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Abstract

We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social
agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the
agent dynamics, we employ Axelrod’s model for social influence. The global interaction fields correspond to the statistical
mode of the states of the agents and represent mass media messages on the cultural trend originating in each population.
Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous
phases, one having the state of the global field acting on that population, and the other consisting of a state different from
that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the
emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii)
the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of
one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social
analogue to a chimera state arising in globally coupled populations of oscillators.
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Introduction

The study of cross-cultural experiences through mass-mediated

contact is a topic of much interest in the Social Sciences [1–5].

Many of those studies have focused on the effects of cultural

product consumption on audience beliefs, emotions, and attitudes

toward the group originating these cultural products. For instance,

several works have investigated the process by which international

audiences develop American values, norms and stereotypes about

America through the experience of watching American television

series [6–8]. Other works have explored the political impact of

international television across borders [9]. The expansion of

broadcasting and telecommunication industries in recent times has

led to an increase in the exchange of mass media products across

countries and social groups. As a consequence, people of different

groups that may have had little direct contact with each other can,

however, have access to their reciprocal mass media messages. For

example, the growth of media channels in East Asia has brought

changing patterns of cultural consumption: younger generations in

China are drawn to Korean pop stars; Korean people have begun

to collect Chinese films; Japanese audiences await the broadcast of

non-Japanese Asian dramas [5].

In the current research in complex systems, there is also much

interest in the investigation of models of social dynamics [10].

Many of these systems have provided scenarios for investigating

new forms of interactions and for studying new collective

phenomena in non-equilibrium systems [11–20]. In this context,

the model introduced by Axelrod [21] to investigate the

dissemination of culture among interacting agents in a society

has attracted much attention from physicists [22–33]. In this

model, the agent-agent interaction rule is such that no interaction

exists for some relative values characterizing the states of the

agents that compose the system. This type of interaction is

common in social and biological systems where there is often some

bound or restriction for the occurrence of interaction between

agents, such as a similarity condition for the state variable [34–38].

In particular, the effects of local and global mass media on a

social group have been studied by using Axelrod’s model

[26,27,39,40]. Some different formalisms for mass media based

on Axelrod’s model have also been proposed [41–43].

In this paper we investigate the problem of cross-cultural

interactions through mass media in a model where two separated

social groups, each with its own internal dynamics, get information

about each other solely through reciprocal global interactions. We

address the question of whether two societies subject to reciprocal

mass media interactions become more similar to each other or if

they can mantain some diversity. Specifically, our system consists

of two populations of social agents whose dynamics is described by

Axelrod’s model, mutually coupled through global interactions.

The global interactions act as fields that can be interpreted as mass

media [27,44]. In our model, the mass media content reaching one

population corresponds to the statistical mode or cultural trend

originated in the other population, and viceversa.

The existence of non-interacting states in the dynamics, as well

as the competition between the time scales of local agent-agent

interactions and the responses of the endogenous global fields, lead
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to nontrivial collective behaviors, such as the emergence of a

largest minority group in a population, sharing a state different

from that of the applied global field, and the occurrence of

localized ordered states. In this last case, one population reaches a

homogeneous state while several states coexist on the other. This

situation can be considered as a social analogue to a chimera state

arising in globally coupled populations of oscillators [45–50].

In the next section we present the model for two interacting

populations of social agents and characterize the collective

behavior on the space of parameters of the system. The nature

of the observed localized ordered states is investigated in the

following section. The final section contains the conclusions of this

work.

The Model

We consider a system of N agents consisting of two populations

or subsets: a and b, with sizes Na and Nb, such that N~NazNb.

The fraction of agents in subset a is Na=N and that in subset b is

Nb=N.

Each subset consists of a fully connected network, i. e., every

agent can interact with any other within a subset. We employ the

notation ½z� to indicate ‘‘or z’’. The state of agent i[a½b� is given by

an F -component vector x
f
a½b�(i), (f ~1,2, . . . ,F ), where each

component can take any of q different values

x
f

a½b�(i)[f0,1,:::,q{1g.
Let us denote by Ma~(M1

a , . . . ,Mf
a , . . . ,MF

a ) and

Mb~(M1
b , . . . ,M

f
b , . . . ,MF

b ) the global fields defined as the

statistical modes of the states in the subsets a and b, respectively,

at a given time. This means that the component M
f
a½b� is assigned

the most abundant value exhibited by the f th component of all the

state vectors x
f
a½b�(i) in the subset a½b�. If the maximally abundant

value is not unique, one of the possibilities is chosen at random

with equal probability. In the context of social dynamics, these

global fields can be interpreted as mass media messages about

‘‘trends’’ originated in each population.

Each agent in subset a is subject to the influence of the global

field Mb, and each agent in subset b is subject to the influence of

the global field Ma. Figure 1 shows the configuration of the two

populations subject to the influence of their reciprocal global fields.

Starting from random initial conditions in each subset, at any

given time, a randomly selected agent in subset a½b� can interact

either with the global field Mb½a� or with any other agent belonging

to a½b�. The interaction in each case takes place according to the

dynamics of Axelrod’s cultural model.

The dynamics of the system is defined by iterating the following

steps:

1. Select at random an agent i[a and a agent j[b.

2. Select the source of interaction: with probability B, agent i[a
interacts with field Mb and agent j[b interacts with field Ma,

while with probability 1{B, i interacts with k[a selected at

random and j interacts with l[b also selected at random.

3. Calculate the overlap (number of shared components) between

agent i[a and its source of interaction, given by

da~
PF

f ~1 d
x

f
a(i),yf , where yf ~M

f
b if the source is the field

Mb, or yf ~xf
a(k) if the source is agent k[a. Similarly, calculate

the overlap db~
PF

f ~1 d
x

f

b
(j),yf , where yf ~Mf

a if the source is

the field Ma, or yf ~x
f
b(l) if the source is agent l[b. Here we

employ the delta Kronecker function, dx,y~1, if x~y; dx,y~0,

if x=y.

4. If 0vdavF , with probability da

F
choose g such that xg

a(i)=yg

and set xg
a(i)~yg; if da~0 or da~F , the state xf

a(i) does not

change. If 0vdbvF , with probability
db

F
choose h such that

xh
b(j)=yh and set xh

b(j)~yh; if db~0 or db~F , the state x
f
b(j)

does not change.

5. If the source of interaction is Mb½a�, update the fields Ma and

Mb.

The strength of each field Ma and Mb is represented by the

parameter B[½0,1� that measures the probability for the agent-field

interactions. Step 5 characterizes the time scale for the updating of

the global fields in our model. In general, agents in one population

do not have instantaneous knowledge of the state of the global field

of the other population, but only when they effectively interact

with that global field. The non-instantaneous updating of the

global fields expresses the delay with which a population acquires

knowledge about the other through the only available communi-

cation channel between them, as described in many cross-cultural

interactions through mass media [5]. In our case, as the value of

the parameter B increases, both the intensity of the global fields

and the updating rate of their states increase.

Under the mutual coupling, both populations, a and b form

domains of different sizes in the asymptotic state. A domain is a set

of connected agents that share the same state. A homogeneous or

ordered phase in a population corresponds to d(i,j)~F , Vi,j.

There are qF equivalent configurations for this ordered phase. In

an inhomogeneous or disordered phase in a population several

domains coexist. The sizes of these domains within each

population are ranked by the index r: r~1 corresponding to the

largest domain, r~2 indicates the second largest domain, etc. To

characterize the collective behavior of the system, we define the

following macroscopic quantities: (i) the average normalized size

(divided by Na½b�) of the domain in a½b� whose size has rank r,

denoted by Sr
a½b�; (ii) the probability that the largest domain in a½b�

has a state equal to Mb½a�, designed by P1
a½b�(Mb½a�).

Figure 2 shows various of these quantities as functions of the

parameter q, for different values of B. In this paper we fix the

parameter value F~10. In the absence of global fields (Fig. 2(a)),

i.e. B~0, we have two uncoupled and independent subsets; each

subset spontaneously reaches an ordered phase, characterized by

S1
a~1 and S1

b~1, for values qvqc, and a disordered phase,

Figure 1. Representation of two populations a and b interact-
ing through their reciprocal global fields Ma and Mb, each
acting with intensity B.
doi:10.1371/journal.pone.0051035.g001
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corresponding to S1
a^0 and S1

b^0, for qwqc, where qc is a

critical point that depends on the subset size in each case,

qc(a)*Na [52]. Figure 3(a) shows the asymptotic pattern in this

case.

For B?0 and qvqc, each population reaches an ordered state

with S1
a~1, as shown in Fig. 2(b). However, in this situation the

spontaneous order emerging in subset a for parameter values

qvqc due to the agent-agent interactions competes with the order

being imposed by the applied global field Mb. For some

realizations of initial conditions, the global field Mb imposes its

state on subset a and, correspondingly, the field Ma imposes its

state on subset b. As a consequence, both subsets reach the same

state with Ma~Mb. An asymptotic state corresponding to this

situation is displayed in Fig. 3(b). We refer to this state as phase I.

However, the ordered state in subset a½b� does not always

correspond to the state of the global field Mb½a� being applied to

a½b�. This is revealed by the probability P1
a(Mb) shown in Fig. 2(b)

that measures the fraction of realizations that the largest domain in

a has a state equal to Mb. We find P1
a(Mb)v1 for a range of

values qvqc. Thus, in this case there is a probability that subsets a
and b can reach ordered states different from each other, i. e.,

Mb=Ma. Figure 3(c) illustrates the asymptotic states in this case.

We denote this situation as phase II.

Figures 2(c) and 2(d) show both S1
a and S2

a as functions of q for

greater values of B. The quantity S1
a in Fig. 2(c) displays a local

minimum at some value of q that depends on B. This local

minimum of S1
a is associated to a local maximum value of S2

a , such

that S1
azS2

a&1 for qvqc. Therefore, two majority domains form

Figure 2. S1
a , S2

a , and P1
a(Mb) as functions of q, with F~10, for

different values of B. System size is N~800 with partition Na~0:6N .
Each data point is the result of averaging over 100 random realizations
of initial conditions. (a) S1

a (open circles), S1
b (solid circles); with B~0. (b)

Left vertical axis: S1
a (open circles); right vertical axis: P1

a(Mb) (crosses);

fixed B~0:001. Phases I and II. (c) Left vertical axis: S1
a (open circles), S2

a

(open squares); right vertical axis: P1
a(Mb) (crosses); fixed B~0:05.

Phases I and IV. (d) Left vertical axis: S1
a (open circles), S2

a (open squares);

right vertical axis: P1
a(Mb) (crosses); fixed B~0:25. Phase III occurs for

values qwqc~2500, independent of B. The bars in (c) and (d) indicate
the probability w of finding a localized ordered state in the system as a
function of q for the given value of the intensity B.
doi:10.1371/journal.pone.0051035.g002

Figure 3. Each panel displays an asymptotic state (vertical axis)
of the agents in the interacting populations a (upper part) and
b (lower part) vs. time (horizontal axis), corresponding to a
different phase in the system. Each value of the state variable of an
agent is represented by a different color. Population sizes are
Na~0:6N , Nb~0:4N , with N~800. (a) B~0,q~80 (no coupling). (b)
B~0:001,q~80 ( p h a s e I ) . ( c ) B~0:001,q~100 ( p h a s e I I ) .
(d)B~0:05,q~80 (phase IV). (e) B~0:25,q~2500 (phase III). (f)
B~0:05,q~80 (localized ordered state).
doi:10.1371/journal.pone.0051035.g003
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in subset a for qvqc. Fig. 2(c) also shows that the probability

P1
a(Mb)~1, indicating that the state of the largest group in a is

always equal to that imposed by the field Mb. But the second

largest group that occupies almost the rest of subset a reaches a

state different from Mb. Thus, the value of qvqc for which S1
a has

a local minimum is related to the emergence of a second largest

domain ordered against the global field Mb. The corresponding

asymptotic pattern is shown in Fig. 3(d). We call this configuration

phase IV. Figure 2(d) reveals that, for larger values of B, various

local minima of S1
a can occur at some values of q. This local

minima of S1
a correspond to local maxima of S2

a and to the

emergence of a second largest domain in a ordered against the

field Mb. The raise of a largest minority group at some values of q

is a manifestation of the tendency towards the spontaneous order

related to the agent-agent interactions. For values qwqc, both

populations reach disordered states VB, characterized by

S1
a^S1

b^0. The disordered behavior of the system is denoted

by phase III and the corresponding pattern is displayed in Fig. 3(e).

To characterize phase II, we plot in Fig. 4 the quantity

sa~(1{P1
a(Mb))S1

a as a function of q, for a fixed value

B~0:0005. For qvq�&10, the state of the largest domain in a

corresponds to the state of the field Mb, i.e. P1
a(Mb)~1 and

S1
a~1, indicating the presence of phase I, and thus sa~0. For

q�vqvqc, the largest domain in a no longer possesses the state of

the field Mb but another state non-interacting with this field, i.e.

P1
a(Mb)v1 and S1

a~1, and therefore saw0, characterizing phase

II. For qwqc, S1
a?0 and sa~0.

We note that phase II occurs for small values of B, where the

time scale for the agent-agent interaction dynamics is smaller than

the corresponding time scale for the agent-field dynamics. This

means that the state of the global field does not vary much in

comparison to the changes taking place in the states of the agents

and, therefore, the global field behaves approximately as a fixed

external field with little influence on the system. As a consequence

the system can spontaneously order in a state different from that of

the global field if qvqc is sufficiently large, giving rise to phase II.

For increasing values of B, the updating of the global fields and the

agent-agent dynamics have comparable time scales and, therefore,

the state of the fields corresponds to that of the largest domain in

each subset, yielding regions of both phase I and phase IV.

The collective behavior of either of the two subsets coupled

through their reciprocal global fields can be characterized by four

phases on the space of parameters (B,q), as shown in Fig. 5 for

subset a: (I) a homogeneous, ordered phase, for which S1
a*1 and

P1
a(Mb)~1; (II) an ordered phase in a state orthogonal to the

applied global field, such that S1
a*1 and P1

a(Mb)v1; (III) a

disordered phase for qwqc, for which S1
a^0; and (IV) a partially

ordered phase, where S2
aw0 and S1

azS2
a&1, P1

a(Mb)~1,

characterized by the emergence of a second largest domain

ordered in a state different from field Mb.

The phase diagram of Fig. 5 reveals that the interaction through

reciprocal, evolving global fields can lead to nontrivial effects in

Figure 4. The quantity sa~(1{P1
a(Mb))S1

a as a function of q for a
fixed value B~0:0005, with F~10. The critical values q� and qc, as
well as the regions where phases I, II, and III occur, are indicated. System
size is N~800 with partition Na~0:6N . Each data point is averaged
over 100 realizations of initial conditions.
doi:10.1371/journal.pone.0051035.g004

Figure 5. Phase diagram of population a on the space of
parameters (B,q), with F~10. System size is N~800 with partition
Na~0:6N . Each data point is averaged over 100 realizations of initial
conditions. The color code represents the value of the normalized
largest domain size S1

a , from black (S1
a~0) to white (S1

a~1). The regions
where the different phases occur are labeled and separated by slashed
lines: phase I (both populations share same homogeneous state); phase
IV (partially ordered, emergence of second group); phase III (disor-
dered), and phase II (each population in a different homogeneous
state). Localized ordered states can occur in the transitions from phase
IV to phase I.
doi:10.1371/journal.pone.0051035.g005

Figure 6. Normalized size of largest domain S1
a as a function of

q=Na with fixed intensity B~0:1, for different population sizes:
Na~0:5N (squares); Na~0:56N (circles); Na~0:8N (diamonds).
System size is N~800 and F~10.
doi:10.1371/journal.pone.0051035.g006
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certain cases. For example, for a fixed value q~20, the global field

can impose its state to the system (phase I) only for a range of

intermediate values of the intensity B.

We have checked the behavior of the system for different

population sizes Na and Nb. Figure 6 shows the quantity S1
a as a

function of q=Na with fixed coupling B, for different values of Na.

We see that the critical point for the transition to phase III scales

as qc*Na, as expected [52], and that the qualitative collective

behavior represented in the phase diagram of Fig. 5 is independent

of the sizes of the partitions into two populations. Since Na!N,

the collective behavior of the system is also independent of the size

N , and qc*N , according to Fig. 6.

Localized Ordered States

In addition to phases I and II that display homogeneous states

for both subsets a and b, there are configurations where

homogeneous states can take place in only one subset, while the

other is inhomogeneous, for some values of parameters. We refer

to this configuration as localized ordered states. These states are

characterized by S1
a ½S1

b�~1 and S1
b ½S1

a �~uv1. Figure 3(f)

displays the asymptotic state of the system in this case. In contrast

to the four phases that can be characterized in a subset, the

ordered collective states can only be defined by considering both

subsets simultaneously, i.e., it requires the observation of the entire

system.

To elucidate the nature of these states, we calculate the

probability w of finding a localized ordered state in the system as a

function of q in Figs. 2(c) and 2(d), employing the criterion uƒ0:6.

In both figures, there are ranges of the parameter q where

localized ordered states can occur; the probability w is maximum

near the values of q that correspond to local minima of S1
a (and

local maximum values of S2
a ). Figure 7 shows the probability

distributions p(Sr
a) and p(Sr

b), Vr, of the normalized domain sizes

for both subsets a and b, calculated over 100 realizations of initial

conditions, for different values of q, and with fixed B~0:05
corresponding to Fig. 2(c). Figure 7(a) exhibits the probabilities

p(Sr
a) and p(Sr

b) when either subset is in phase I with q~10,

characterized by the presence of one large domain whose size is of

the order of the system size S1
a ½S1

b�*1, in agreement with Fig. 3(b).

Figure 7(b) shows p(Sr
a) and p(Sr

b) associated to phase IV (q~70),

where the size of the largest domain in either subset never reaches

the system size due to the appearance of a second group, as

displayed in Figs. 2(c) and 3(d). Figure 7(c) shows the probabilities

p(Sr
a) and p(Sr

b) for q~90. In this case either subset can reach an

ordered configuration, S1
a ½S1

b�*1, or an inhomogeneous state

(S1
a ½S1

b�vu). This corresponds to the appearance of localized

ordered states in the system. For q~115, we find again a

probability distribution typical of phase I.

The localized ordered states are analogous to chimera states

observed in two populations of dynamical oscillators having global

or long range interactions, where one population in a coherent

state coexist with the other in a incoherent state [45–50]. In a

chimera state, one part of a spatially extended system presents a

coherent or synchronized behavior while another part is desyn-

chronized.

Note that the regions of parameters where localized ordered

states can emerge in our system lie between phase IV and phase I

states. In fact, the configuration of localized ordered states shares

features of both phase I and phase IV; they can be considered as

transition configurations between phase IV and phase I states.

Figure 7. Probability distributions p(Sr
a) and p(Sr

b), Vr, of normalized domain sizes for both populations a (black bars) and b (grey
bars), calculated over 100 realizations of initial conditions, with fixed intensity B~0:05, F~10, and for different values of the
number of options q. (a) q~10 (phase I); (b) q~70 (phase IV); (c) q~90 (localized ordered states); (d) q~115 (phase I).
doi:10.1371/journal.pone.0051035.g007
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Discussion

We have investigated the collective behavior of a system

consisting of two populations of social agents, mutually coupled

through global fields, as a model for cross-cultural interactions via

mass media. Specifically, we have employed Axelrod’s model for

social influence as the interaction dynamics.

The global interaction field associated to each population

corresponds to the statistical mode of the states of the agents. In

the context of social dynamics, this global autonomous field can be

interpreted as mass media messages about ‘‘trends’’ or stereotypes

originated in one population that are transmitted to the other

population. Thus, our system can represent cross cultural

interactions between two separated social groups, each with its

own internal dynamics, but getting information about each other

solely through their mass media messages [5].

We have found several phases on either subset depending on

parameter values: two homogeneous phases, one having the state

of the global field acting on that subset (phase I), and the other

consisting of a state different from that reached by the applied

global field (phase II); a partially ordered phase characterized by

the emergence of a second largest domain ordered in a state

different from the global field (phase IV); and a disordered phase

(III).

States similar to phases I, II, and III are also observed for some

regions of parameters in a system of social agents subject to an

external fixed field [40]. In the present model with non-

instantaneous updating of the fields, for small values of B, the

global evolving field varies very slowly in comparison to the

changes in the states of the agents in a subset due to their mutual

interactions. In this case, the global evolving field behaves as a

fixed external field acting on the population.

However, for larger values of B, the adaptive nature of the

global fields induce two new phenomena in some range of qvqc

on each population. One is the emergence of a largest minority

group of appreciable size having a state different from that of the

applied field (phase IV). The other corresponds to the appearance

of localized ordered states when the entire system is observed,

consisting of one population in a homogeneous state and the other

in an disordered state. These configurations occur with a

probability that depend on both B and q and appear as transitions

states from phase IV to phase I. These localized ordered states are

analogous to the chimera states that have been found in networks

of coupled oscillators having global interactions, where a subset of

the system reaches a coherent state while another subset remains

incoherent [47,48]. The recent experimental discovery of such

chimera states has fundamental implications as it shows that

localized order and structured patterns can emerge from otherwise

structureless system [50,51]. As noted in Ref. [47], analogous

symmetry breaking is observed in dolphins and other animals that

have evolved to sleep with only half of their brain at a time:

neurons exhibit synchronized activity in the sleeping hemisphere

and desynchronized activity in the hemisphere that is awake [53].

From a social perspective, our model shows that cross cultural

reciprocal interactions through mass media do not always lead to

the imposition over one population of the cultural trends being

transmitted by the media of another population. A group

possessing a cultural state different from that of the mass media

message can spontaneously emerge in the first population. Under

some circumstances, such group can encompass the entire

population (phase II), or it can constitute the largest minority in

that population (phase IV).

The behaviors reported here should also be expected in other

non-equilibrium systems possessing non-interacting states, such as

social and biological systems whose dynamics usually possess a

bound condition for interaction [35]. This includes models of

motile elements in population dynamics, such as swarms, fish

schools, bird flocks and bacteria colonies [34,54–58]. Future

extensions of this work involves the consideration of complex

network structures within each population and the investigation of

communities, where the interaction between populations occurs

through a few elements rather than a global field.
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55. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Schochet O (1995) Novel type of
phase transition in a system of self-driven particles. Phys Rev Lett. 75: 1226–

1229.
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