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Unsupervised identification of disease states from
high-dimensional physiological and
histopathological profiles
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Abstract

The liver and kidney in mammals play central roles in protecting
the organism from xenobiotics and are at high risk of xenobiotic-
induced injury. Xenobiotic-induced tissue injury has been exten-
sively studied from both classical histopathological and biochemi-
cal perspectives. Here, we introduce a machine-learning approach
to analyze toxicological response. Unsupervised characterization
of physiological and histological changes in a large toxicogenomic
dataset revealed nine discrete toxin-induced disease states, some
of which correspond to known pathology, but others were novel.
Analysis of dynamics revealed transitions between disease states
at constant toxin exposure, mostly toward decreased pathology,
implying induction of tolerance. Tolerance correlated with induc-
tion of known xenobiotic defense genes and decrease of novel
ferroptosis sensitivity biomarkers, suggesting ferroptosis as a drug-
gable driver of tissue pathophysiology. Lastly, mechanism of body
weight decrease, a known primary marker for xenobiotic toxicity,
was investigated. Combined analysis of food consumption, body
weight, and molecular biomarkers indicated that organ injury
promotes cachexia by whole-body signaling through Gdf15 and
Igf1, suggesting strategies for therapeutic intervention that may
be broadly relevant to human disease.
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Introduction

A major function of the liver and kidneys is to take up, metabolize,

and excrete xenobiotics that gain access to the blood. In executing

these functions, these organs are at high risk for toxin-induced

damage. Liver and kidney toxicities are major concerns in the safety

of pharmaceuticals, industrial chemicals, and environmental toxins

(Stickel et al, 2000; Onakpoya et al, 2016). Predictive toxicology

aims to identify molecular events that precede and cause tissue

injury to inform exposure the limits and development of less-toxic

alternatives (Suter et al, 2004; Chen et al, 2014). Toxicogenomics,

i.e., collection of transcriptomic and other systematic data across

sets of reference toxins in model organisms, is a relatively recent

innovation with high potential for improving the mechanistic under-

standing of toxicities (Bredel & Jacoby, 2004; Chen et al, 2012).

Here, we use the Open TG-GATEs database, which collates high-

quality transcriptome, histopathology, blood chemistry, tissue, and

body weight data following administration of 160 chemicals in rats

(Igarashi et al, 2015; Data ref. Food consumption, 2015; Noriyuki

et al, 2012). These data have previously been analyzed using gene-

centric classification schemes with the goal of improving predictive

toxicology (Natsoulis et al, 2008; Kohonen et al, 2017; Sutherland

et al, 2018). Our approach is instead disease-centric, with more clin-

ically oriented goals: to learn the number and nature of discrete

disease states induced by toxins, how the liver and kidney respond

to oppose induction of local pathology, and how they also orches-

trate organism-wide responses to toxin exposure. We view this

approach as conceptually similar to that of physicians seeking to

classify the mechanisms of diseases more generally, and we ask, to

what extent does unsupervised machine learning discover the same

disease states as physicians?

Supervised classification, which dominates toxicogenomics,

seeks to best separate multiple experimental outcomes (especially

mRNA expression patterns) into pre-determined phenotypes (e.g.,

fibrosis or carcinogenicity in the liver; AbdulHameed et al, 2014;

Eichner et al, 2014). It does not test whether the data best support

those pre-determined phenotypes vs. others, or how multiple

phenotypes relate to each other and interconvert (Kiyosawa et al,

2009; Sauer et al, 2017). We therefore sought first to identify mutu-

ally exclusive disease states in a data-driven manner and only then

to decipher state-specific molecular mechanisms or biomarkers. To

do this, we chose to begin with information a clinician can access in

man, rather than classifying transcriptomes. Although transcrip-

tomes offer large amounts of data and the potential for molecular

pathway identification (Natsoulis et al, 2008; Sutherland et al,

2018), they are not part of standard clinical diagnosis, and their rela-

tionship to disease states is unclear. As a machine-mimic of clinical
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diagnosis, we started by clustering conditions that exhibit abnormal

physiology (i.e., blood chemistry and body and tissue weights) and

histopathology from the Open TG-GATEs dataset. These data

collected in rats model a standard set of clinical measurements

applied by physicians to patients with almost any unidentified

disease. Using unsupervised clustering, we identified nine discrete

disease states that were independently supported by physiological

and histopathological data. We then performed a supervised analy-

sis of gene expression data through the lens of these machine-identi-

fied disease states. Our combined data analysis revealed that some

machine-identified disease states correspond to known disease

states and known mechanisms of toxin action, but others seem

novel. We identified temporal transitions between disease states

that provide evidence for the induction of tolerance, and we found

distinct gene expression signatures that correlated with tolerance.

These included changes in the expression of xenobiotic metabolism

genes, as expected, and also novel biomarkers for protection from

ferroptosis, a specific form of cell death mediated by runaway lipid

oxidation (Stockwell et al, 2017). Finally, we explored the role of

the liver in mediating whole-organism responses to xenobiotics. We

find evidence that the liver communicates with the rest of the body

through specific signaling proteins that likely mediate feeding

behavior and weight loss.

Results

Unsupervised identification of disease states from physiology
and histology data

There is currently no standard method to classify toxin-induced

pathology in a completely automated fashion. Therefore, we

explored the physiology and histology space of an existing large

toxicogenomic dataset (Open TG-GATEs), using unsupervised

machine-learning techniques to identify disease states (Fig 1A; an

overview of the data and our analysis workflow are summarized in

Appendix Fig S1A and B; all the treatment conditions are listed in

Dataset EV1). We performed an initial characterization of disease

states using blood chemistry and body/tissue weight data (hereafter

referred to as physiology data; Dataset EV2), which are unbiased

measures corresponding to standard clinical tests used for diagnosis

in patients. The dataset includes physiology data for 3,564 total

conditions, representing administration of 160 chemicals at three

dose levels each, with data collected at eight time points ranging

from 3 h to 29 day (Fig EV1). To highlight dis-/similarity and

partial dependencies between 37 physiology parameters across all

3,564 treatment conditions, we visualized these conditions using

t-distributed stochastic neighbor embedding (t-SNE), which has

recently gained popularity in biology, due to its success in dissecting

heterogeneity of conditions from high-dimensional correlated data

(van der Maaten, 2014). The t-SNE physiology map revealed one

large island, which may correspond to normal physiology, and

several small islands of abnormal physiology (Fig 1B, Appendix Fig

S2). Naming of these islands, and their relationship to standard

toxin-induced pathology states, is discussed below.

We next focused on liver and kidney histology data to ask

whether they support the discrete disease states that emerged from

physiology data (Dataset EV3). Histology is typically employed after

physiology to diagnose human disease. It is also part of the routine

exercise required in regulatory toxicity assessments. In Open TG-

GATEs, these data were recorded as calls from a standard

constrained terminology made by expert toxicologic pathologists

based on microscopic examinations of H&E-stained tissue sections.

One compound treatment can induce more than one histopathology

phenotype concomitantly, and typically, a tissue experiencing

severe injury exhibits multiple histological phenotypes (Fig EV2,

Appendix Fig S3). We computed “severity scores” based on the

number of abnormal histology phenotypes scored. We then color-

coded the physiology t-SNE map by liver and kidney histopathology

severity scores (Fig 1C). Visual inspection confirmed good correla-

tion between physiology and histology, where small distinct islands

exhibited abnormal liver and kidney histology. However, conditions

exhibiting similar physiological abnormality did not always agree

on the histopathological severity scores. We suspected that this is in

part due to lack of reliable severity metrics in histopathology;

histopathology calls made by human experts are intrinsically less

quantitative than physiology metrics (e.g., low-level changes may

be missed) or may suffer from bias and/or inaccuracy due to scoring

only a few tissue slices per animal. To overcome such potential

missingness of histopathology, we imputed severity scores by

smoothing the liver and kidney severity score distribution on the

physiology map, where we can expect to see better agreement

between the physiology and histopathology data (Fig 1D).

We next called disease states by identifying discrete clusters in

the conjoined map of physiology and histopathology metrics using a

density-based clustering algorithm (Ester et al, 1996). While t-SNE

has been widely used due to its power to highlight the heterogeneity

of the high-dimensional data in a lower dimensional space, its

stochastic algorithm gives an output that are similar but slightly

distinct from each other, depending on the pseudorandom number

generator it uses. To compensate this stochastic nature of t-SNE, we

ran t-SNE and clustering with different pseudorandom generator

seeds iteratively for 100 times and sought for “consensus clusters”

across the 100 different sets of clusters (Hornik, 2005). Through this

procedure, nine consensus clusters emerged robustly, which we

termed “disease state (DS)” clusters (Fig 1E). While use of the word

“disease” implies a negative health impact, it is in principle possible

that some “disease states” are beneficial. Of 3,564 conditions, each

DS contained 37–203 conditions. 2,723 conditions did not belong to

any DSs, and we classified these as non-disease state (non-DS;

Dataset EV4). DSs are listed in Table 1.

Known and novel disease states identified by
unsupervised analysis

We next tried to map DSs onto standard pathologies in the toxicol-

ogy literature, referring primarily to the physiology and histology

markers, and in some cases also to subsequent analysis of gene

expression changes or toxin mechanisms (described below).

Comparison of histopathological severity scores showed which

tissues were more affected in each DS (Fig 2A). A simplified cluster-

gram highlighted physiology parameters that most strongly defined

each state (Fig 2B). As we hoped, a distinct set of histology pheno-

types were associated with DSs (Fig 2C).

Table 1 lists the nine DSs. While DS1–4 induced systemic physio-

logical and pathological changes, they were not associated with
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detectable tissue injury or exhibited transcriptional response to

proinflammatory cytokines and would likely elude a conventional

toxicogenomic analysis. DS5–9 showed clear signals of tissue injury

as scored by physiology and histology, and map clearly onto the

kinds of disease used as pre-determined classifiers in conventional

toxicogenomics. Recognition of DS1–4 therefore represents a

A

C

D E

B

Figure 1. Discovery of nine disease states using physiology and histopathology data.

A Computational process to discover disease states in Open TG-GATEs.
B Physiology t-SNE map generated by Pearson distance and t-SNE. Each of 3,564 points represents the physiology data from one treatment condition. Plots were color-

coded by intensities of eight physiology parameters.
C Severity scores of liver and kidney overlaid onto the physiology tSNE map.
D Contour maps indicating densities of severity scores in liver and kidney.
E Membership and likelihood of consistent clusters across 100 times iterations of tSNE and DBSCAN clustering. Numbers on the clusters correspond to their names,

DS1–9, that are consistent throughout the paper.
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preliminary success of our analysis, and DS2 in particular emerged

as mechanistically significant in subsequent analysis. DS1 showed

activated synthesis of various metabolites and increased relative

liver mass. DS2 represents acquired toxin-induced tolerance while

decreasing body weight. In DS3, total bilirubin (TBIL) increased, but

direct bilirubin (DBIL), a liver injury marker, did not. Based on this

profile, we suspect that DS3 corresponds to hemolytic anemia. In

DS4, TBIL level was decreased, which is not seen in known clinical

states. DS4 lacked common histological or transcriptome changes in

liver and kidney and may not be a disease state in the conventional

sense, though it clearly is abnormal (Hirayama et al, 1974) and

reproducible. DS5–7 was marked by an increase in standard liver

injury markers that are used in human diagnosis of liver damage

(Giannini et al, 2005). DS5 exhibited longer prothrombin time (PT),

suggesting a decrease in the synthesis of prothrombin, a liver-

synthesized blood coagulation protein. DS5 would not clinically be

considered to be an explicit liver injury, unlike DS6–7, but the data

strongly suggest that the liver’s health is affected. DS6 exhibited

DBIL increase and various periportal histopathology phenotypes,

which corresponds to cholestasis, an injury of the liver bile ducts.

DS7, on the other hand, exhibited hepatocellular injury such as

increase in blood asparatate aminotransferase (AST), alanine

aminotransferase (ALT), and lactate dehydrogenase (LDH) levels as

well as single cell necrosis in the liver. In DS8, multiple hematologi-

cal parameters were changed and unique histological and transcrip-

tional phenotypes were observed, indicating that the animals

suffered from bleeding, induction of synthesis of complement

factors and coagulation cascade components, and hematopoiesis in

the liver (Gwaltney-Brant, 2014). DS9 is marked by blood urea

nitrogen (BUN) increase and hypertrophy and neutrophil infiltration

in kidney, indicating kidney injury. The database contained fewer

reference kidney toxins than liver toxins, perhaps explaining why

we observed only one disease state that mapped to kidney pathol-

ogy (Schrier et al, 2004) in the analysis.

Overrepresentation of drug classes in disease states

We next asked whether specific toxin classes reliably induced speci-

fic DSs, defining classes as containing multiple compounds with

known overlapping biological activity, as summarized in

Appendix Fig S1C. We found that lipid-lowering drugs mapped to

DS1, synthetic hormones mapped to DS2, and non-steroidal anti-

inflammatory drugs (NSAIDs) mapped on DS8, each at higher doses,

and each more than expected by chance (Fig EV3, Table 1). NSAIDs

are known to cause intestinal bleeding at high doses (Wallace et al,

2000; Wallace, 2008), which likely accounts for their mapping to

DS8 (Appendix Fig S4A and B). The four lipid-lowering drugs

mapped onto DS1 were peroxisomal proliferator-activated receptor

alpha (PPARa) agonists (clofibrate, fenofibrate, WY-14643) and a

cholesterol synthesis inhibitor (simvastatin). PPARa agonists

increased peroxisomes, which were recognized as eosinophilic gran-

ules in the cells in DS1 (Ohta et al, 2009; Appendix Fig S4C and D).

This class of drugs has been well studied in rats, and its lipid-

lowering effect in the short term is often described as beneficial

rather than pathological. However, we decided to keep our initial

notation of “disease states” even for DS1; long-term treatment with

these drugs frequently causes liver cancers, possibly due to hyperac-

tivation of metabolism to increase the liver biomass (Holden &

Tugwood, 1999). The NSAID- and fibrate-induced disease states of

liver were previously characterized by transcriptome-centric analysis

Table 1. Characteristics of the nine disease states.

DS Clinical description Physiology Histopathology Induced transcriptome Toxin class Kinetics

1 Metabolically
active

Rel.Liver.Weight up Granular
eosinophilic
degeneration (L)

Anti-inflammatory; anabolism
of ATP, lipids, amino acids (L)

Lipid-lowering
drugs

Late-onset;
robust

2 Tolerance Body.Weight, GLC down Hypertrophy (L) Xenobiotic metabolism,
ferroptosis resistance (L)

Synthetic
hormones

Late-onset;
robust

3 Hemolytic
anemia

TBIL up N/A N/A N/A Early-onset;
transient

4 N/A TBIL, DBIL down N/A N/A N/A Early-onset;
transient

5 Acute liver
injury

PT up; TC, PL down Eosinophilic
change (L)

IL-1/TNFa signal, RNA-pol
II transcription (L)

N/A Early-onset;
transient

6 Cholestasis DBIL up Proliferation of
bile ducts (L)

IL-1/TNFa signal, cancer
signature, response
to alkaloid (L)

N/A Early-onset;
transient

7 Hepatocellular
injury

AST, ALT, LDH up Single cell necrosis
(L)

IL-1/TNFa signal, cancer
signature, cell cycle, collagen
biosynthesis (L)

N/A Early-onset;
transient

8 Bleeding WBC, Ret, Neu up;
Hb, Ht, Lym, RBC down

Extramedullary
hematopoiesis (L)

IL-1/TNFa signal, IL-6/Jak/STAT
signal, complement/coagulation
cascade (L)

NSAIDs Late-onset;
robust

9 Kidney injury BUN, Rel.Kidney.Weight, up Hypertrophy (K) IL-1/TNFa signal (K) N/A Late-onset;
robust

This table summarizes the analysis of physiology (Fig 2B), histology (Fig 2C), transcriptome (Fig 3), toxin class (Fig EV3), and kinetics (Fig 4). Physiology acronyms
are described in Dataset EV2. Refer to the corresponding figures and the text for the details.

4 of 17 Molecular Systems Biology 15: e8636 | 2019 ª 2019 The Authors

Molecular Systems Biology Machine identification of disease states Kenichi Shimada & Timothy J Mitchison



of Open TG-GATEs data (Chung et al, 2015). Compared to the two

drug classes that strongly induced representative physiology and

histology phenotypes of the DSs, the effect of synthetic hormones on

liver was modest and lacked conspicuous physiology or histology

changes such as hypertrophy (Appendix Fig S4E and F).

Transcriptome description of disease states

To test whether each DS was transcriptionally distinct, we performed

elastic net classification of liver and kidney transcriptome data (Data-

sets EV5 and EV6). This generated classifiers that attempted to distin-

guish conditions assigned to each DS from all the rest of conditions

using the liver or kidney transcriptome. All classifiers were found to

be powerful for separating DSs (all areas under ROC curves were

above 0.85, compared to 0.46–0.63 for randomly drawn samples of

the same sizes; Appendix Fig S5A). Thus, each DS has a characteris-

tic transcriptome both in liver and in kidney. To examine the func-

tional implications of DS-specific transcriptional states, we assessed

whether 914 GO and KEGG pathways changed their activities in DSs,

compared to pooled non-DS clusters. We computed “activity scores”

by modifying the standard gene set enrichment analysis (GSEA) to

capture the significance of systematic changes of pathway activity

among conditions assigned to each DS (See Materials and Methods

for the detail). We interpreted a large positive or negative activity to

indicate that a pathway is substantially up- or downregulated

compared to corresponding vehicle treatments in the DS. Through

this analysis, we found that six DSs (DS1,2,5–8) induced systematic

changes of pathway activities in the liver transcriptome; in DS9,

changes of pathway activities were observed in the common kidney

transcriptome but not in the liver transcriptome; and DS3–4 did not

capture any common pathway changes either in liver or in kidney

(Fig 3A). Hierarchical clustering of pathway activity in both liver

and kidney primarily divided nine DSs into two groups (tissue injury

or not; Fig 3B); consistently, five DSs associated with tissue injury

activated proinflammatory cytokine signaling, namely cellular

response to proinflammatory cytokines (TNF, IFN-c, IL-1) in the

corresponding tissues (Appendix Fig S5B).

Liver was more transcriptionally responsive to xenobiotic stimuli

than kidney across many conditions that induced a DS. This is

expected because the liver is primarily responsible for detoxifying

xenobiotics, although the choice of toxins in the dataset may also

overemphasize the role of the liver. The kidney only exhibited

major transcriptional changes in DS9, which also phenotypically

corresponded to kidney damage in the physiology and histopathol-

ogy (Table 1).

To better understand the changes induced by toxin exposure in

the six DSs we identified as significantly affecting the liver tran-

scriptome (DS1,2,5–8), we classified the modulated pathways based
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Figure 2. Disease state characterization using blood physiology and histopathology.

A Comparison of liver and kidney severity scores (top). Imputed severity scores shown in Fig 1D were grouped for each DS, and their median (point) and lower and
upper quartiles (bar) are shown. X- and y-axes correspond to liver and kidney severity scores, respectively. The number of samples per DS vary between 37 and 198.
Non-DS has 2,723 samples. Log ratio of liver over kidney severity scores (bottom).

B Changes in physiology parameters and DSs. Yellow/cyan indicates the parameters are higher/lower than control vehicle treatments in the DS. Thirty-one parameters
whose FDR-adjusted P-values < 1 × 10�10 (Wilcoxon two-sample test) in ≥ one DS were shown.

C Histopathology phenotypes and DSs. Relative enrichment of a phenotype among DSs was shown. Yellow indicates more observations in a DS than the others. Thirty-
four histopathology phenotypes whose FDR-adjusted P-values < 5 × 10�3 (Fisher’s exact test) in ≥ one DS were shown.

ª 2019 The Authors Molecular Systems Biology 15: e8636 | 2019 5 of 17

Kenichi Shimada & Timothy J Mitchison Machine identification of disease states Molecular Systems Biology



on their transcriptional activity. Pathways that were transcription-

ally activated or suppressed in each DS were mapped onto corre-

sponding nodes on a dendrogram (Fig 3C, Appendix Fig S5C–E;

Dataset EV7). This allowed us to determine in which contexts the

pathways were up- or downregulated. For example, in all of these

six DSs, the liver activated transcription of “cytosolic large riboso-

mal subunit”; in disease states that reported on tissue injuries

(DS5–8) pathways categorized as “cellular response to IL-1 and

TNF” was activated in the liver. On the other hand, some pathways

such as “p53 signaling” or “collagen biosynthetic process” were

activated only in specific states [e.g., hepatocellular injury (DS7)],

but not in the other DSs.

DS2 is a state of drug-induced tolerance

A strength of the Open TG-GATEs data is the collection of multi-

ple time points at constant toxin exposure. Kinetic analysis

showed that some DSs are mostly or exclusively late-onset, i.e.,

after 24 h (DS1,2,8). Others are early-onset or had no particular

trends in kinetics (Fig 4A, Appendix Fig S6A). Of 365 conditions

(compound and dose) whose data were collected at all eight

time points, 246 (67%) caused at least one DS at some point,

and 90 (25%) caused more than one DS over time

(Appendix Fig S6B).

To inform on causal connections between DSs, we focused on

conditions causing more than one DS and classified temporal

transitions at constant toxin exposure (Fig 4B). This analysis

revealed bi-directional inter-conversion between different DSs

corresponding to liver damage, which may be expected given

transcriptional and histologic overlaps between these related DSs.

A strong, unexpected feature was conversion of multiple liver and

kidney DSs to DS2. Since DS2 is not associated with liver or

kidney injury by histology, this suggests a time-dependent reduc-

tion of organ-specific pathology. Figure 4C shows temporal

−20 0 20
Activity scores

Li
ve

r
K

id
ne

y

si
gn

ifi
ca

nt
ly

 c
ha

ng
ed

 p
at

hw
ay

s
(7

23
 in

 li
ve

r, 
19

2 
in

 k
id

ne
y)

D
S

1

D
S

2

D
S

3

D
S

4

D
S

5

D
S

6

D
S

7

D
S

8

D
S

9

A B

C

# 
of

 p
at

hw
ay

s

# 
of

 p
at

hw
ay

s

Liver

−300

−200

−100

0

100

200
Kidney

−300

−200

−100

0

100

200 Activity score
(20,)
(15,20]
(10,15]
(5,10]
[−10,−5)
[−15,10)
[−20,−15)
(,−20)

D
S

1

D
S

2

D
S

3

D
S

4

D
S

5

D
S

6

D
S

7

D
S

8

D
S

9

D
S

1

D
S

2

D
S

3

D
S

4

D
S

5

D
S

6

D
S

7

D
S

8

D
S

9

Cytosolic large ribosomal subunit
Steroid binding

B (non-inflammatory)
Butanoate metabolism
Neg. regulation of insulin R signaling

C (tissue injury)
Cellular response to IL-1 and TNF
NOD-like receptor signaling
Negative regulation of apoptotic process
Liver regeneration
BCAA degradation
Peroxisome
Selenocompound metabolism

D (liver injury)
Tight junction

Response to oxidative stress
PPAR signaling

Butanoate metabolism

E (AST/DBIL positive)
Cancer signatures
Actin filament
ErbB (EGFR) signaling
Fatty acid metabolic process

Peroxisome, PPAR signaling
Mitochondria, TCA cycle/oxphos.
Glycolysis/gluconeogenesis
Amino acid and lipid metabolism
Chemokine signaling
Notch signaling
Cancer signatures
Growth factor signaling

Xenobiotic metabolism
Glutathione metabolism

Response to selenium ion

Nuclear envelope

RNA pol II transcription

Protein tyrosine phos. activity

Xenobiotic metabolism

Glutathione metabolism

Response to alkaloid

Response to testosterone

P53 signaling

Cytoskeleton (cell-cell junction, 
 cell cortex, focal adhesion)

Cell cycle

Collagen biosynthetic process

Cellular response to cholesterol

Hedgehog signaling

Complement/coagulation cascades

Acute inflammatory response

Hematopoietic cell lineage

Cellular response to IL-6 (Jak-STAT)

Mitochondria, TCA cycle/ox.phos.

A (all)

metabolically active defense-increase acute liver injury cholestasis hepatocellular injury bleeding

DS1 DS2 DS5 DS6 DS7 DS8

Figure 3. Disease state characterization using transcriptome data.

A Number of significantly up-/downregulated pathways in each disease state from the liver and kidney transcriptome. Colors of the bars indicate activity scores of
pathways.

B Activity scores of significantly up-/downregulated pathways in the liver and kidney across all nine DSs.
C Manually curated map of transcriptional activities of pathways in the liver among six DSs (DS1–2,5–8). Up- and downregulated pathways are colored in red and blue,

respectively. See also Appendix Fig S5.
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changes in a standard liver injury biomarker (AST), a standard

kidney injury biomarker (BUN) and a representative biomarker of

DS4 (TBIL) across the transitions out of other DSs and into DS2.

Transitions into DS2 were accompanied by reduced injury

biomarkers in most cases. After examining the transcriptome data

on the different DSs (see below), we interpret this as evidence of

induced tolerance.

Toxin-induced tolerance to toxin action, also known as autopro-

tection (Dalhoff Kim et al, 2003; O’Connor et al, 2014), is poorly

understood but is presumably an important component of how

xenobiotic resistance evolved, and how modern vertebrates adapt to

toxic environments. Analysis of dynamics of DSs and injury

biomarkers (Fig 4B and C, Appendix Fig S6C) suggests that DS2 is a

state of induced tolerance. To determine molecular mechanisms that

B Transition over time

DS3 (hemolysis)

DS6 (cholestasis)

DS4 (low TBIL)

DS9 (kidney inj)
DS5 (actuve liver inj)

DS7 (hepatocyte inj)

DS8 (bleeding)
DS1 (active metab.)

DS2 (tolerance)

3 
hr

6 
hr

9 
hr

24
 h

r
4 

da
y

8 
da

y
15

 d
ay

29
 d

ay

A Kinetics of DS

C Evidence of tolerance

2

2
8

5

2
5

8

3

4

16

8
3

3

5

8

4
3

4

4

25

2

3

3

2

DS3
(hemolysis)

DS4
(low TBIL)

DS6
(cholestasis)

DS7
(hepatocyte inj.)

DS5
(acute liver inj.)

DS2
(tolerance)

DS9
(kidney inj.)

DS8
(bleeding)

Dead

DS1
(active metab.)

28

5

63

42

20
227

3

8

2

56

7

19

4

17
1

8

tissues affected

liver injury
kidney injury
other injury
non−inflammatory
dead

non-DS

non-DS

N
or

m
al

iz
ed

  
A

S
T

 (
tr

ea
tm

en
t -

 c
on

tr
ol

)

last
in DS7

first
in DS2

0
2

4
6

8
10

12

disulfiram (600 mg/kg)
ethinylestradiol (3 mg/kg)
pemoline (75 mg/kg)
tacrine (10 mg/kg)
tacrine (30 mg/kg)

N
or

m
al

iz
ed

  
B

U
N

 (
tr

ea
tm

en
t -

 c
on

tr
ol

)

last
in DS9

first
in DS2

−
1

0
1

2
3

bromoethylamine (20 mg/kg)
gentamicin (100 mg/kg)
tiopronin (1000 mg/kg)
triamterene (50 mg/kg)
triamterene (150 mg/kg)

N
or

m
al

iz
ed

  
T

B
IL

 (
tr

ea
tm

en
t -

 c
on

tr
ol

)

last
in DS4

first
in DS2

−
15

−
10

−
5

0

diltiazem (800 mg/kg)
etoposide (10 mg/kg)
flutamide (15 mg/kg)
flutamide (150 mg/kg)
griseofulvin (100 mg/kg)
nitrofurantoin (100 mg/kg)
propylthiouracil (10 mg/kg)
rotenone (50 mg/kg)

Figure 4. Disease state dynamics.

A Kinetics of DS, summarizing the frequency and timing of each DS. Each row indicating one treatment (compound and dose) across eight time points.
B Transition between DSs. Size of nodes reflects the number of unique treatments assigned to each DS. Size and color of arrows reflect the number of treatments

transitioning between the two nodes. Transitions taken by only one compound were omitted.
C Evidence of tolerance. As for transitions from three DSs to DS2, changes in representative markers for each DS were shown.
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might drive tolerance and result in DS2, we first re-examined genes

that are selectively regulated in this DS. Xenobiotic catabolism genes

were strongly and selectively induced in DS2 compared to all other

DS and non-DS conditions (Fig 3C). While this finding might be

expected, it emphasizes the function of xenobiotic defense genes

and supports our characterization of DS2 as a state of tolerance.

Tolerance is associated with induced resistance to ferroptosis

Xenobiotic metabolism is a multistep reaction: in phase I, cyto-

chrome P450 monooxygenases (Cyp450) conjugate xenobiotic

compounds with oxygen using NADPH; in phase II, the products of

this reaction are conjugated with hydrophilic groups such as sugars

(e.g., glucuronic acid) and glutathione (GSH) to facilitate excretion.

When we regrouped xenobiotic catabolism genes based on cofac-

tors, we found that genes encoding NADPH- and GSH-utilizing

enzymes were among the most highly expressed genes in DS2

(Figs 5A and EV4A, Dataset EV8). Activation of redox metabolism

functions is also involved in ferroptosis, a form of cell death that

has been implicated in drug-induced liver injury (L}orincz et al,

2015). Thus, we also suspected that the liver acquires resistance to

ferroptosis in DS2.

Ferroptosis occurs when activity of the selenoprotein glutathione

peroxidase 4 (Gpx4) is inhibited (Fig 5B; Yang et al, 2014). Ferrop-

tosis pathways are not represented in current GO terms, in part

because genes that regulate ferroptosis are still poorly understood

(Stockwell et al, 2017). To generate an objective classifier of ferrop-

tosis sensitivity, we referred to our previous pharmacogenomic

analysis of the NCI-60 project, where we contrasted cellular

responses to chemicals known to induce cell death via a number of

mechanisms, including ferroptosis (Fer), DNA damage (DNA) and

tyrosine kinase inhibition (TKI) in the NCI-60 human cancer cell-

line panel (Shimada et al, 2016). Using those data, we generated

gene expression signatures that serve as markers for sensitivity

(sen) or resistance (res) for each of these treatments. We converted

these six signatures to rat orthologs and evaluated them across all

nine DS compared to non-disease samples. Fer-res was strongly and

uniquely upregulated by DS2 (Fig 5C). Conversely, DSs associated

with liver injuries downregulated Fer-res and upregulated Fer-sen,

consistent with the role of ferroptosis in liver injury. DS2 does not

increase DNA-res or TKI-res, suggesting that toxin-induced tolerance

is associated with acquiring resistance to ferroptosis, but not to

other cell death mechanisms.

There was no substantial overlap between genes involved in Fer-

res and the 14 pathways activated exclusively in DS2 (Fig EV4B).

Nevertheless, the transcriptional activity of Fer-res among 3,528

liver transcriptome is most highly correlated with the scores of the

10 GO and KEGG pathways exclusively upregulated in DS2 while

the activity of Fer-sen is somewhat anticorrelated with them

(Fig EV4C and D). Our analysis supports the hypothesis that DS2

not only overexpresses xenobiotic metabolism genes but also

acquires resistance to ferroptosis.

Whole-body response to toxins

Toxin responses have whole-body impacts in addition to organ-

specific effects, but these have been much less studied in the toxi-

cology literature, or the human liver/kidney disease literature. Loss

of body weight is a well-known indicator of chronic toxicity in rats,

though its etiology is poorly understood. It likely corresponds to

cachexia phenotypes in man, which are well-recognized contribu-

tors to disease burden (Delano & Moldawer, 2006). Body weight

decrease was the most significant physiological descriptor for DS2,

but it was not unique to DS2: all DSs associated with tissue injury

(DS5–9) exhibited body weight decrease to a similar extent to DS2

(Figs 6A and EV5A), while tolerance-associated pathways were acti-

vated in DS2, but not in DS5-9, highlighting the differences between

the states (Fig 6B). Toxin-induced weight loss could result from

direct responses of peripheral tissues such as muscle and adipose

tissues to toxin, or (more likely) from their indirect responses to

signals from toxin-exposed tissues that alter global metabolism or/

and feeding behavior. The liver and kidney communicate with the
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Figure 5. Induced drug tolerance is partly due to resistance to
ferroptosis.

A Expression of xenobiotic metabolism enzyme genes in the liver, grouped by
phases of biotransformation and cofactors. Only cofactors with ≥ 10
enzymes were shown. Y-axis is a signed log P-value computed with two-
sample Wilcoxon test between 126 conditions in DS2 and their
corresponding vehicle treatment. The horizontal lines, box limits and
whiskers represent the median, lower and upper quartiles and the most
extreme data point which is no more than 1.5 times the interquartile range
from the box.

B Central mechanism of ferroptosis. Gpx4 reduces cytotoxic lipid peroxide to
nontoxic alcohol species. When Gpx4 does not work, lipid peroxide is
accumulated, and NAD(P)H is depleted consequently. Decrease in NAD(P)H
or the cofactor of GPX4, GSH, makes cells susceptible to ferroptosis.

C Activity of cell death mechanism-specific sensitive and resistant gene
signatures in the nine DSs, focusing on three cell death mechanisms (Fer:
ferroptosis, DNA: DNA damaging, TKI: tyrosine kinase inhibition).
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whole body through concentrations of multiple metabolites in blood

and also through secreted signaling proteins. We therefore analyzed

metabolite and secretome changes in conditions that caused body

weight loss, irrespective of whether tolerance was induced.

Suppression of food intake over time was strongly correlated

with body weight, as might be expected (Fig 6C). Food consumption

is decreased in conditions associated with tolerance (DS2) or tissue

injury (DS5–9; Fig EV5B), and this may therefore be part of the

mechanism leading to loss of body weight in these conditions. We

observed a weaker correlation between blood glucose level and

weight loss (Fig EV5C and D). The causal chain here appears to be

that decreased food consumption weakly correlates with decreased

glucose concentration, and decreasing blood glucose is known to

cause decreased body weight.

To identify candidate secreted proteins that mediate whole-

organism toxin responses, we computed cumulative gene expression

over 29 days for all genes that changed expression in liver and

kidney respectively and calculated the Spearman correlation

between their expression and the body weight on Day 29 (Fig 6D).

To identify genes encoding secreted proteins, we referred to a list of

376 blood plasma proteins measured by proteomics and other meth-

ods (Nanjappa et al, 2014; Thul et al, 2017). We discovered that the

four most strongly up- and downregulated genes encoding secreted

proteins in the liver were all related to insulin-like growth factor-1

(Igf-1): low body weight animals consistently upregulated the Igf-1

antagonists Igfbp1 and Igfbp2 and downregulated Igf1 itself and its

activator Igfals (Fig 6D; Clemmons, 2007). Three of the four genes

showed similar trends in the kidney. We also found that the Spear-

man correlations of gene expression levels and food consumption

across five time points (1, 4, 8, 15, 29 days) showed quite similar

results (Fig EV5E), strongly indicating that Igf1 signaling decreased

upon suppression of food consumption. These four proteins thus

appear to collectively mediate strong organ-to-body communication

as part of toxin responses. Igf1 promotes tissue growth

(Stratikopoulos et al, 2008), so decreasing its activity via gene

expression may cause body weight decrease in toxin-exposed rats.

Igf-1 secretion also responds to blood glucose levels, so it might be

acting as part of a feedback response (Clemmons, 2004, 2007). Both

liver and kidney decreased Igf1 signaling, but the liver appears to

contribute to body weight loss more significantly (Figs 6E and F,

and EV5F and G). This is consistent with the fact that Igf1 synthe-

sized and secreted by the liver accounts for 75–80% of paracrine

Igf1 found in the blood plasma (Clemmons, 2007).

Another endocrine factor that might play a significant role in

body weight decrease is Gdf15, whose cumulative transcriptional

expressions both in liver and in kidney were strongly negatively

correlated with body weight (Figs 6D and EV5E). This TGFb family

member can be produced by many tissues and is known to be a

toxin response gene (Zhang et al, 2014; Chung et al, 2017, p. 15;

Lee et al, 2017). It negatively regulates feeding by binding to the

receptor Gfral in the brainstem (Emmerson et al, 2017, p. 15; Hsu

et al, 2017; Mullican et al, 2017; Yang et al, 2017). Animals upreg-

ulating Gdf15 transcription either in liver or in kidney decreased

food consumption (Fig 6G), consistent with a role of Gdf15 in

suppressing appetite. However, high expression of Gdf15 tran-

scripts in the liver was induced only by synthetic hormones such

as ethinylestradiol or tamoxifen, which induced decrease in body

weight without any physiological or histopathological signs of

toxicity (Fig 6G). We therefore concluded that they were causing

weight loss via a mechanism that differs from classic toxin

responses. When these compounds were removed, we found that

Gdf15 expression in the kidney, and not the liver, responded

consistently to tissue injury (Fig EV5H, Appendix Fig S7). Thus,

Gdf15 expression by the kidney after tissue injury may be the

general mechanism for toxin-induced weight loss, via negative

regulation of feeding. Figure 7 summarizes our current view of the

role of liver–body communication in toxin-induced body weight

decrease, where liver-to-whole-body signals that decrease feeding

remain to be identified.

Discussion

Application of machine learning to physiology and histology data

is an emerging field with high potential in translational research

(Miller & Brown, 2018). We applied a fairly simple unsupervised

characterization approach to discover disease states in a high-

quality toxicogenomics dataset. Physiology data alone identified

▸Figure 6. Low blood glucose level inhibits Igf1 paracrine to decrease body weight.

A Body weight change over time. Treatment conditions were grouped into the DSs on Day 29: tolerance (DS2), tissue injury (DSs5–9), other DS (DSs1,3,4), and non-DS.
The number of conditions (compound x dose) in each group are shown in the brackets. Error bars are standard deviation at each time point for each group. Each
normalized body weight is an average of five biological replicates.

B Pathway activities in tolerance (71) or tissue injury associated conditions (58) compared with the rest of the conditions (222). Y-axis shows pathway activity scores at
a given time point (signed log P-values from two-sample Wilcoxon test). Red and blue lines correspond to the 14 DS2-associated pathways listed in Fig EV4D and
“Fer-res”, respectively.

C Relationship between cumulative food consumption over 29 days and body weight on Day 29.
D Spearman correlated with cumulative gene expression in liver and kidney over 29 days and body weight on Day 29. Plasma proteome genes, four Igf1-related genes,

and Gdf15 were highlighted in black, red, and blue, respectively.
E Linear regression model with latent variables (left). Rectangle and ellipsoidal nodes indicate observed data and latent variables, respectively. Contribution of liver and

kidney Igf1 transcriptional activities to body weight on Day 29, both with and without synthetic hormone data (right). Error bars are standard errors of mean
calculated using lavaan R package. P-values of the null hypothesis that the coefficients are zero being correct were calculated by the estimates and the standard
errors plugged into normal distribution. P-values of “l” (asterisks) are 3.1e-32 (with hormones) and 3.9e-4 (without), respectively. 97 (with hormones) and 91 (without)
samples were used for the regression.

F Cumulative Igf1 transcriptional activity over 29 days in liver and kidney, computed in the model in panel (E). Points were color-coded by the extent of body weight
change. Filled squares indicate synthetic hormone treatments.

G Gdf15 expression in liver and kidney at five time points (1, 4, 8, 15, and 29 days). Points were color-coded by changes in food consumption per day. Filled squares
indicate synthetic hormone treatments.
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discrete disease states (Fig 1B), and histopathology data supported

these states with high statistical confidence and helped us deter-

mine their relevance to conventional toxin-induced pathologies

(Figs 1C and D, and 2C). While we found some disease states that

were not previously reported (i.e., DS2–4), we do not think all

well-established pathological states were explained by our nine

DSs at least for three reasons. First, Open TG-GATEs primarily

focused on the liver and kidney pathology, so we are likely to miss

phenotypes in other tissues, such as drug-induced cardiotoxicity,

even if induced. Second, pathological phenotypes not induced by

the 160 compounds chosen for the study should not be covered.

Third, we picked robust DSs, which were induced by ≥ 20 condi-

tions, so any less frequent disease states were missed out in our

analysis. Considering these limitations, unsupervised identification

of disease states in our study is still a useful proof of concept for

large-scale toxicogenomic analysis. Moreover, Open TG-GATEs

includes large H&E images of most conditions, and an interesting

future question is whether application of artificial intelligence

machine vision approaches could help boost reliability and quan-

tification of histopathology images.

Our approach provides a new window into the biology present in

a toxicogenomic dataset, but we did not use it to try to improve

A B

C D

E G

F

Body weight change

Figure 6.
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predictive toxicology. That important goal might be feasible in

future studies. Our immediate interest was in how well an algorithm

can mimic a physician in terms of defining disease states, which is

generally relevant to applications of machine learning in medicine.

We were also interested in how the liver, and the organism as a

whole, responds, and in some cases adapt, to continuous toxin

exposure. Toxin-induced tolerance is highly relevant to environmen-

tal and pharmacologic toxicology, and to the evolution of xenobiotic

defenses, but has received relatively little attention in the genomic

era. Our DS analysis (Table 1) was successful in identification of

standard organ pathology states used in toxicology. It also identified

several non-standard states with interesting physiology, which

demonstrates the potential of computational analysis in translational

research and medicine.

An unexpected and interesting outcome of DS kinetics was

evidence for acquisition of tolerance to xenobiotics by the liver, also

known as autoprotection or pharmacokinetic tolerance. We identi-

fied DS2 as the main tolerance state. We then showed, using gene

expression analysis, that tolerance is achieved by expected mecha-

nisms that include overexpressing xenobiotic catabolizing enzymes,

particularly NADPH- and GSH-dependent ones. Unexpectedly, we

found that tolerance correlated with induction of biomarkers for

ferroptosis resistance, using an independent dataset of cancer cells

responds to drugs to identify these biomarkers. Overall, our analysis

of tolerance confirms the expected role of conventional detoxifi-

cation enzymes and points to ferroptosis resistance as a novel mech-

anism worthy of additional study. Induction of detoxification

enzymes is a plausible means to protect tissues from injury by drug

toxicity. For example, small molecule drug candidates have been

developed that activate the toxin-responsive transcription factor

NRF2 by antagonizing its interaction with KEAP (Davies et al,

2016). The goal of such drugs is to protect organs from damage

caused by endogenous oxidants, but they might also provide benefit

in acute or chronic toxin exposure. Further research might identify

targets for drugs that protect specifically against ferroptotic death. In

general, induction of pharmacokinetic tolerance is an actionable

next step to mitigate toxicity from exposure to environmental toxins

and perhaps also endogenous toxins generated by disease

processes.

Finally, we used transcriptomics to analyze possible molecular

causes of body weight decrease and the role of secretory plasma

proteins in orchestrating it. Despite the universal use of body

weight as a biomarker of toxicity, its molecular basis is poorly

understood. Body weight decrease was found in all DSs where

organ injury was present, and also in the tolerance state DS2. As

expected, it correlated with decreased food intake and blood

glucose (Fig 6C). Remarkably, the four liver-secreted proteins that

correlated best with body weight decrease were all part of the Igf1

system, and all changed in the same direction, of decreased Igf1

signaling in disease states associated with weight loss (Fig 6D).

Their high correlation suggests Igf1 shutdown is a common

response to diverse tissue injuries caused by toxins, where the

chain of causality likely proceeded from decreased feeding causing

low blood glucose levels which then cause decreased Igf1 signaling

(Clemmons, 2007). Paracrine Igf1 signaling serves to increase

muscle and adipose growth, so its loss may plausibly drive muscle

atrophy and body weight loss (Fig 7). This leaves open the ques-

tion of how organ damage triggers decreased feeding. Gdf15 is an

interesting candidate. It is known as a common early marker of

drug-induced liver injury (Hsiao et al, 2000; Chung et al, 2017)

and binds to Gfral in the brainstem to suppress food intake

(Emmerson et al, 2017; Hsu et al, 2017, p. 15; Mullican et al,

2017; Yang et al, 2017). Our data support a role of Gdf15 in medi-

ating weight loss in response to multiple toxins (Fig 6G,

Appendix Fig S7). The data also suggest that Gdf15 in response to

multiple toxins is primarily synthesized in kidney, and most

strongly induced by kidney toxins, consistent with a recent report

that Gfral mediates weight loss in response to the kidney toxin

Cisplatin (Hsu et al, 2017). However, Gdf15 expression by liver

was only strongly correlated with weight loss in response to

certain synthetic hormones that were not overt toxins (Figs 6G,

and EV5G and H, Appendix Fig S7). Therefore, as yet unidentified

signals are more likely to mediate liver-to-whole-body signaling to

suppress food intake upon synthetic hormone treatments.

In summary, our approach shows the value of systematic data

collection and analysis for revealing new organ biology. Ferroptosis

emerged as an important factor in toxin responses and may be a

druggable driver of tissue pathophysiology. We made progress on

the little-studied problem of how organ toxicity triggers whole-body

weight decrease, which is relevant to mechanistic toxicology, effects

of alcohol in man, and perhaps to diagnosis and treatment of human

diseases with non-toxin causes. From a translational perspective,

our findings support a role of GDF15 antagonists for treatment of

drug-induced cachexia. They particularly support a role of IGF1

agonists for treating cachexia more universally. Their use is compli-

cated by glucose-lowering side effects, but we suggest they deserve

more attention for treatment of cachexia across multiple diseases.

Igf1 modifiers that are co-regulated during toxin-induced weight loss

(Igfbp1, Igfbp2, and Igfals) are also worthy of consideration as drug-

gable targets in cachexia.

Toxin

Tissue injury

Gdf15/other
secreting factors↑

Food intake↓

Blood glucose level↓

Body weight loss

Igf1/Igfals↓
Igfbp1/Igfbp2↑

Tissue catabolism

Figure 7. Proposed mechanism of drug-induced body weight loss.

(1) Toxin induces tissue injury. (2) Injured tissue and the kidney secrete anorexic
factors including Gdf15. (3) Hypothalamus suppresses appetite and food
consumption. (4) Blood glucose concentration is decreased. (5) Production of
paracrine Igf1 system in the liver is decreased. (6) Tissues, such as muscle and
adipose, catabolize themselves due to suppression of glucose uptake. (7) Body
weight is decreased.
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Materials and Methods

Normalization of open TG-GATEs dataset

Open TG-GATEs data acquisition

All but food consumption data were downloaded from the Open TG-

GATEs website (https://toxico.nibiohn.go.jp/open-tggates/english/

search.html) using RCurl package and parsed with XML package.

Food consumption data were downloaded from another repository of

Open TG-GATEs dataset at Life Science Database Archive (https://dba

rchive.biosciencedbc.jp/en/open-tggates/data-11.html). An adminis-

tration of one compound, one dose, and one time point is referred to

as “treatment condition” or “condition” throughout the text. There

were 3,564 conditions tested in total (160 chemicals, three doses, eight

time points). Each condition was tested in biological quintuplicates to

collect physiology (body and organ weights, blood cell counts, blood

chemistry) and histology (diagnosis based on H&E staining of liver

and kidney made by toxicologic pathologists) data; three of the five

samples were further tested for liver and kidney microarray data;

3,528 and 975 conditions were tested for liver and kidney transcrip-

tome.

Drug treatment information

In the Open TG-GATEs dataset, rats were tested with one of 160

compounds (99 drugs, 55 industry toxins, six endogenous signaling

molecules or metabolites), at three doses determined for each chem-

ical (Appendix Fig S1C). After single dose treatment, animals were

sacrificed at 3, 6, 9, or 24 h; after daily repeated dose treatment,

animals were sacrificed on 4, 8, 15, or 29 days. Some compounds

were tested in single or repeated dose treatments only, but 140

compounds were tested for all eight time points. Ninety-seven of

which were at same doses, but 43 of which were tested at higher

doses in single dose than at repeated dose. 365 conditions (com-

pounds at fixed doses) were scheduled for all eight time point test-

ing, but 14 killed animals at later time points so 351 conditions

were tested at eight time points. At the time of sacrifice, physiology

(hematology, body, and tissue weights) and histopathology of liver

and kidney were collected for each of the five animals. Further,

three of five animals representing each condition were collected and

subject to liver and kidney microarray.

Physiology data normalization

Physiology parameters (blood cell counts, blood biochemistry,

and body and tissue weights) were measured for each first

subject to normalization for each of 3,564 treatment conditions

(compounds, doses, time points). We first averaged five biological

replicates of each parameter for each condition. Because each

parameter was measured in different units and they were not

directly comparable, we normalized the value so that they were

comparable to each other. As for normalization, we computed the

mean and the interquartile range of 3,564 values of each parame-

ter, subtracted the mean from each value, and divided by the

interquartile range.

Histopathology curation

Histopathology of liver and kidney from every treated animal was

diagnosed by toxicologic pathologists. The information consists of

the names of phenotype (necrosis, hypertrophy, etc.), topography

(periportal, centrilobular, etc.), and grade (minimal, slight, moder-

ate, severe). Because some histopathology phenotypes (such as

necrosis) were often observed even under vehicle treatments, so

they were considered independently of compound treatment. There-

fore, we trimmed the histopathology observations so that we work

only with observations likely induced by compound treatments. To

do this, we stratified the observations into topography and grade.

For each topography and grade of each phenotype, we counted the

number of rats exhibits the phenotype both induced by vehicles and

by compounds, and kept observations only when the ratio of the

counts was more than the ratio of rats used in the project (=0.336;

5,950 and 17,685 rats used for vehicle and toxin treatments in TG-

GATEs, respectively) and discarded otherwise because we do not

have a firm evidence that the phenotype was induced by the toxins.

After the trimming procedure, we claimed a phenotype was induced

by a condition (compound, dose, time point) when at least one of

the quintuplicated rats treated with the condition exhibited the

phenotype.

Transcriptome normalization

Microarray experiments were performed in three biological repli-

cates. All the CEL files from rat liver and kidney data were down-

loaded from the Open TG-GATEs website. There were 14,143 and

3,905 CEL files for the liver and kidney. The CEL files of the same

tissue were handled simultaneously for computing a normalized

expression matrix using affy, affyio, BufferedMatrix, Buf-

feredMatrixMethods, rat2302.db packages. Normalization was

performed by robust multiarray analysis of BufferedMatrix.justRMA

() function of BufferedMatrixMethods, which log2-transformed the

resulting expression profiles. Three biological replicates were aver-

aged to produce an expression profile for each condition, and a pro-

file of the corresponding vehicle treatment was subtracted. This

gives expression profiles of 3,528 and 975 conditions in liver and

kidney, respectively.

Food consumption data normalization

For 337 conditions (132 unique compounds), food consumption was

measured at nine time points (1, 4, 8, 11, 15, 18, 22, 25, and

29 days). For these conditions, food consumption of rats adminis-

tered with compounds was subtracted from that of rats administered

with vehicles.

Identification of disease states/physiology and histology
overrepresentation

Computing physiology t-SNE

Using 1-Pearson correlation (also known as “Pearson distance”) as

distance measure between any pairs of treatment conditions in the

physiology space, we first computed a distance matrix across 3,564

conditions. We next set a seed i for random number generator

(RNG) (i = 1–100) and ran t-SNE based on the calculated distance

matrix using Rtsne() function in Rtsne package, to generate a

2-dimensional coordinate of each conditions on the t-SNE map.

Filtering disease-associated conditions

Severity scores were computed by counting co-occurring histology

phenotypes for liver and kidney and mapped onto t-SNE map. Two-

dimensional density landscape of severity scores was computed
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using bkde2D() function in KernSmooth package. Severity score is

recomputed by estimating the severity score from the 2-dimensional

density map using interp.surface() function in fields package. Condi-

tions containing higher severity scores than an arbitrary threshold

were considered to be associated with some diseases and further

selected for disease identification.

Clustering for identifying disease states

Conditions with higher severity scores were clustered based on their

t-SNE coordinates using density-based clustering of applications

with noise (DBSCAN). This is achieved by dbscan() function in

dbscan package. 100 runs from t-SNE to clustering with different

RNG seeds were summarized by ensemble clustering using cl_con-

sensus() function in clue package. This identified 15 clusters that

contain 5–203 conditions. To gain robust disease states that are

induced by multiple compounds, we discarded smaller clusters

composed of fewer than 20 conditions or induced only by one

compound, because we expected that such small clusters do not

have strong statistical power due to the small sample size in further

transcriptome analysis. We recomputed the memberships and likeli-

hoods to limit our interest to larger clusters with ≥ 20 conditions

and found nine consensus clusters in total ranging from 37 to 203

conditions (10–55 unique compounds). At the same time, 2,723/

3,564 conditions were identified a non-disease states.

Characterization of physiology and histology of nine DSs

Relative severity between liver and kidney

Liver and kidney severity scores for each disease were compared to

assess which tissue was more affected in terms of histopathology.

Relatively affected tissue was assessed by scatter plot (Fig 2A, top)

as well as log ratio: log10(severityliver) � log10(severitykidney)

(Fig 2A, bottom).

Deviation of physiological parameters in each DS

Changes in physiology parameters were assessed by unpaired two-

sample two-sided Wilcoxon test between conditions in each DS and

conditions in non-DS. Resulting P-values were adjusted to false

discovery rate (FDR; also known as q-values) and further converted

to “signed log q-values” (Shimada et al, 2016; Fig 2B). Physiological

parameters whose q-value < 10�10 against at least one DS were

shown in Fig 2B.

Relative enrichment of histopathological phenotypes among DSs

Among conditions associated with at least one histopathological

observation, we assessed whether each histopathology phenotype

was more observed in a specific DS, using one-sided Fisher’s exact

test. All the P-values were FDR-adjusted and converted to singed

log q-values, and histopathology phenotypes whose q-values

< 5 × 10�3 against at least one DS are shown in Fig 2C.

Elastic net classification of DS using microarray data

To assess whether liver or kidney transcriptome is powerful enough to

distinguish each DS from the rest, we built elastic net classifiers using

cv.glmnet() function of glmnet package. The performance of an elastic

net classifier built for each tissue and each DS was tested as follows:

For each DS, conditions (whose transcriptome was available) were

either assigned into the DS or not. Those assigned and those not were,

respectively, split into 10 bins of the same sizes randomly (i.e., 10

groups for the DS, 10 groups for not). An elastic net classifier was then

trained with one of the 10 groups being left out for both, where the

conditions were weighted reciprocally proportional to the two sizes (#

of the DS or not). Binomial family for the response type and area

under curve for the type measure were used for elastic net. The left-

out conditions were used as testing data for the trained classifier. This

10-fold cross-validation was repeated 10 times, with different ways to

split conditions into 10 bins, and the prediction probabilities across

the 10 runs were averaged (repeated cross-validation, also known as

prevalidation). Performance of the classification was assessed by area

under receiver operator curve (AUROC) computed using auc() func-

tion of pROC package. Finally, to evaluate the significance of the clas-

sification based on the identified disease states, the same procedure

was run on randomly withdrawn conditions with the same sample

sizes and AUROC values were compared. AUROC values based on

identified DSs were substantially higher than those based on randomly

withdrawn conditions.

Pathway analysis

Compiling pathways

We assembled 973 pathway information using KEGG.db (v3.2.3)

and GO.db (v3.5.0) Bioconductor packages. Using rat2302.db

(v3.2.3) and org.Rn.eg.db (v3.5.0) packages, we found 914 of which

have ≥ 10 genes that were measured in Affymetrix Rat Genome 230

2.0 Array.

Computing activity scores

We assessed whether the 914 GO and KEGG pathways were activated

or inactivated across conditions assigned to each DS, compared to

non-DS conditions. We assumed that some pathways changed exclu-

sively in one DS, while other pathways changed in multiple DSs. To

appropriately capture this, we modified gene set enrichment analysis

(GSEA; Subramanian et al, 2005). GSEA sorts entire genes based on

their expression and performs one-sample Kolmogorov–Smirnov (KS)

test, a permutation-based test to assess the significance of KS statistics.

In our method, we first computed a KS statistic (also known as

“enrichment score” in GSEA) of each pathway in every condition and

asked whether the enrichment score of conditions assigned to one DS

is overall higher or lower compared to non-DS conditions, using two-

sample Wilcoxon test (also known as Mann–Whitney U-test). Result-

ing P-values were converted to signed log10 P-values, which we

termed “activity scores”. A large positive or negative activity score

indicates that a pathway is significantly up- or downregulated across

conditions assigned in the DS compared to non-DS conditions. Note

that we decided to not adjust P-values for multiple hypothesis testing

for transcriptome analysis because pathway information from two dif-

ferent databases, GO and KEGG, is highly redundant, but instead we

chose fairly strict criteria (P ≤ 1 × 10�5) for calling a pathway’s

change significant.

Transcriptome characterization of DSs

DSs similarity based on transcriptome

Using 723 liver and 192 kidney pathways whose transcriptional

activity was significantly changed at least in one DS, we measured
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similarity of the transcriptome of the nine DSs using hierarchical

clustering, using 1-Spearman correlation as distance measure and a

complete linkage method for the clustering (Fig 3B).

Transcriptional characterization of DSs

We mapped 723 pathways in the liver transcriptome based on their

activities across six DSs (DS1–2,5–8) whose liver transcriptome was

substantially deviated from non-DS. We first checked if each path-

way’s expression changed in the liver of the six DSs, by comparing

their activity score with thresholds (≥ 5 for upregulation, ≤ �5 for

downregulation). Then, patterns of up/downregulations of a path-

way were matched with the dendrogram (Appendix Fig S5C–E).

Pathways exclusively changed in one direction only in one DS were

mapped onto each DS (e.g., xenobiotic metabolism in DS2), and

pathways commonly changed in multiple DSs were associated with

the corresponding branching point in the dendrogram (e.g., cancer

signature in DS6–7). In the extreme, a pathway upregulated in all

the six DSs [“large ribosomal subunit” (GO:0042273)] was associ-

ated with the top branching point in the dendrogram. Note that

there were some pathways that were significantly changed in one or

more pathways but not mapped to the dendrogram. For example,

“Terpenoid biosynthesis (rno00900)” was upregulated in three DSs

(DS1,2,8), but there was no equivalent point in the dendrogram.

Disease transition network between DSs

Of the 365 conditions (compounds and doses) scheduled at all eight

time points between 3 h to 29 day (14 of which were scheduled at

eight time points but rats were killed by compounds before 15-day or

29-day time points, so 351 of 365 were actually tested at the eight time

points; we included these dead rats in this analysis), we looked at the

DS assigned at each time point. 119 conditions did not exhibit any

DSs. Of the 246 conditions that took some DSs at least once, 90 took

more than one DS across eight time points. In some cases, non-DS

states were observed while transitioning from one DS to another. In

the dynamics between DSs, however, we visualized them as directly

transitioning from one DS to another, to highlight the relationship

between DSs. The dynamics between DS was visualized using igraph

package (Fig 4B). Transition to and from non-DS (represented by

outer open circle) were manually added in Adobe Illustrator.

Enzyme stratification by cofactors

The 14 pathways upregulated exclusively in DS2 contain various

xenobiotic metabolism enzymes encoding genes. We classified these

genes based on their Enzyme Commission (EC) numbers, which were

available in org.Rn.eg.db package. All of these enzyme-encoding

genes were oxidoreductases (EC1), transferases (EC2), or hydrolases

(EC3), which require cofactors for the enzymatic functions. Except

for EC3, which requires water as cofactor that is abundant in cells, we

regrouped EC1 and EC2 enzymes based on the cofactors: NAD(P)H

(EC1.1.1.1, EC1.1.1.10, EC1.1.1.14, EC1.1.1.21, EC1.1.1.22,

EC1.1.1.30, EC1.1.1.42, EC1.1.1.44, EC1.1.1.45, EC1.1.1.49,

EC1.1.1.62, EC1.1.1.63, EC1.1.1.64, EC1.1.1.105, EC1.1.1.146,

EC1.1.1.149, EC1.1.1.205, EC1.1.1.270, EC1.1.1.284, EC1.2.1.3,

EC1.2.1.5, EC1.2.1.8, EC1.2.1.31, EC1.2.1.36, EC1.2.1.47, EC1.3.1.2,

EC1.3.1.3, EC1.3.1.24, EC1.5.1.30, EC1.8.1.7, EC1.8.1.9, EC1.11.1.6,

EC1.11.1.9, EC1.11.1.12, EC1.14.13.8, EC1.14.13.17, EC1.14.13.100,

EC1.15.1.1, EC1.17.1.4), cytochrome (EC1.10.2.2), oxygen

(EC1.1.3.8, EC1.2.3.1, EC1.3.3.3, EC1.3.3.4, EC1.4.3.4, EC1.16.3.1,

EC1.17.3.2), disulfide (EC1.8.4.2, EC1.17.4.1), flavin (EC1.14.14.1),

iron-sulfur (EC1.14.15.3, EC1.14.15.4, EC1.14.15.5, EC1.14.15.6), S-

adenosyl methionine (EC2.1.1.6, EC2.1.1.67), acyl-CoA (EC2.3.1.5,

EC2.3.1.15, EC2.3.1.20, EC2.3.1.37, EC2.3.1.75, EC2.3.1.76,

EC2.3.1.135, EC2.3.2.2, EC2.3.2.4), nucleotide sugar (EC2.4.1.17,

EC2.4.1.22, EC2.4.1.38, EC2.4.1.50, EC2.4.1.66, EC2.4.1.90,

EC2.4.1.109, EC2.4.1.152, EC2.4.1.221, EC2.4.1.222, EC2.4.2.3,

EC2.4.2.8, EC2.4.2.10, EC2.4.99.1, EC2.4.99.6), glutathione

(EC2.5.1.18, EC2.5.1.61), ATP (EC2.7.1.17, EC2.7.1.21, EC2.7.1.48,

EC2.7.4.9, EC2.7.7.9, EC2.7.11.22). Expression of the genes stratified

by cofactors in DS2 was assessed by two-sample Wilcoxon test

(Fig 5A). Furthermore, GSEA was performed to see enrichment of

NAD(P)H-dependent, GSH-dependent, and all enzyme-encoding gene

expressions against DS2 transcriptome.

Discovery of biomarkers to different cell death phenotypes

We previously showed that cell-line selectivity of lethal compounds

(i.e., growth inhibitory (GI50) profiles across cell lines) in the NCI-60

dataset can explain their lethal mechanism of action and that 2,565

cell-line selective lethal compounds were clustered into 18 mechanisti-

cally distinct classes (Shimada et al, 2016). While most of their mech-

anisms of action were not fully characterized, yet a few annotated

ones were DNA-targeting compounds (DNA), ferroptosis (Fer), and

tyrosine kinase inhibitors (TKI). In the paper, we also correlated basal

microarray expression profiles with drug sensitivity profiles of each

mechanism class, where positive and negative correlations can be

interpreted as more abundant in resistant or sensitive cell lines,

respectively. We extended this approach in this study. We took top

200 most positively and negatively correlated genes in the three cell

death phenotypes (DNA, Fer, TKI) as resistant (res) and sensitive

(sen) biomarkers for the phenotype, because these are genes likely

overexpressed in cells resistant or sensitive to each cell death pheno-

type. Thus, we created six human gene sets: DNA-res, DNA-sen, Fer-

res, Fer-sen, TKI-res, and TKI-sen. We then converted the genes to

orthologous genes in rats using Ensembl’s biomart and Mouse

Genome Informatics (http://www.informatics.jax.org/downloads/

reports/HOM_AllOrganism.rpt) and found 158–185 rat orthologs for

each gene set. We computed activity scores of these six gene sets

across nine disease states to assess whether they are resistant or sensi-

tive to the three different mechanisms of cell death (Fig 5C).

Correlation of pathways with ferroptosis sensitivity signatures

We computed enrichment scores of the two curated gene sets, Fer-

sen and Fer-res, and computed Spearman correlation of enrichment

scores between Fer-sen/Fer-res and the 914 GO and KEGG path-

ways. We found most of the 14 pathways exclusively upregulated in

DS2 were the most highly correlated with Fer-res, while they were

somewhat negatively correlated with Fer-sen (Fig EV4C and D).

Pathway activity analysis in time course

Of the 351 conditions (compounds and doses) that were tested at all

eight time points, 71 were assigned to DS2 and 58 to DS5–9 on 29-

day time point (Fig EV5A). They were named as “tolerance” and
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“tissue injury”, respectively. The other 222 conditions were either

other DSs or non-DS. At each time point, we assessed whether path-

ways were changed in tolerance or tissue injury. We computed of

each pathway per condition and assessed whether the statistics were

deviated between the classes (tolerance vs. others; tissue injury vs.

others) using two-sample two-sided Wilcoxon test (Fig 6B).

Compiling blood plasma proteins

We assembled the collection of experimentally validated plasma

proteins from two different databases. First, from Human Protein

Atlas (https://www.proteinatlas.org/), 3,704 “predicted secretory

proteins” have evidences at protein levels were looked at, 2,960 of

which have rat orthologs. Second, from Plasma Proteome Database

(http://plasmaproteomedatabase.org/), 468 proteins have more

than one associated reference that they were observed in plasma,

382 of which have rat orthologs. Altogether, 376 rat orthologs (376

unique Entrez IDs) were observed from the two databases that were

also measured in Affymetrix Rat Genome 230 2.0 Array.

Correlation between gene expression and food consumption or
body weight

We computed area under curve (weighted sum) of the all genes’

expression in liver and kidney over 29 days, including 376 plasma

protein-encoding genes for 351 conditions tested at all time points.

Then, we calculated the Spearman correlation coefficients between

the cumulative gene expression and the body weight on 29 day

(Fig 6D). The positive and negative correlation indicates genes were

expressed less or more in the animals with decreased body weight.

We also computed Spearman correlation coefficients between indi-

vidual gene expression, not cumulative, and food consumption per

day (Dataset EV9). In which, measurements at five time points (1,

4, 8, 15, 29 days) were treated as independent conditions, and

correlation was calculated across all conditions and time points

(Fig EV5E).

Linear regression of body weight or food consumption on Gdf15
or Igf1 activities

Igf1 and body weight

To assess the relationship between Igf1 and body weight, transcrip-

tional activity of Igf1 system (named as “Igf1 transcriptional activ-

ity” in Fig 6E) in liver and kidney was summarized from four Igf1-

related genes in the tissues as latent variables, which were further

used to regress changes in body weight on 29-day time point

(Fig 6E). This latent variable analysis was performed using lavaan

package. In the model, “Igf1 activity” was conceived as a latent vari-

able each for liver and kidney, which is estimated from cumulative

expression of four Igf1-related genes (Igf1, Igfals, Igfbp1, and

Igfbp2). And the two latent variables, Igf1 activity for liver and

kidney, were used to see their contributions in the change in body

weight on 29 day.

Gdf15 and food consumption

Multivariate linear regression of food consumption on Gdf15 expres-

sion in liver and kidney was performed. Since Gdf15 level in the

tissues are substantially different among DSs, the linear regression

was also performed with the data stratified into five DSs [tolerance

(DS2), liver injury (DS5–7), kidney injury (DS9), bleeding (DS8),

non-injury(DS1,3,4)], where DSs were taken as a categorical interac-

tion term in lm() (Appendix Fig S7). The significance of the coeffi-

cients stratified by DSs was plotted in Fig EV5H.

Processed data from Open TG-GATEs are available in the follow-

ing datasets:

• All drug treatment conditions: Dataset EV1

• Normalized physiology data: Dataset EV2

• Liver and kidney histopathology data: Dataset EV3

• Disease states and corresponding treatment conditions: Dataset

EV4

• Liver normalized transcriptome data: Dataset EV5

• Kidney normalized transcriptome data: Dataset EV6

• Significantly up- and downregulated pathways in disease states of

rat livers in Open TG-GATEs: Dataset EV7

• List of xenobiotic metabolism genes whose expression was upreg-

ulated in disease state DS2: Dataset EV8

• Food consumption data from Open TG-GATEs: Dataset EV9

Expanded View for this article is available online.
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