nucleus, MGB, medial geniculate body, SN, 
substantia nigra.
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current steps we never observed rebound spikes. Sponta-
neously active PNC cells on average had significantly
higher input resistances (mean 454.1 ± 164.7 MΩ, p <
0.001), more positive resting potentials (mean -50.4 ± 7.0
mV, p < 0.001) and lower spike thresholds (mean -55.0 ±
3.96 mV, p < 0.001) than cells that did not show sponta-
neous activity (331.44 ± 137.1 MΩ, -58.4 ± 8.0 mV, and -
40.66 ± 6.44 mV, respectively).

In order to characterize the spike adaptation behavior of
spontaneously active PNC cells, the holding potentials
were increased in 5 mV steps by appropriate current injec-
tions in all recorded cells. In response to these depolariza-
tion steps, cells showed tonic increases of their firing rate

without any sign of firing rate adaptation (Fig. 4). Also, no
phasic firing rate increases were observed following the
depolarizations.

As could be already derived from current injections, the
firing rate was directly correlated with the membrane
potential. Increasing the membrane potential by positive
current injections increased the firing rate until a maxi-
mum level was reached that could not be exceeded by fur-
ther depolarization (Fig. 5A). Consequently, when the
firing rate is plotted against the membrane potential, the
course of the resulting function is sigmoidal (Fig. 5B).

Different types of responses in PNC neurons evoked by depolarizing current injectionsFigure 2
Different types of responses in PNC neurons evoked by 
depolarizing current injections. A-C, Whole-cell recordings 
from three individual PNC cells that showed burst firing in 
response to depolarizing currents. While the firing rate of 
cells in A and B monotonically increased with increasing cur-
rents, the cell in C only showed spikes in response to inter-
mediate currents. D, Regular non-adapting spiking with 
monotonically increasing firing rates to increasing currents 
was observed in another population of cells. E, Responses 
from a PNC cell that showed irregular fast-adapting spiking. 
Although increasing currents in this cell decreased interspike 
intervals the total number of spikes elicited remained con-
stant. Resting potentials of the cells were -61.6 mV, A, -62.5 
mV, B, -61.2 mV, C, -58.4 mV, D, and -50.9 mV, E. Current 
amplitudes applied to each cell were 5, 10, 15, and 20 pA.

Morphological and physiological characteristics of PNC neu-rons with spontaneous activity in vitroFigure 3
Morphological and physiological characteristics of PNC neu-
rons with spontaneous activity in vitro. A, B, Reconstruction 
drawings of two biocytin-filled PNC neurons, insets indicate 
the cells' position within the PNC. Horizontal lines mark the 
dorsal border of the PNC, arrowheads in A point to the cell's 
axon. C, in the absence of injected currents, spontaneous 
regular spiking was observed in this neuron. D, Responses to 
intracellular current injection identify this cell as regular non-
adapting. E, continuous depolarization starting at a mem-
brane potential of -90 mV revealed this cell's spike threshold 
at -66.4 mV. d, dorsal, m, medial, v, ventral, l, lateral.
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In order to get an impression about the regularity of the
firing of spontaneously active PNC cells, interspike inter-
vals (ISI) during maintained firing were analyzed in more
detail (Fig. 6). Thus, maintained firing was recorded over
a 10 s period at different membrane potentials and ISI his-
tograms were generated from the recorded activity. ISIs
obtained from these recordings followed a narrow unimo-
dal Gaussian distribution with only little variation (Fig.
6B). According to the correlation between the firing rate
and the membrane potential, depolarization of the cells
resulted in shifts of the maximum of the Gaussian distri-
bution towards lower ISI values. Depolarization, how-
ever, did not change the shape of the distribution. The
regularity of the maintained firing of spontaneously active

PNC cells is also supported by autocorrelograms of the
recorded spike trains (Fig. 6C). The appearance of multi-
ple equally spaced peaks in the autocorrelogram results
from the regular timing of single spikes.

Generation of spontaneous activity in vitro
In order to test whether the spontaneous activity of PNC
neurons in vitro depends on excitatory input, we first sup-
pressed glutamatergic synaptic transmission and pharma-
cologically blocked AMPA receptors in 13 spontaneously
active PNC cells (Fig. 7). As a control for the effectiveness
of AMPA receptor blockade, the influence of the AMPA
receptor antagonist CNQX on postsynaptic responses was
monitored. In all cells tested, bath application of 20 µM
CNQX resulted in a complete loss of EPSCs after electrical
stimulation of optic tract afferent fibers (Fig. 7A,7E).
Although excitatory input was obviously blocked by
CNQX application, the maintained firing remained
unchanged (Fig. 7B,7F). In particular, no drop in the fir-
ing rate was observed that could have been induced by a
possible loss of excitatory input. Furthermore, the com-
parison of both the ISI distribution (Fig. 7C,7G) and the
autocorrelograms (Fig. 7D,7H) obtained from spike trains
before and during CNQX application did not show any
significant difference. Hence, both the generation of spon-
taneous activity and its patterning seem to be

Response to intracellular depolarization of spontaneously active PNC cellsFigure 4
Response to intracellular depolarization of spontaneously 
active PNC cells. Depolarizing current steps induce tonic fir-
ing increases in this spontaneously active PNC cell. No phasic 
component appears in the response to the depolarization 
step. This behavior was a characteristic property of all spon-
taneously active PNC cells.

Correlation between firing rate and membrane potential in spontaneously active PNC cellsFigure 5
Correlation between firing rate and membrane potential in 
spontaneously active PNC cells. A, Incremental intracellular 
depolarization leads to increasing firing rates without chang-
ing the regular firing pattern. B, When the firing rate is plot-
ted as a function of membrane potential a sinusoidal curve 
appears that frequently saturates at membrane potentials 
above -20 mV.
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independent from excitatory input via AMPA receptors.
Similar results were achieved when NMDA receptors were
blocked by bath application of 50 µM APV or when 2 mM
kynurenic acid was applied to simultaneously block
AMPA and NMDA receptors (N = 19).

After having excluded glutamatergic synaptic inputs as a
trigger for maintained firing, we tried to remove all synap-
tic input by adding cobalt to the extracellular medium in
12 spontaneously active PNC cells. This blocks the influx
of calcium into the presynaptic terminal and thus pre-
vents vesicular neurotransmitter release. Adding 1.5 mM
CoCl2 to the bath completely suppressed all electrically
evoked postsynaptic currents (Fig. 8A,8D) in all cells
tested. In contrast to the complete loss of postsynaptic
currents, however, the maintained firing always remained
unchanged (Fig. 8B,8E). As during glutamate receptor
blockade, no reduction of the firing rate was observed that
could have indicated the removal of an excitatory input.
In addition, no increase of the firing rate appeared that
could have indicated a loss in tonic inhibitory input regu-
lating maintained activity. Finally, examination of the ISI
distribution in the spike trains demonstrated that the pat-
terning of the maintained activity also did not show any
significant difference in the presence of Cobalt (Fig.
8C,8F). This indicates that spontaneously active PNC cells
generate their firing intrinsically without any external syn-
aptic input.

In current-clamp mode, each action potential was pre-
ceded by a depolarizing ramp (see, for example, Figs. 3C
and 4). When cells were hyperpolarized to membrane
potentials just below their resting potential single depo-

larizing ramps appeared that were not followed by an
action potential. Concomitantly, in voltage-clamp mode,
each unclamped action potential was preceded by an
depolarizing inward current (Fig. 9A). Because they did
not disappear after substitution of calcium by cobalt in
the external solution these current ramps were calcium
independent. However, when 1 µM tetrodotoxin (TTX), a
selective blocker of sodium channels, was added to the
bath solution current ramps were eliminated together
with the action potentials (Fig. 9B,9C) in all seven cells
tested.

Discussion
We have examined neurons in the rat PNC that are char-
acterized by maintained activity in vitro. These spontane-
ously active PNC cells do not differ in their dendritic
morphology from PNC cells that are not spontaneously
active, but they show higher input resistances, more posi-
tive resting potentials, and lower spike thresholds. Fur-
thermore, our results indicate that, firstly, all PNC cells
that display spontaneous activity share firing characteris-
tics, such as very regularly patterned spike trains and pure
tonic firing rate increases in response to intracellular
depolarizations. Secondly, the generation of the main-
tained firing of these cells is independent from excitatory
synaptic input which suggests that these cells exhibit spe-
cific intrinsic properties that underly the generation of
spontaneous activity. Finally, the patterning of the main-
tained firing is also independent from synaptic input,
both excitatory and inhibitory, which indicates that their
intrinsic membrane properties determine the firing pat-
tern. To our knowledge, this is the first demonstration of

Regularity of the firing pattern of spontaneously active PNC cellsFigure 6
Regularity of the firing pattern of spontaneously active PNC cells. A, Current clamp recording from a PNC cell at slightly depo-
larized membrane potential. B, The interspike interval histogram shows a narrow Gaussian distribution with only little variation 
of interspike intervals. C, The regularity of the firing can also be derived from the autocorrelogram which exhibits multiple 
equally spaced peaks due to the little variation in the interspike intervals.
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Spontaneous activity of PNC is independent from tonic excitatory inputFigure 7
Spontaneous activity of PNC is independent from tonic excitatory input. A single electric shock delivered to the optic tract lat-
eral from the recorded neuron evokes a single peak EPSC (A) that completely disappears after AMPA receptor blockade by 
bath application of 20 µM CNQX (E). In contrast, the spontaneous firing rate recorded in control situation (B) does not change 
after AMPA receptor blockade (F). Removing excitatory input does also not change the regularity of the firing as derived from 
the distribution of interspike intervals (C vs. G) or from the autocorrelogram (D vs. H).
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spontaneous activity generated in vitro by cells in a subcor-
tical visual relay structure.

Generation of spontaneous activity in vitro
Neurons that show spontaneous activity in vitro have been
reported to exist in various mammalian CNS structures.
Most extensively studied, spontaneously active neurons

Tonic synaptic input does not contribute to the generation of spontaneous activity in PNC cellsFigure 8
Tonic synaptic input does not contribute to the generation of spontaneous activity in PNC cells. Postsynaptic responses 
obtained by electrical optic tract stimulation (A) can also be blocked by bath application of 1.5 mM CoCl2 (D). However, the 
spontaneous firing rate recorded in control situation (B) does not change after removal of synaptic input (E). Removing excita-
tory input does also not change the regularity of the firing as derived from the distribution of interspike intervals (C vs. F).
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exist in the suprachiasmatic nucleus (SCN) which con-
tains the biological clock that generates circadian rhyth-
micity. Thus, SCN cells not only generate spontaneous
activity in vitro but they also maintain their circadian fir-
ing pattern [37-39]. Other populations of cells spontane-
ously active in vitro are the cholinergic interneurons in the
neostriatum [40], dopaminergic cells in the substantia
nigra [41,42], neurons in the subthalamic nucleus

[43,44], neurons in the medial vestibular nucleus [45-47],
cells from deep cerebellar nuclei [48,49], and cerebellar
Purkinje cells [48,50,51]. Within the visual system, partic-
ularly the subcortical portion, spontaneous activity in vitro
has been described to occur in thalamocortical neurons
[52] and in isolated dopanimergic cells from the retina
[53]. However, in the mammalian PNC cells that show
maintained activity in vitro have not yet been reported.
These cells are characterized by very regular firing pattern
and monotonically increasing firing rates in response to
intracellular depolarization. They differed from PNC
neurons not spontaneously active by higher input resist-
ance and more positive resting membrane potentials.
Because glutamate receptor blockade did not change the
firing characteristics, neither the firing rate nor the pat-
terning of the firing, excitatory synaptic input through
glutamate receptors seems unnecessary for the generation
of the spontaneous activity. Furthermore, maintaining
spontaneous firing in these PNC neurons also seems to be
independent from synaptic input through other neuro-
transmitter systems because blockade of synaptic trans-
mission by bath application of Cobalt did not change the
firing. Thus, we conclude that the firing pattern is neither
shaped by tonic excitation nor by tonic inhibition. Similar
to spontaneously active cells in the structures noted
above, our PNC neurons must possess intrinsic mem-
brane properties that allow the generation of maintained
activity.

As far as the ionic mechanisms underlying the generation
of spontaneous activity are concerned our results suggest
that it critically depends on a TTX-sensitive sodium con-
ductance. This sodium conductance leads to a steady
inward current following spike afterhyperpolarization
which induces membrane depolarization to spike thresh-
old. This is similar to the ionic mechanism that is respon-
sible for spike generation in spontaneously active neurons
in the suprachiasmatic nucleus [54]. Because spontaneous
firing in PNC neurons was unchanged by calcium substi-
tution with cobalt the spontaneous activity generation
seems independent from calcium conductances.

Possible functional implications
A characteristic response property of all spontaneously
active PNC cells was that the firing rate increases to depo-
larizing voltage steps did not show any phasic
components. This makes these cells perfectly suited to
code maintained or tonic neuronal information. Of
course, one has to keep in mind that neuronal response
properties in vivo are shaped by numeous afferent input
systems most of which are absent in the slice preparation.
Thus, tonic inhibitory input could mask the maintained
firing of spontaneously active PNC cells leading to a very
different response pattern in vivo. Consequently, the
maintained firing might become apparent only under very

Spontaneous activity in PNC cells depends on a sodium conductanceFigure 9
Spontaneous activity in PNC cells depends on a sodium con-
ductance. In control solution (A) this cell showed regular fir-
ing pattern with depolarizing inward currents preceding each 
action potential. When 1 µM TTX was added to the bath the 
firing rate dropped at the beginning of TTX application (B). In 
the presence of TTX, both action potentials and depolarizing 
inward currents completely disappeared 5 min later (C).
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specific stimulus conditions upon withdrawal of the
inhibitory input. However, from a functionl point of view,
we regard it more reasonable to assume that PNC cells
which are spontaneously active in vitro also exhibit tonic
firing in vivo.

Reviewing the known functions served by PNC neurons in
vivo reveals only few reasonable suggestions for the possi-
ble functions which spontaneously active cells might
accomplish. Thus, cells that typically show sustained
activity in vivo are involved in the pupillary light reflex
[2,3,6,26,55]. These cells are characterized by tonic
increases of their firing rate to increases in the background
luminance. However, these cells are predominantly found
in the olivary pretectal nucleus (OPN) which is located in
the rostro-medial PNC [reviewed in [56]]. Because our
recordings were topographically restricted to the caudo-
lateral PNC, particularly to the nucleus of the optic tract
(NOT) and the posterior pretectal nucleus (PPN), it seems
unlikely that we recorded from luminance neurons in the
OPN.

Neurons found in NOT and PPN include various func-
tional cell populations. One of them has been associated
with the generation of slow phase eye movements during
OKR while others seem to transfer visual information
linked to the execution of saccadic eye movements. Cells
from these latter populations are all characterized by short
duration, high frequency burst responses to fast image
motions or rapid eye movements [15,17,25,34-36,57]
and thus seem unlikely to correlate with cells that show
maintained activity in vitro. Furthermore, because the tim-
ing of postsynaptic spikes with respect to their presynaptic
input might be of considerable functional importance for
saccade-related neurons such cells should exhibit lower
input resistance than neurons for which spike time preci-
sion is less important. Low input resistances allow faster
depolarization of the postsynaptic membrane and, hence,
less temporal variance or "jitter" between presynaptic and
postsynaptic spikes will occur. However, spontaneously
active PNC cells on average showed higher input
resistances in our sample and we therefore do not think
that they represent saccade-related PNC neurons.

On the other hand, cells that control compensatory eye
movements during OKN are characterized by tonic firing
in vivo when appropriately stimulated by low speed
horizontal movements of whole field visual stimuli. In all
mammals studied, neurons in the right PNC are excited by
rightward stimulus motion and control eye movements to
the right, while neurons in the left PNC are activated by
leftward stimulus motion and control eye movements to
the left [8,27-33]. The response properties of OKN-related
PNC neurons to a large extent reflect response characteris-
tics of their retinal afferents which are also activated by

slow stimulus movements and show strong directional
selectivity [58]. However, it may be functionally impor-
tant to assure a constant level of maintained activity in
OKN-related PNC neurons by additional intrinsic mecha-
nisms in the absence of appropriate visual stimuli. Unilat-
eral inactivation of PNC neuronal activity by focal
injections of muscimol or lidocaine leads to spontaneous
eye movements in darkness [11,59]. Because of the direc-
tional specificity in the PNC, inactivation of the right PNC
elicits eye movements to the left, while inactivation of the
left PNC elicits eye movements to the right. Thus, eye
movements that appear after PNC inactivation seem to
result from a distortion of a balanced activity between the
two PNCs. Whenever the balance is distorted, premotor
target structures postsynaptic to OKR-related PNC neu-
rons receive stronger input from the PNC of one side and
eye movements are elicited accordingly. It is therefore rea-
sonable to assume that maintained activity spontaneously
generated by OKR-related PNC assures this activity
balance which is necessary for normal oculomotor func-
tion. In order to verify our hypothesis that OKR-related
PNC neurons generate spontaneous activity that can be
observed in vitro, it will be necessary to identify the posts-
ynaptic targets of the spontaneously active PNC neurons.

Conclusions
We have been able to demonstrate a specific population
of neurons in the PNC that is capable of generating spon-
taneous activity in vitro. The spontaneous firing depends
on a sodium conductance and is independent from affer-
ent synaptic input. Although the postsynaptic target and,
consequently, the functional role of the spontaneously
active PNC cells remain to be determined it is reasonable
to assume that these cells also show spontaneous activity
in vivo. Therefore, one likely candidate to represent
spontaneously active cells in vivo are PNC neurons that are
involved in the generation of slow compensatory eye
movements during optokinetic nystagmus. If this is true,
spontaneous firing might help to maintain an activity bal-
ance between neurons in the right and in the left PNC and
thus stabilize eye position in the absence of retinal image
motion.

Methods
Slice preparation
Acute brain slices were obtained from 3 to 6 week-old
Long-Evans hooded rats of either sex that had been raised
at the institute's own colony. All experimental procedures
were in strict compliance with governmental regulations
and in accordance with the Guidelines for the Use of Animals
in Neuroscience Research of the Society for Neuroscience.
Animals were deeply anesthetized with halothane and a
subcutaneous injection of ketamine (100 mg/kg body
weight) and thiazine hydrochloride (1 mg/kg), and tran-
scardially perfused with ice-cold artificial cerebro-spinal
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fluid (ACSF) containing (in mM), NaCl 123, KCl 2.5,
NaH2PO4 1, NaHCO3 26, MgSO4 1.3, CaCl2 1.8, glucose
11, that was continuously gassed with 5% CO2 / 95% O2.
After the brain had been removed from the skull, 350 µ m-
thick coronal slices were cut on a vibratome in ice cold
ACSF. Three to four single slices that included the caudal
PNC were obtained from each experimental animal. Slices
were kept in ACSF at 36°C for at least one hour to allow
recovery from the slicing procedure. For recording, they
were transferred to a submerged type recording chamber
where they were superfused at 3 ml/min with ACSF at
34°C during patch clamp experiments.

Whole-cell patch clamp
Whole-cell recordings from neurons in the caudo-lateral
PNC were performed under visual guidance using infrared
differential interference videomicroscopy [60]. For
recording, borosilicate micropipettes (impedance 5–8
MΩ) were filled with internal solution composed of (in
mM) potassium gluconate 130, sodium gluconate 5,
HEPES 20, MgCl2 4, Na2ATP 4, Na3GTP 0.4, EGTA 0.5, to
which 0.5% biocytin was added for morphological single
cell reconstruction. Measured membrane potentials were
corrected for the junction potential of -10 mV.

Postsynaptic responses were evoked with a concentric
bipolar stimulation electrode (SNEX-100X, Rhodes Medi-
cal Instruments, Tujunga, CA) placed in the optic tract
(OT) at the lateral PNC border. Electrical stimuli delivered
were 0.5 to 2 mA in amplitude and had a duration of 100
to 500 µs. The neuronal signals were amplified and
filtered using an EPC9 amplifier (Heka, Lambrecht, Ger-
many), digitized at 20 kHz, and displayed, stored, and
analyzed using PULSE/PULSEFIT software (Heka,
Lambrecht, Germany). Unless otherwise stated, postsyn-
aptic current responses evoked by OT stimuli were aver-
aged over three consecutive stimulus applications. All
drug effects are given as mean values ± standard deviation,
they were statistically tested for significance using the Stu-
dent's t-test.

Drug delivery
All drugs used were obtained from Sigma-Aldrich
(Deisenhofen, Germany) and were bath applied. A10-
minute application time proved sufficient to achieve sta-
ble responses. Application of 20 µM 6-Cyano-7-nitroqui-
noxaline-2,3-dione (CNQX) was used to block AMPA
receptors. Either 50 µM APV or 2 mM kynurenic acid were
used to block NMDA receptors. Na currents were sup-
pressed by application of 1 µM tetrodotoxin (TTX).

Histochemistry
At the end of each recording session, slices were immer-
sion fixed in 4% parafomaldehyde in 0.1 M phosphate
buffer, pH 7.4, at 4°C. After at least 24 h in fixative, slices

were processed using standard histochemical techniques
for visualization of biocytin with 3,3-diaminobenzidine
(Sigma-Aldrich, Deisenhofen, Germany). Morphological
reconstruction of stained cells was done with the aid of a
camera lucida.
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