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Abstract

Background: Samples of molecular sequence data of a locus obtained from random individuals in a population are
often related by an unknown genealogy. More importantly, population genetics parameters, for instance, the scaled
population mutation rate � = 4Neμ for diploids or � = 2Neμ for haploids (where Ne is the effective population size
and μ is the mutation rate per site per generation), which explains some of the evolutionary history and past qualities
of the population that the samples are obtained from, is of significant interest.

Results: In this paper, we present the evolution of sequence data in a Bayesian framework and the approximation of
the posterior distributions of the unknown parameters of the model, which include � via the sequential Monte Carlo
(SMC) samplers for static models. Specifically, we approximate the posterior distributions of the unknown parameters
with a set of weighted samples i.e., the set of highly probable genealogies out of the infinite set of possible
genealogies that describe the sampled sequences. The proposed SMC algorithm is evaluated on simulated DNA
sequence datasets under different mutational models and real biological sequences. In terms of the accuracy of the
estimates, the proposed SMC method shows a comparable and sometimes, better performance than the
state-of-the-art MCMC algorithms.

Conclusions: We showed that the SMC algorithm for static model is a promising alternative to the state-of-the-art
approach for simulating from the posterior distributions of population genetics parameters.

Keywords: Coalescent, Sequential Monte Carlo, Genealogy, Bayesian

Background
Samples of molecular data, such as DNA sequence, taken
from a population are often related by an unknown
genealogy [1], a family tree which depicts the ancestors
and descendants of individuals in the sample and whose
shape is altered by the population processes, such as
migration, genetic drift, change of population size, etc. [2].
The genetic events and the past history of such population
can be studied by estimating the underlying population
parameters based on the samples of molecular data from
the population [3].
Oftentimes, biologists are interested in an accurate esti-

mation of the population parameters from samples of
molecular data because these parameters provide answers

*Correspondence: wangx@ee.columbia.edu
Department of Electrical Engineering, Columbia University, 10027 New York,
USA

to several unanswered biologically motivated questions
and sometimes, the knowledge results in new discoveries
[4, 5]. For instance, in [6, 7], estimates of some of the
population parameters revealed the role of historical pro-
cesses in the evolution of a population and as well,
aided the understanding of microevolutionary processes
and lineage divergence through phylogeographical analy-
sis. Further, based on the estimation of these important
parameters, [8, 9] were able to infer past environmen-
tal conditions (in combination with documented geologic
events) that explain the current patterns in the popu-
lation; they also investigated the role of environmental
factors in shaping the contemporary phylogeographic pat-
tern and studied the genetic homogeneity of organisms.
Moreover, in species classification, knowledge of these
parameters has helped in classifying previously unclas-
sified or wrongly classified organisms [10] and also in
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investigating the contribution of geographic barriers in
the diversification and classification of organisms [11, 12].
In the literature, some methods have been proposed

to estimate these important parameters from samples
of molecular data from the population of interest. For
instance, summary statistics of sample sequences such as
Watterson’s theta �̂W [13] can be used to make a fast esti-
mate of �. However, summary statistics from the molec-
ular data often fail to account for the presence of multiple
evolutionary forces [14]. Another approach involves an
estimation of the underlying genealogy that represents the
individuals sampled from the population and then using
this as the basis for parameter estimation [15]. Kuhner
[14] noted that except in a few cases of artificially manip-
ulated populations, the exact genealogy of a sample is
generally unknown.
Other approaches such as the approximate Bayesian

computation (ABC) [16, 17] have been proposed, which
are often employed when the likelihood function can
not be evaluated. However, a more universal and effec-
tive approach to estimating population parameters is
the coalescent genealogy sampling method, our focus
in this paper [18–21]. Here, the assumption is that the
genealogical structure of samples of molecular data from
the population is completely unknown, which is a rea-
sonable assumption. Since it is generally impossible to
consider all the infinitely large possible genealogies that
describe the sampled sequences, coalescent genealogy
sampling methods take samples from the posterior distri-
bution of the genealogy (i.e., sampling the more probable
ancestral patterns from the infinite set of all possible
patterns). In estimating population parameters with the
coalescent samplers, two distinct approaches have been
proposed: (i) MCMC [18–21] and (ii) importance sam-
pling (IS) [22, 23]. The former is suitable for either a
likelihood-based estimation [21] or full Bayesian estima-
tion [20, 21]. However, for the latter, [23] assumes an
infinite-sites mutational model which holds an assump-
tion that no site has mutated more than once and
thus, this makes it difficult to incorporate less restric-
tive mutational models [14]. In [22], although there is
a slight loss of accuracy in parameter estimation, there
is a significant reduction in computational time and a
reduction in variance. However, for the [24] noted that
MCMC-approach to Bayesian posterior approximation
often suffer from two major drawbacks: (i) difficulty in
assessing when the Markov chain has reached its station-
ary regime of interest, and (ii) if the target distribution is
highlymulti-modal, MCMC algorithms can easily become
trapped in local modes. Recently, [25] developed a par-
ticle marginal Metropolis-Hastings (PMMH) algorithm
that employs a sequential Monte Carlo (SMC) sampler,
which has been employed in other areas of computational
biology for parameter estimation in Bayesian settings

[26, 27], but the genealogy of the observed sequence is
assumed known.
In this paper, assuming that the genealogy of the

observed sequences is unknown, we present a sequential
Monte Carlo (SMC) sampler for static models [24, 28, 29]
to search for the highly probable genealogies from the
infinite set of all possible genealogies that can describe
the observed genetic data, i.e., highly probable samples
from the posterior distributions of the genealogy, and
other unknown parameters, resulting in a more reliable
and accurate estimation of the parameter of interest, �.
We model the observed genetic data using a Bayesian
framework and subsequently treat the parameter �, the
genealogy relating the observed data and other muta-
tional model parameters as the unknown parameters of
the model. Bayesian inference is an important area in the
analyses of biological data [30–34] as it provides a com-
plete picture of the uncertainty in the estimation of the
unknown parameters of a model given the data and the
prior distributions for all the unknown model parame-
ters. Specifically, we use the SMC method to simulate
and approximate, in an efficient way, the joint poste-
rior distribution of �, the genealogy and other unknown
model parameters, by a set of weighted samples (parti-
cles) from which the point estimate of � can be made
[24]. SMC is a class of sampling algorithmswhich combine
importance sampling and resampling [35, 36]. When the
data generating model is dynamic, one attempts to com-
pute, in the most flexible way, the posterior probability
density function (PDF) of the state every time a measure-
ment is received, i.e., data are being processed sequentially
rather than as a batch [37–42]. However, in static mod-
els, which is the main focus here, the SMC framework
for the dynamic model is slightly modified [24, 28, 29]
as this involves the construction of a sequence of arti-
ficial distributions on spaces of increasing dimensions.
This sequence of artificial distributions, however, admits
the probability distributions of interest as marginals. As
a matter of fact, this procedure is quite similar to the
sequential importance sampling (resampling) (SIS) pro-
cedure for dynamic models [35] with the only difference
being the framework under which the samples are prop-
agated sequentially which results in differences in the
calculation of the weights. With the SMC methods, we
can treat, in a principled way, any type of probability dis-
tribution, nonlinearity and non-stationarity [43, 44]. The
algorithms are easy to implement and applicable to very
general settings. In addition, in big data analyses, SMC
algorithms can be parallelized to reduce the computa-
tional time.
Although, the proposed algorithm can be adapted to the

likelihood-based framework, we have concentrated on the
full Bayesian analysis where we are able to generate highly
probable samples from the joint posterior distribution of
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the genealogy, �, and other unknown parameters in the
model from sample sequences from a population [45].
We compare the proposed method with some existing
coalescent-based methods for estimating θ [18–21] that
rely on the Metropolis-Hastings MCMC (MH-MCMC)
algorithms. In terms of the accuracy of the estimates of �,
the proposed SMC method demonstrates a comparable,
and sometimes better performance.
The remainder of this paper is organized as follows. In

Method section, we describe the system model, problem
formulation, the SMC samplers for Bayesian inference,
and present the proposed algorithms for estimating �

from molecular data. In Sequential Monte Carlo samplers
section, we investigate the performance of the proposed
method using simulated datasets obtained from the simu-
lators:ms [46] and Seq-Gen [47] and also on real biological
sequence data from [48], a sequence data that has been
extensively used to evaluate the performance of coalescent
sampling algorithms. Finally, Results section concludes
the paper.
In this paper, we use the following notations:

1. p(·) and p(·|·) denote a probability and a conditional
probability density functions, respectively.

2. Pr(·|·) denotes a conditional probability mass
function.

3. U(a, b) denotes a uniform distribution over the
interval [ a, b].

Method
Systemmodel and problem formulation
Sequence data from random sample of individuals from
a population, usually denoted as an m × l matrix D of
characters, wherem denotes the number of sequences and
l denotes the length of the aligned sequences are often
related by an unknown tree or genealogy. For instance,
Fig. 1 shows the genealogy representing the relationship
between a set of gene copies randomly chosen from a
population at the present time and the coalescent theory
[49–51] describes the distribution of such an unknown
genealogy. Specifically, the coalescent is a model that pre-
dicts the probability of possible patterns of genealogical
branching, working backward in time from the present to
the point of a single common ancestor in the past, often
referred to as the most recent common ancestor (MRCA)
as shown in Fig. 1. The probability distribution is given as
a product of exponential densities:

p(ϒ
′ |Ne) =

m∏

k=2

2
4Ne

exp
{
k(k − 1)
4Ne

tk
}
, (1)

where m denotes the number of randomly sampled
sequences, Ne denotes the effective population size and tk

Fig. 1 Coalescence. A realization of the coalescent for a sample size of 6. For example, t1 is the length of the interval during which the genealogy
has 6 lineages
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denotes the length of the interval during which the geneal-
ogy ϒ

′ has a total of k lineages. Since we can not directly
observe the coalescence intervals tk , these intervals are
often rescaled to the per-site neutral mutation rate μ.
Hence, tk in (1) is replaced by dk = μtk and (1) can be
rewritten as [2]:

p(ϒ |�) =
m∏

k=2

2
�

exp
{
k(k − 1)

�
dk

}
(2)

where� = 4Neμ denotes the scaled mutation rate per site
per generation, which is the parameter of interest to be
estimated (note: we have chosen � instead of θ because
θ is often used to denote the mutation rate per locus per
generation in related studies).
According to [52], the likelihood function for a given

value of � is given by:

L(�|D)=Pr(D|�)=
∫∫

Pr(D,ϒ ,λ|�)dϒdλ

=
∫∫

p(λ|�)p(ϒ |λ,�)Pr(D|ϒ ,λ,�)dϒdλ

=
∫∫

p(λ)p(ϒ |�)Pr(D|ϒ ,λ)dϒdλ

(3)

where p(ϒ |�) denotes the probability of genealogy given
the parameter �, explicitly stated in (2) (given �, ϒ is
independent of λ), λ denotes the parameters of the muta-
tional model, and Pr(D|ϒ ,λ) denotes the probability of
the sequence dataD, given the genealogyϒ and the muta-
tional model [53]. Although, in the analysis of genetic
data, different mutational models can be employed, we
consider, for the nucleotide sequence datasets, the two-
parameter model K80 [54] and the F84 [55] models (the
finite-sites models that account for the fact that same
site may experience mutation more than once). The for-
mer assumes equal nucleotide frequencies among the four
nucleotides (i.e., πA = πC = πG = πT = 0.25) with
an unknown transition-transversion ratio, κ , while the lat-
ter assumes neither the nucleotide frequencies, {πi : i ∈
A,C,G,T ,πi ≥ 0,

∑
πi = 1}, nor κ is known. The set

of all the mutational model parameters is denoted by λ.
(Detailed discussions of the mutational models are given
in the Additional file 1).
The goal of the inference is to obtain an estimate of the

unknown parameter� in (2) and (3). To do this, we define
a model that generates the sequence data D given all the
parameters; define suitable prior distributions for all the
unknown model parameters, derive the sequence of tar-
get distributions for all the parameters, present the SMC
algorithm that estimates, in an efficient manner, the joint

posterior distribution of all the unknown model parame-
ters, marginalizes out the nuisance/uninteresting parame-
ters and finally, approximates the posterior distribution of
parameter � by a set of weighted samples.

Likelihood function
The probability of the observed sequence data D given
the parameter � is given explicitly in (3) by [52]. All
the elements in (3) except for Pr(D|ϒ ,λ) have explicit
expressions, but Pr(D|ϒ ,λ) can easily be computed by
the procedures highlighted in [53]. Fortunately, an explicit
expression for Pr(D|ϒ ,λ) is not required in the proposed
algorithm, as we only need to evaluate it.

Prior densities for all model parameters
Here, we discuss the suitable choice of prior distribu-
tions for �, the parameter of interest; the set of unknown
parameters of the mutational model, λ and the genealogy
of sampled sequences.

Prior density of �: We impose a uniform distribu-
tion in an interval between 0 and �max, i.e., � ∼
U(0,�max). �max can be chosen based on some prior
biological knowledge that is held about the population.
For our experiments, we discuss how this is chosen in the
Additional file 1.

Prior densities of the mutational model parameters
(λ): λ is the set of all the unknown parameters of
the mutational model such as the transition-transversion
ratio, κ , and the nucleotide frequencies {πi : i ∈
A,C,G,T ,πi ≥ 0,

∑
πi = 1}. Similar to �, we impose a

uniform distribution on κ i.e., κ ∼ U(0, κmax). The nat-
ural choice for the prior distribution of the nucleotide
frequency, π is the Dirichlet distribution i.e. π ∼ Dir(α).
The possible choices of κmax and α, the concentration
parameter of the Dirichlet distribution, are discussed in
the Additional file 1.

Prior density of the genealogy (ϒ): The prior distribu-
tion for the genealogy ϒ is given in (2) and the procedure
for simulating a random genealogy from this particular
distribution is highlighted in the Additional file 1.

Posterior distribution
Given the prior distribution of �, p(�) and the likeli-
hood function in (3), using Bayes theorem, the posterior
distribution of � is defined as follows:

p(�|D) =
∫∫

p(λ)p(�)p(ϒ |�)Pr(D|ϒ ,λ)dϒdλ

Z
(4)

where Z = ∫∫∫
p(λ)p(�)p(ϒ |�)Pr(D|ϒ ,λ)dϒd�dλ

is a constant with respect to ϒ , � and λ; p(λ)

denotes the prior distribution(s) of the mutational model
parameter(s); p(ϒ |�) denotes the prior distribution of the
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genealogy, given in (2) and Pr(D|ϒ ,λ) in (3) denotes the
probability of the sequence data, D given the genealogy
and a mutational model, λ. Although, the marginal pos-
terior distribution of � has been described in (4), the
associated integrals cannot be computed analytically. As a
result, we write an expression for the joint posterior dis-
tribution of �, ϒ and λ to get rid of the integral in the
numerator of (4) as follows:

p(�,λ,ϒ |D) = p(λ)p(�)p(ϒ |�)Pr(D|ϒ ,λ)

Z
, (5)

the denominator in (5) remains a constant. In the new
expression for the joint posterior distribution, p(λ), p(�)

and p(ϒ |�) are the prior distributions of λ, � and ϒ ,
respectively and Pr(D|ϒ ,λ) is the ‘likelihood function’. It
is quite easy to obtain samples from the prior distributions
and more importantly, Pr(D|ϒ ,λ) can be evaluated.

Sequential Monte Carlo samplers
General principle of SMC
Before we introduce the SMC algorithm for the estimation
of �, we will succinctly introduce the general principle of
SMC samplers [24, 28, 29, 56, 57] for estimating param-
eters in static models. Let H =[�, λ,ϒ], then (5) can be
re-written as follows:

p(H|D) = p(H)p(D|H)

Z
(6)

where p(H), p(D|H) and p(H|D) denote the prior distri-
bution, likelihood function and the posterior distribution,
respectively, and Z = ∫

p(H)Pr(Y|H)dH, a constant
with respect toH, referred to as the evidence. In the SMC
framework for static models, rather than obtaining sam-
ples directly from the posterior distribution p(H|D) in (6),
a sequence of intermediate target distributions, {πt}Tt=1,
are designed, that transitions smoothly from the prior
distribution, i.e., π1 = p(H), which is easier to sample
from, and gradually introduces the effect of the likeli-
hood so that in the end, we have πT = p(H|D) which
is the posterior distribution of interest [24, 29]. For such
sequence of intermediate distributions, a natural choice is
the likelihood tempered target sequence [24, 58]:

πt(H) = �t(H)

Zt
∝ p(H)p(D|H)εt (7)

where {εt}Tt=1 is a non-decreasing temperature schedule
with ε1 = 0 and εT = 1, �t(H) = p(H)p(H|D)εt

is the unnormalized target distribution and Zt =∫
p(H)p(H|D)εt dH is the corresponding evidence at

time t.
Next, we transform this problem in the standard SMC

filtering framework [35, 36] by defining a sequence of joint

target distributions up to and including time t, {π̃t}Tt=1
which admits πt as marginals as follows:

π̃t (H1:t) = �̃t (H1:t)

Zt

with �̃t (H1:t) = �t (Ht)
t−1∏

b=1
Lb

(
Hb+1,Hb

)
,

(8)

where the artificial kernels {Lb}t−1
b=1 are referred to as

the backward Markov kernels, i.e., Lt (Ht+1,Ht) denotes
the probability density of moving back from Ht+1 to Ht
[24, 29, 59]. Since it is usually difficult to obtain sam-
ples directly from the joint target distribution in (8), we
define a similar distribution, known as the importance
distribution, with a support that includes the support of
π̃t [35], from where we can easily draw samples. Following
[24, 29, 59], we define the importance distribution
qt (H1:t) at time t as follows:

qt(H1:t) = q1(H1)
t∏

f=2
Kf (Hf−1,Hf ), (9)

where
{
Kf

}t
f=2 are the Markov transition kernels or for-

ward kernels, i.e., Kt(Ht−1,Ht) denotes the probability
density of moving fromHt−1 toHt [24, 29].
Given that at time t − 1, we desire to obtain N ran-

dom samples from the target distribution in (8), but as
discussed earlier, it is difficult to sample from the target
distribution and instead, we obtain the samples from the
importance distribution in (9). Following the principle of
importance sampling, we then correct for the discrepancy
between the target and the importance distributions by
calculating the importance weights [35]. The unnormal-
ized weights associated with the N samples are obtained
as follows:

w̃n
t−1∝ π̃t−1

(
Hn

1:t−1
)

qt−1
(
Hn

1:t−1
)=πt−1

(
Hn

t−1
) ∏t−2

d=1 Ld
(
Hn

d+1,Hn
d
)

q1
(
Hn

1
) ∏t−1

r=2Kr
(
Hn

r−1,Hn
r
)

and the normalized weights are calculated as:

wn
t−1 = w̃n

t−1∑N
l=1 w̃l

t−1
, n = 1, ...,N .

(10)

As such, the set of weighted samples
{
Hn

1:t−1,wn
t−1

}N
n=1

approximates the joint target distribution π̃t−1. To obtain
an approximation to the joint target distribution at time
t, i.e, π̃t , the samples are first propagated to the next
target distribution π̃t using a forward Markov kernel
Kt(Ht−1,Ht) to obtain the set of particles

{
Hn

1:t
}N
n=1.

Similar to (10), we then correct for the discrepancy
between the importance distribution and the target distri-
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bution at time t. Thus, the unnormalized weights at time t
are given as (detail is in the Additional file 1):

w̃n
t ∝ w̃n

t−1
�t

(
Hn

t
)
Lt−1

(
Hn

t ,Hn
t−1

)

�t−1
(
Hn

t−1
)
Kt

(
Hn

t−1,Hn
t
)

= w̃n
t−1Wt

(
Hn

t−1,Hn
t
)
, n = 1, ...,N ,

(11)

where
{
w̃n
t−1

}N
n=1 are the unnormalized weights at time

t − 1, given in (10) and
{
Wt(Hn

t−1,Hn
t )

}N
n=1, the unnor-

malized incremental weights, calculated as:

Wt
(
Hn

t−1,Hn
t
)= �t

(
Hn

t
)
Lt−1

(
Hn

t , θnt−1
)

�t−1
(
Hn

t−1
)
Kt

(
θnt−1,Hn

t
) , n = 1, ...,N .

(12)

According to [29, 60], if a MCMC kernel is consid-
ered for the sequence of forward kernel {Kt}Tt=2, then the
following Lt is employed:

Lt−1(Ht ,Ht−1) = πt(Ht−1)Kt(Ht ,Ht−1)

πt(Ht)
, (13)

and the unnormalized incremental weights in (12)
becomes:

Wt
(
Hn

t−1,Hn
t
) = p

(
D|Hn

t−1
)(εt−εt−1) , n = 1, ...,N ,

(14)

(detail is in the Additional file 1) where εt−εt−1 is the step
length of the cooling schedule of the likelihood at time t.
Note that p

(
D|Hn

t−1
)
, n = 1, ...,N can easily be computed

as highlighted in [53].
However, in the SMC procedure described above, after

some iterations, all samples except one will have very
small weights, a phenomenon referred to as degeneracy
in the literature. It is unavoidable as it has been shown
that the variance of the importance weights increases over
time [35]. An adaptive way to check this is by computing
the effective sample size (ESS) as:

ESS = 1
∑N

n=1
(
wn
t
)2 . (15)

Details on when to resample and the resampling proce-
dure are in the Additional file 1.
Finally, the SMC algorithm for the estimation of � is

presented in Algorithm 1. In the algorithm, p(H) =
p(λ)p(�)p(ϒ |�) and Pr(D|H) = Pr(D|ϒ ,λ) which can
easily be computed using the procedures highlighted in
[53]. Similarly, p(ϒ |�) can be calculated with the expres-
sion in (2), p(�) = 1/�max and p(λ) is calculated from the
assumed standard prior distribution(s) for the elements
in λ. For the details of the different mutational mod-
els, their respective parameter(s) and the assumed prior
distribution(s), please see the Additional file 1. Also in

Algorithm 1,V denotes the number of parameters, includ-
ing the genealogy and RMCMC denotes the chain length
for each particle. In lines 17 and 18 of Algorithm 1, the πt
invariant Markov kernel is described in Algorithm 2 in the
Additional file 1.

Algorithm 1 SMC Algorithm for Estimating �

Input: Aligned sequence dataD, �max, parameters of the
prior distributions for the mutational model λ, the
temperature schedule 0 = ε1 < ε2... < εT = 1,
chain length of MCMC, RMCMC , number of parame-
ters, V and number of samples (particles), N. (See the
Additional file 1 for the possible values of the input
variables).

1: Set t = 1
2: for n = 1, ...,N do
3: (a) Sample from prior distribution(s) of λ.
4: (b) Sample �: � ∼ U(0,�max) .
5: (c) Sample from prior distribution of the genealogy.
6: (see the Additional file 1 for (a) and (c))
7: end for
8: Set wn

1 = 1/N , n = 1, ...,N .
9: for t = 2, ...,T do

10: Compute the unnormalized weights:
11: w̃n

t = wn
t−1Pr(D|Ht−1)(εt−εt−1), n = 1, ...,N .

12: Normalize the weights:

13: wn
t = w̃n

t∑N
l=1 w̃l

t
, n = 1, ...,N .

14: Compute the ESS using (15) and resample if ESS <

N/10.
15: Propagate the particles:
16: for n = 1, ...,N do
17: SampleHn

t ∼ Kt
(
Hn

t−1; ·
)
where Kt(·; ·) is a πt

18: invariant Markov kernel described in Algorithm
2 in the

19: Additional file 1.
20: end for
21: end for
22: Compute the estimate of the parameter � as follows:
23: �̂=∑N

n=1wn
T�n

T and Var(�) = ∑N
n=1 wn

T (�n
T−�̂)2.

Results
In this section, we demonstrate the performance of the
proposed SMC algorithm using both simulated datasets
and real biological sequences. In addition, we compare
the estimates obtained from the proposed SMC algo-
rithm to that of the MH-MCMC algorithm. In the
experiments with MH-MCMC (details in [61]), we set
the burn-in period to 50000 iterations and the chain
length to 20000 iterations to approximate the posterior
estimates.
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Table 1 Estimates of the mean and standard deviation of � obtained from the two methods with the K80 model

m = 20

l = 200 l = 400 l = 600

� SMC MCMC SMC MCMC SMC MCMC

0.01 0.0081 (0.0036) 0.0009 (0.0053) 0.0113 (0.0030) 0.0010 (0.0051) 0.0101 (0.0025) 0.0096 (0.0045)

0.10 0.0795 (0.0040) 0.0193 (0.0050) 0.0881 (0.0040) 0.0280 (0.0045) 0.1121 (0.0034) 0.0924 (0.0042)

0.50 0.4023 (0.0044) 0.3034 (0.0050) 0.4412 (0.0044) 0.4214 (0.0049) 0.4624 (0.0039) 0.4510 (0.0040)

m = 20 and l = 200, 400 and 600. The different values of � are shown in column 1

Simulated data
Simulated datasets were generated from the programs
ms [46] and Seq-Gen [47]. With the Seq-Gen program,
we were able to generate sequences under a variety of
finite-site models. Specifically,ms is used to generate pos-
sible tree structure and the resulting tree structure is
given as an input into the Seq-Gen program, and DNA
sequences are generated under an appropriate finite-site
model. DNA sequences were generated with varying val-
ues of �, number of sequences sampled (m), length of
sequence in each sample (l), and mutational model (spe-
cific values are shown in Table 1 ). For each combination
of �, m, and l under a mutation model, we evaluate the
proposed SMC algorithm and the MH-MCMC for the
generated data.
In Table 1, we present the results obtained from the

datasets generated from the two-parameter K80 model
of evolution [54]. The results in Table 1 show the true
value of � used in generating the sequence data, the
number of sequences sampled (m), the length of each
sequence in a particular sample (l) and the chosen model
of evolution. The estimated mean values of � obtained
from each of the methods are shown directly under the
method, and the standard deviation is shown next to the
mean value in parenthesis. Largely, the methods returned
mean estimates that are close to the true values of θ .
However, the SMC algorithm produced smaller standard
deviation on almost all the datasets. This is not so sur-
prising because after the particles have been resampled,
those with smaller weights are often discarded and would
eventually be replaced by the ones with relatively larger

weights, these are the particles that better explain the
observed data as the algorithm progresses. To further
consolidate the results obtained with the K80 model,
we present the results obtained from the two methods
with the data generated with the F84 [55] model. Sim-
ilar trends are observed in all our experiments and the
comprehensive results are presented in Table 2. In Figs. 2,
3, 4, 5, 6, and 7, the pictorial view of how the standard
deviation changes as the length of sequences increases
is presented and similarly, in Figs. 8, 9, 10, 11, 12, and
13, the absolute difference between the true mean and
the estimated mean is plotted as a function of sequence
length, l.

Mitochondrial DNA sequence data (mtDNA)
We next evaluate our algorithm on the Mitochondrial
DNA sequence dataset [48]. This dataset contains 360 bp
from the mitochondrial control region of 63 Amerindians
of the Nuu-Chah-Nulth tribe [45]. In analyzing this par-
ticular dataset, we assumed the F84 model. With this
assumption, it means that the nucleotide frequency, π and
the transition-transversion ratio, κ will also be estimated
alongside �. One important observation with this dataset
is that the mtDNA is haploid and maternally inherited.
Hence, � = 2Nf μ where Nf is the number of females.
The full dataset was analyzed with the proposed SMC
method and the MCMC algorithm. The estimated mean
of � 0.0451 obtained from the proposed SMC method
is slightly higher than 0.0402 that was recorded for the
MCMC-based algorithm. Although, the true value of � is
not available for this dataset, we can draw some inference

Table 2 Estimates of the mean and standard deviation of � obtained from the two methods with the F84 model

m = 20

l = 200 l = 400 l = 600

� SMC MCMC SMC MCMC SMC MCMC

0.01 0.0072 (0.0039) 0.0009 (0.0050) 0.0108 (0.0034) 0.0011 (0.0045) 0.0110 (0.0026) 0.0099 (0.0033)

0.10 0.0824 (0.0043) 0.0493 (0.0049) 0.0911 (0.0039) 0.0448 (0.0043) 0.1052 (0.0030) 0.0820 (0.0039)

0.50 0.4101 (0.0044) 0.3926 (0.0051) 0.4482 (0.0042) 0.4431 (0.0050) 0.4800 (0.0021) 0.4692 (0.0035)

m = 20 and l = 200, 400 and 600. The different values of � are shown in column 1
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Fig. 2 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.01 and the
model of evolution is K80
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Fig. 3 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.1 and the
model of evolution is K80
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Fig. 4 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.5 and the
model of evolution is K80

Fig. 5 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.01 and the
model of evolution is F84
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Fig. 6 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.1 and the
model of evolution is F84

Fig. 7 Plot of standard deviation. Plot of standard deviation versus sequence length (l) for the two methods. Sample size,m = 20, � = 0.5 and the
model of evolution is F84
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Fig. 8 Plot of absolute differences. Sample size,m = 20, � = 0.01 and the model of evolution is K80

from the values of standard deviation from both methods.
The proposed SMC algorithm produced a slightly smaller
standard deviation (0.00327) compared to its MCMC-
based counterpart (0.00866).

Discussion
In this paper, we considered the problem of estimating
the scaled mutation rate, � from samples of molecular

sequence data. We present a novel Bayesian approach
based on the SMC algorithm for static models which
samples from the joint distribution of �, the genealogy
and the unknown parameters of the mutational model.
Specifically, the unknown genealogy relating the sampled
sequences is considered as one of the unknown param-
eters in the Bayesian setup. Although, the space of the
possible genealogies that describe the dataset is infinitely

Fig. 9 Plot of absolute differences. Sample size,m = 20, � = 0.1 and the model of evolution is K80
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Fig. 10 Plot of absolute differences. Sample size,m = 20, � = 0.5 and the model of evolution is K80

large, the algorithm is implemented in such a way that
only the highly probable samples from the posterior dis-
tribution of the genealogy are considered in estimating the
parameters of interest. Hence, the marginal distribution
of the parameter of interest, � is approximated from the
joint posterior distribution of all the parameters by a set
of weighted samples.
We have performed series of experiments on simulated

datasets (varying the true value of �, the sequence length

l, the number of sampled sequences from the popula-
tion m and the mutational model) and real biological
sequences to evaluate the performance of the proposed
SMC algorithm. With all the experiments run and the
results obtained, we have shown that the SMC algorithm
for static model is a promising alternative to the standard
MCMC methods to simulate from the static target distri-
butions of the parameters of population genetics models
based on the coalescent. The parameters of the proposed

Fig. 11 Plot of absolute differences. Sample size,m = 20, � = 0.01 and the model of evolution is F84
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Fig. 12 Plot of absolute differences. Sample size,m = 20, � = 0.1 and the model of evolution is F84

SMC algorithm, i.e. the number of particles and iterations
are set in such a way that on the average, both algorithms
have equal runtimes. However, since the proposed SMC
algorithm can be parallelized when the resources are avail-
able, this can tremendously lower its runtime and as such,
increases its efficiency.
In the proposed SMC algorithm, the experiments are

initialized by taking samples from the prior distributions

of the unknown parameters in the Bayesian setup. In the
case of the genealogy, we first applied the Unweighted
Pair Group Method with Arithmetic Mean (UPGMA)
phylogeny reconstruction algorithm to the sequence data
and used the resulting tree to guide the sampling pro-
cedure from the prior distribution of the genealogy.
We noticed that doing this dramatically reduced the
number of samples (N = 500) needed to obtained

Fig. 13 Plot of absolute differences. Sample size,m = 20, � = 0.5 and the model of evolution is F84
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a good approximation to the posterior distribution
of �.

Conclusions
Finally, we have demonstrated the efficacy of the proposed
algorithm with the DNA sequence data, using various
models of evolution with a single population. However,
this algorithm can also be used to analyze other types
of data, ranging from the RNA sequence data, protein
sequence data, microsatellite data, etc., inasmuch as the
appropriate model is specified. Every details of the algo-
rithm remains the same except for the calculation of the
likelihood function as a result of the model change. In
addition, the current work can potentially be extended
to cases involving varying population size, migration, and
recombination which all involve more complex models of
population.
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