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Background: The aging of the world population poses a major health challenge, and

brain–computer interface (BCI) technology has the potential to provide assistance and

rehabilitation for the elderly.

Objectives: This study aimed to investigate the electroencephalogram (EEG)

characteristics during motor imagery by comparing young and elderly, and study

Convolutional Neural Networks (CNNs) classification for the elderly population in terms

of fatigue analysis in both frontal and parietal regions.

Methods: A total of 20 healthy individuals participated in the study, including 10 young

and 10 older adults. All participants completed the left- and right-hand motor imagery

experiment. The energy changes in the motor imagery process were analyzed using

time–frequency graphs and quantified event-related desynchronization (ERD) values. The

fatigue level of the motor imagery was assessed by two indicators: (θ + α)/β and θ/β,

and fatigue-sensitive channels were distinguished from the parietal region of the brain.

Then, rhythm entropy was introduced to analyze the complexity of the cognitive activity.

The phase-lock values related to the parietal and frontal lobes were calculated, and

their temporal synchronization was discussed. Finally, the motor imagery EEG data was

classified by CNNs, and the accuracy was discussed based on the analysis results.

Result: For the young and elderly, ERD was observed in C3 and C4 channels, and

their fatigue-sensitive channels in the parietal region were slightly different. During the

experiment, the rhythm entropy of the frontal lobe showed a decreasing trend with time

for most of the young subjects, while there was an increasing trend for most of the older

ones. Using the CNN classification method, the elderly achieved around 70% of the

average classification accuracy, which is almost the same for the young adults.

Conclusion: Compared with the young adults, the elderly are less affected by the

level of cognitive fatigue during motor imagery, but the classification accuracy of motor

imagery data in the elderly may be slightly lower than that in young persons. At the
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same time, the deep learning method also provides a potentially feasible option for the

application of motor-imagery BCI (MI-BCI) in the elderly by considering the ERD and

fatigue phenomenon together.

Keywords: aging, brain–computer interfaces, motor imagery, fatigue, CNN

INTRODUCTION

Population aging is one of the severe challenges faced by all
countries in the world nowadays and in the next few decades.
According to the report of the Global Health andAging published
by WHO, by the middle of this century, the proportion of people
over 65 years will increase from 11 to 22%, and the 85 years-
and-over population is projected to increase by 351% between
2010 and 2050 (Mary et al., 2007). It also indicates that there
will be a larger number of older people aged 60 years or over
than adolescents aged 10–24 years by the middle of this century
(Rudnicka et al., 2020). With the increase of age, the elderly
generally have a decline in self-care ability and suffer from the
risks of various diseases, which affect both their physical and
mental health, leading to the degradation of the life quality in
this group. Therefore, promoting the health level of the elderly
is a critical factor in solving the aging problem.

As part of the aging process, a great number of changes occur

in the central nervous system (CNS), and the brain function
of the elderly is inevitably changed with the increase of age.

Aging may also cause chronic neurological diseases which affect
the motor system (Nikhil et al., 2014), and even healthy aging
is accompanied by a decline in cognitive function (Gard et al.,
2014). These kinds of cognitive or motor problems are reflected

in the electrical activity of the brain and could be studied from
electroencephalogram (EEG) signals. EEG analysis reveals the
features of brain activities during the motor and cognitive tasks
by various signal processing approaches (Pavlov et al., 2020).
Many studies use EEG to explain the changes in the CNS due to
the appearance of some aging-related diseases (Paiva et al., 2012).
Brain–computer interface (BCI) establishes the direct interaction
path between the brain and the external world by decoding the
information from the brain during the mental tasks (Wolpaw
et al., 2000). To help the elderly maintain a healthy, good quality
of life, and sense of wellbeing, a number of BCI applications have
been developed in recent years (Belkacem et al., 2020).

EEG could provide a non-invasive way to BCI with the
characteristics of simple structure, high safety, and good real-
time performance (Castermans et al., 2013). With the features
extracted from the EEG signals, the classification based on
the machine learning algorithms can convert them into the
control commands for assistive or rehabilitation devices (Li et al.,
2016). Several common paradigms are proposed to make the
brain generate proper EEG signals. Generally, the EEG could be
categorized as self-paced or non-self-paced ones. The self-paced
ones only need the inner brain activities of the users (Müller-
Putz et al., 2016), so these users can make their own decisions
for control aims. In self-paced EEG, motor imagery (MI) is
a dynamic cognitive process during which the movement is
mentally simulated without actually being executed (Jeannerod,

2011). In the cerebral cortex, MI and motor execution of the
same action have similar activity patterns. The goal of motor-
imagery BCIs (MI-BCIs) is to control an external object by
inducing and modulating the brainwaves of interest during the
training sessions so that the BCI system can determine the user’s
intention in real-time in testing sessions (Jiang et al., 2022).
Several studies have explored the influences of aging on different
aspects of MI, such as vividness (Malouin et al., 2010), working
memory (Schotta, 2012), and the temporal performance of the
MI (Personnier et al., 2010). However, these studies are based
on scales and statistics analysis, and the EEG indicators have not
been introduced to evaluate the difference in MI ability across
different age groups.

EEG sensorimotor rhythm changes from the resting state to
the MI or motor execution state. This phenomenon reflects a
decrease in the power of EEG over the primary sensorimotor
area in the alpha (7–4Hz) and beta (15–35Hz) bands indicating
underlying cortical cells to be desynchronized, which is named
as event-related desynchronization (ERD) (Hisato et al., 2018).
A comparative study of the ERD of EEG signals during MI
tasks in different age groups would be helpful to understand the
changes in cerebral cortex activity and the influence of aging on
improving theMI training in neurological rehabilitation and BCI
system design for the elderly.

In the MI-BCI, it is significant to make a cognitive effort to
focus on MI tasks, but the EEG signal quality heavily depends on
the mental state, level of attention, and fatigue of BCI users. Loss
of attention due to mental fatigue significantly decreases signal
characteristics, and thus reduces the performance of BCI systems
(Cao et al., 2014). Some studies (Talukdar et al., 2018) also have
confirmed that long-term MI can cause mental fatigue, and the
level ofmental fatigue corresponds to the EEG data separability of
MI, which relates to the further application of MI-BCI. However,
most of the current studies were only conducted on young adults.
Aging increases the complexity of human brains (Anokhin
et al., 1996), and this effect is demonstrated in the frontal
inferior and sensorimotor areas (Scheel et al., 2018). In addition,
entropy-based tools are widely used to quantify complexity,
and approaches related to time–frequency analysis in separate
frequency bands provide a clear physiological interpretation of
the changes in EEG signals (Pavlov et al., 2020). Thus, it is
necessary to investigate the fatigue caused byMI from the aspects
of EEG power on both frontal inferior and sensorimotor regions.

With the different fatigue characteristics of EEG in the young
and elderly population, a suitable MI data classification method
is crucial for generating the control commands for the assistive
and rehabilitation device application in aging groups. In the MI
data classification stage, the extracted features are interpreted
as the BCI user intentions, and machine learning is the most
frequently used classification method. Deep learning belongs to
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representation learning, which aims to better represent input
data using multiple layers of processing blocks such as neural
networks (e.g., CNN and RNN). CNN (Lecun et al., 1989),
proposed for the first time in the 1980s, was used to classify
handwritten digits. CNN is of vital importance for EEG decoding
using deep learning methods. To introduce CNN algorithms
to EEG data classification, two measures are generally taken.
First, in the aspect of the good performance of CNN for
image classification, many researchers firstly convert the EEG
signal into image information and then input it into CNN for
classification. It uses the time–frequency maps of C3, Cz, and C4
channels at 6∼13Hz and 17∼30Hz for splicing as the feature of
EEG data input to the convolutional neural network (CNN) for
classification (Tabar and Halici, 2017). Another idea is to utilize
the “end-to-end” characteristics of deep learning by importing
the preprocessed EEG data as the input of the neural network
and directly extracting the deep abstract features in the EEG
data through the neural network. EEGNet (Lawhern et al., 2018)
builds a deep learning model based on a CNN to directly classify
EEG data samples, and the core idea is to convolve the channel
dimension and the time dimension, respectively, and directly
extract and classify features from these two dimensions. In the
previous studies, the classification of EEG signals by CNN is
usually applied to younger subjects, while the comparative study
of young adults and the elderly has not been thoroughly carried
out. If this effectiveness of the tool is also verified onMI data from
older groups, it will promote the development of rehabilitation
and assistive BCI more suitable for the elderly population and
facilitate their everyday lives.

This study investigates the ERD of EEG signals in MI tasks in
different age groups to clarify the differences in MI ability in both
groups. The changes in fatigue level during MI will be studied.
Fatigue analysis includes three aspects: the first is to distinguish
fatigue-sensitive channels in the parietal region; another is to
calculate rhythm entropy (RE) in the frontal region; the third is
to analyze whether the fatigue in the parietal region and the EEG
complexity in the frontal lobe are synchronized through phase-
locked values (PLVs). Based on such analysis, it investigates the
differences in the classification performance of deep learning
methods (CNN) on young and the elderly, which will provide a
reference for designing BCIs for rehabilitation and daily living
aids used by the elderly.

METHODS

Participants
Ten young adults (S1–S10, 8 males and 2 females, mean age
23) and 10 older adults (T1–T10, 3 males and 7 females, mean
age 66) participated in this study. All participants were right-
handed and had a normal or corrected vision, without known
neurological or psychological disorders, use of psychiatric drugs,
or any drugs affecting the CNS. The participants were asked
to have a good sleep before the experiment. Each participant
was informed about the experimental protocol and included
after receiving verbal consent for the experimental trials. The
protocol studied was approved by the local ethical committee and
performed in accordance with the Declaration of Helsinki.

EEG Recording
EEG data were acquired with a 64-channel EEG cap (Waveguard
Original, ANT Neuro b.v., Enschede, Netherlands) and a
mobile EEG amplifier (eego sports, ANT Neuro b.v., Enschede,
Netherlands) at a sampling rate of 1,024Hz. The 64-electrode
configuration was set according to the international 10–20
system. The reference and ground electrodes were placed on
CPz and AFz, respectively. Most electrodes (about 65%) had
impedances <5 K�.

Experiment Setup and Paradigm
Participants are asked to sit in a comfortable chair and look at
the computer screen, which displays the experimental paradigm.
Participants are asked to avoid blinking and body movements
during EEG recording. The two different MI tasks (left-hand
movement vs. right-hand movement) are performed by the
participants. The experimental session consists of four runs of
continuous EEG signal recording. Each participant performs 40
trials in each run, with a total of 160 trials. During each trial,
the computer screen first displays a black screen for 3 s, then a
video of the left or right-hand movement of the fist for 3 s, and
finally a 5-s up-left or up-right arrow together with 30 s rest for
every 10 trials. Participants keep relaxed when the screen is black,
concentrate when the video is playing, and begin to imagine the
corresponding movement when the arrow appears. The sequence
of events in the trial is illustrated in Figure 1, and a 5-min rest is
given between runs. It should be noted that S8 collected twomore
runs for some reasons, reaching 240 samples.

EEG Data Pre-processing
The EEG signals were processed using the EEGLAB toolbox. A
50Hz industrial frequency interference has been removed and
the band-pass was filtered from 1 to 35Hz using a finite impulse
response (FIR) filter. The filtered data is resampled to 512Hz.
Then, the resample data was segmented to extract epochs and
removed baseline. This resulted in a total of 160 epochs for each
participant, except for S8. All artifacts were removed in each
epoch (such as eyeblinks and body movement) by independent
component analysis (ICA). The attributes of components were
observed by the ICLabel function, and the components which
belong to EOG, EMG, noises, and other artifacts were discarded,
and only those with more than 60% probability of being
estimated as EEG were retained. The run with more artifacts
in the four runs of experiments was eliminated in young adults
when ERD and fatigue were analyzed, but all runs were retained
in older adults.

Event-Related
Desynchronization/Synchronization
(ERD/S)
To analyze the fatigue levels in the process of MI, it needs
to verify the ERD/ERS phenomenon in the process of MI
through time–frequency analysis and the results are used for
time–frequency analysis to carry out the subsequent related
calculation of fatigue. The time–frequency analysis implemented
by Letswave7.ERD/ERS is calculated in a defined frequency
band about a baseline reference interval. The baseline reference
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FIGURE 1 | Experimental protocol for a single trial.

interval for the ERD/ERS calculation was taken from 0 to 1 s
for each epoch. After performing the artifact removal mentioned
above, wavelet transformation was applied to analyze the law of
EEG signal energy changing with frequency and time. The single
time–frequency map under the same task is superimposed and
averaged to obtain the final time–frequency map.

Fatigue Analysis in Motor Imagery
The α and β EEG signals increase and θ EEG signal decrease
during fatigue, and the (θ + α)/β has the strongest positive
correlation with fatigue (Jap et al., 2009). This paper fuses (θ +

α)/β and θ/β into a comprehensive fatigue index to analyze and
evaluate the fatigue level in real-time. The preprocessed EEG
signal is decomposed and reconstructed by wavelet transform,
and the EEG signal of different characteristic frequency bands
(θ, α, and β frequency bands) is extracted. The EEG signal has
strong individual differences, and the EEG channels sensitive
to fatigue differ among subjects. It calculates the correlation
between the fatigue index and the experimental time of each
channel, selects the channel whose correlation value is larger than
the threshold, and then sets it as the sensitive channel. According
to experience, the threshold is set to 0.75 in this paper. Fatigue-
sensitive channels in the parietal lobe are extracted, which are
located in the center of the human brain that processes sensory.
After that, the power spectral density of each sensitive channel is
calculated separately, and the fatigue level is finally obtained.

Entropy is robust in assessing the regularity and predictability
of complex systems and has been used to analyze EEG signals
(Arunkumar et al., 2018). RE extracts each rhythm of the EEG
signal and then calculates its entropy value. For the six channels
(F3, F4, F5, F1, F2, and F6) located in the frontal cortex of each
subject, their RE is calculated.

First, calculate the energy for each trial of different rhythmic
cortical activity:

Power =

m
∑

i=1

S(x)2

where S(x) represents estimated cortical activity and m is the
number of sample points.

Then, the energy normalized by the jth frequency band
rhythm cortical activity is calculated, and the value is obtained
by dividing the sum of the energies of the three frequency bands
according to the following equation:

Pj =
Powerj

∑k
j=1 Powerj

where Powerj represents the energy of the jth frequency
band rhythm cortical activity and k is the number of the
frequency band.

The formula of RE calculation is:

En = −

k
∑

j=1

Pjlog2Pj

To verify the selection of parietal lobe fatigue channels and
the rationality of prefrontal lobe RE fatigue analysis, the
synchronization of the channels was verified by calculating the
PLVs of fatigue-sensitive channels and prefrontal lobe channels.
For two univariate continuous-time signals, x(t) and y(t), the
phase synchronization relationship can be expressed by the PLV.

PLV =

∣

∣

∣

〈

eiΦxy(t)
〉

t

∣

∣

∣
=

√

〈

cosΦxy(t)
〉2

t
+

〈

sinΦxy(t)
〉2

t

Φxy (t) = Φx (t) − Φy(t)

where, <> represents the average value of time and 8x (t)
and 8y(t) represent the instantaneous phases x(t) and y(t),
respectively. According to the above formula, the PLVs of any
two time-signals x(t) and y(t) can be obtained. If PLV = 0, it
means that x(t) and y(t) have no phase synchronization. If PLV
= 1, then x(t) and y(t) synchronize in their phases. The range of
PLVs is [0,1].
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FIGURE 2 | The rearranged order of the selected 32 channels.

FIGURE 3 | CNN structure diagram that fuses spatial information.

Proposed CNN Architecture
Referring to the network structure of EEGNet, combined with the
MI characteristics of the young and elderly, a CNN algorithm that
integrates spatial information to classify and identify MI-EEG
signals is proposed. It is of great help to improve the classification
accuracy and enhance the generalization ability of the CNN
model by extracting time, frequency, and space information from
the EEG signals (Yimin et al., 2020). To preserve the spatial
information on the ipsilateral side and distinguish that on the

opposite side, the rearranged order of the selected 32 channels, as
shown in Figure 2, was as follows: F5, FC5, C5, CP5, P5, P3, CP3,
C3, FC3, F3, F1, FC1, C1, CP1, P1, Cz, FCz, F2, FC2, C2, CP2, P2,
P4, CP4, C4, FC4, F4, F6, FC6, C6, CP6, and P6. In addition, it
normalized the samples as a whole. The standardization method
was to subtract the mean value of all the data in the sample
and divide it by the standard deviation. After normalization,
all data points of each sample fit a distribution with mean 0
and standard deviation 1, which helped to speed up the rate of
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TABLE 1 | Implementation details for proposed CNN architecture.

Type Maps Size Kernel size Stride Padding Parameter

Input 1 32 × 512 – – – 0

Convolutional 1 16 32 × 256 1 × 24 × 16 1 × 2 0 × 11 400

Batch normalization 1 16 32 × 256 – – – 0

Activation 1 16 32 × 256 – – – 0

Convolutional 2 32 16 × 256 2 × 11 × 32 2 × 1 0 × 5 11,296

Batch normalization 2 32 16 × 256 – – – 0

Activation 2 32 16 × 256 – – – 0

Average pooling 1 32 8 × 64 2 × 4 2 × 4 0 0

Spatial dropout 1 32 8 × 64 – 0.25 – 0

Convolutional 3 32 4 × 64 2 × 5 × 32 2 × 1 0 × 2 10,272

Batch normalization 3 32 4 × 64 – – – 0

Activation 3 32 4 × 64 – – – 0

Average pooling 2 32 2 × 16 2 × 4 2 × 4 0 0

Spatial dropout 2 32 2 × 16 – 0.25 – 0

Flatten – 1,024 – – – 0

Fully-connected – 2 – – 2,050

Softmax – 2 – – 4

Total 24,022

gradient descent in CNN. The MI-EEG classification problem in
this paper belongs to a small sample set classification problem. To
avoid the overfitting phenomenon caused by the overcomplicated
model, the CNN structure designed in this paper only contains
three convolutional layers, with two pooling layers and one fully
connected layer, as shown in Figure 3. Based on the classic
EEGNet, the structure modifies the size of the convolution kernel
and the convolution stride.

As shown in Figure 3 and Table 1, the dimension of a single
sample input to CNN is 1× 32× 512. The size of the convolution
kernel of the first layer of convolution is 1 × 24, the stride
of the convolution kernel is 1 × 2, and the mode of partial
filling is adopted. The first layer of convolution is mainly to
perform time-domain convolution of one-dimensional signals.
Its function is to refine the characteristics of each channel in the
time domain signal. The main purpose is to reduce the length
of the signal in the time dimension. The number of feature
map channels output by the first layer of convolution is 16.
The second layer of convolution uses a 2 × 11 convolution
kernel, and the convolution stride is 2 × 1. This convolution
operation can integrate the information of adjacent channels
while keeping the signals of the left and right brain channels
from mixing. After the second layer of convolution, the pruning
operation is performed at a ratio of 0.25. The pruning randomly
makes some neurons inactive, thereby avoiding overfitting in the
neural network. This is followed by the first pooling layer with
a pooling kernel size of 2 × 4. The pooling layer can extract
important information from the feature map computed by the
convolutional layer. As the feature map is much longer than
the width, a 2 × 4 pooling kernel is used. The third layer of
convolution uses a 2 × 5 convolution kernel, and the stride of
the convolution is still 2× 1. After that, pruning is performed at a

ratio of 0.25, and a 2× 4 pooling operation is also performed. The
padding parameter of all convolution operations is set to 0, i.e.,
no padding mode. In addition, batch normalization is performed
after each convolution operation, and the activation is performed
using the exponential linear unit (ELU) activation function. The
batch normalization operation can speed up the learning of the
neural network and reduce the dependence on the initial weights.
The ELU activation function is an improved version of the ReLu
activation function. Compared with the ReLu activation function,
the average value of its output is close to 0, which will not add
additional bias to the next layer of neurons, thereby speeding up
the convergence of the model. In the negative case, it has soft
saturation characteristics and is more robust to noise.

RESULTS

Time–Frequency Diagram of the ERD/ERS
To analyze the fatigue of young and elderly subjects and find out
the difference between them, it needs to prove that the subjects
have obvious ERD/ERS phenomenon in the process of MI and
then carry out fatigue calculation on this theoretical basis. For
this purpose, the most representative C3 and C4 channels in
the sensorimotor area of the cerebral cortex were selected for
analysis, and the time–frequency diagram of the channels of
the S1 subject is shown in Figure 4. The desynchronization at
channels C3 and C4 is visually more pronounced in the alpha–
beta (8–30Hz) frequency band. The same subject had different
levels of desynchronization in different periods and showed
a trend of decreasing ERD significance with the increase of
experimental time.

Table 2 gives the quantified average value of ERD of C3 and
C4 channels within 0∼1 s and 1∼2.5 s in the alpha frequency
band, and t-tests were performed, respectively. In both channels,
the desynchronization phenomenon in the 1∼2.5 s time period
is more significant than that in the 0∼1 s time period (C3: P <

0.05; C4: P < 0.05). It is regarded that 0∼1 s is the preparation
period of MI, and 1∼2.5 s is the execution period of MI. Through
the above process, other subjects were also verified, and the
conclusion could prove that these subjects showed obvious
ERD/ERS phenomenon in the MI process.

Results of the Fatigue Analysis During
Motor Imagery
Based on verifying the ERD/ERS phenomenon, it can conduct
fatigue analysis on the parietal lobe channels of the subjects
according to the fatigue calculation method mentioned above
for selecting the fatigue-sensitive channels. The fatigue-sensitive
channels of young and older participants in the parietal lobe areas
are shown in Table 3. In this group of young participants, the
P6 channels were more sensitive to fatigue, and the P5 channels
were relatively less sensitive to fatigue. The P2 channels were
more sensitive to fatigue in elderly subjects, and the P6 channels
were relatively less sensitive to fatigue. The relationship between
fatigue and test time is shown in Figures 5, 6. For most of the
young subjects, the increase in the experimental time did not
have a strong effect on the fatigue level, and the general trend
was that the fatigue level increased with the duration of the
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FIGURE 4 | ERD/ERS time–frequency analysis of three groups in S1.

TABLE 2 | T-test of ERD phenomena for C3 and C4.

Channel Band ERD quantitative values

0∼1 s 1∼2.5 s

S1-1 C3 α (8∼13Hz) −0.45044 −0.94739

S1-2 C3 α (8∼12Hz) −0.31794 −1.0896

S1-3 C3 α (9∼12Hz) −0.56522 −1.6016

Significant 0.021975815

S1-1 C4 α (8∼12Hz) 0.026749 −0.51328

S1-2 C4 α (8∼13Hz) −0.047736 −0.34357

S1-3 C4 α (9∼12Hz) 0.20375 −0.15104

Significant 0.036622313

experimental time. For most older subjects, the fatigue showed
a general increasing trend with the experimental time. Moreover,
the increase in experimental time had less effect on fatigue for
them than for the young ones.

Fatigue is a set of events produced by labor or prolonged
exercise and can influence the performance of most tasks, since
it contributes to the reduction of perceptual, cognitive, and

TABLE 3 | The fatigue-sensitive channels of the young and elderly subjects on the

parietal lobe.

Subject Fatigue-sensitive Subject Fatigue-sensitive

channels channels

The young subjects S1 P1 P6 S6 P7 P3 P4 P2 P6

S2 P4 P8 P2 P6 S7 P7 P3 P4 P1 P6

S3 P3 P8 P1 P2 P6 S8 P7 P4 P8 P2 P6

S4 P7 P3 P4 P1 P6 S9 P4 P8 P2 P6

S5 P7 P4 P1 P8 P6 S10 P7 P3 P4 P8 P2

The elderly subjects T1 P3 P4 P1 P2 T6 P3 P4 P8 P1

T2 P4 P5 P1 P2 P6 T7 P7 P3 P8 P5 P1 P6

T3 P7 P3 P5 P1 P2 T8 P7 P3 P4 P5 P1 P2

T4 P7 P4 P8 P2 P6 T9 P7 P3 P4 P5 P2

T5 P7 P4 P8 P5 P2 P6 T10 P4 P8 P1 P2

motor skills (Tello et al., 2014). The parietal lobes are responsible
for spatial reasoning and motor information processing, while
the frontal lobes are involved in planning and higher cognitive
abilities (Rao, 2013). Entropy-based feature analysis can obtain
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FIGURE 5 | Relationship between fatigue changes over time in 10 young subjects.

FIGURE 6 | Relationship between fatigue changes over time in 10 elderly subjects.
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FIGURE 7 | Mean rhythm entropy of six channels on the frontal lobe of young adults.

FIGURE 8 | Mean rhythm entropy of six channels on the frontal lobe of elderly adults.
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FIGURE 9 | PLV of fatigue sensitive channel P6 to frontal channels of 10 young subjects.

the relationship between the complexity of the EEG signal and
the fatigue state of the subjects (Hu and Min, 2018). Lehmann
et al. (2022) observed that prefrontal activity was generally amore
important predictor of balance performance in older adults than
in younger ones. The above analysis of fatigue is only done in the
parietal lobe area. Here, RE is used to detect fatigue changes in
the frontal lobe area.

It treated the first 20 MI trials as awake state and the last 20
trials as fatigue state, and then calculated the average of the RE
of the six channels of the frontal cortex (F3, F4, F5, F1, F2, and
F6) in the awake state and the fatigue state of the 20 participants.
As shown in Figures 7, 8, RE is roughly equal in young and
elderly in the awake state, while such value in the fatigued state
is lower than that in the awake state in the youngest subjects (9
participants) but higher in the most elderly ones (8 participants).
The RE changes of subjects S9 and T9 differed from others in
their own groups, with the changes not obvious between the two
states, which may be due to individual differences, especially for
subject T10. Human brain activity is complex in the awake state,
so the RE is high. When the brain activity becomes orderly and
complexity is reduced in the fatigued state, it results in a decrease
in RE. From the RE variations, it can infer that for the young
adults, the fatigue occurred accompanied by the execution of
the MI, while older adults remain alert during the experiment
in that they might require greater cognitive effort to complete
MI tasks.

Combining with the above conclusion, it selected the 10
groups of young subjects fatigue sensitive channels (P6) and 10
groups of elderly subjects fatigue sensitive channels (P2), and the
PLV of P6 and P2 to 6 frontal channels (F3, F4, F5, F1, F2, and
F6) were calculated, respectively. Figure 9 shows the calculation
results of PLVs for 10 young subjects, and Figure 10 shows the
results of PLVs for 10 older subjects. It can be found that there
is a high synchronization between the fatigue-sensitive pathway
and the frontal cortex pathway for both young and old subjects.

Results of the Classification by CNN
For validating the classification method, the dataset was
separated into 80% as the training set and the remaining 20%
as the test set. At first, all the original samples of each subject
were preprocessed, and then they were divided. At the same time,
considering that the original sample size is too small and the
neural network training model performance is insufficient, the
sliding window method is introduced to expand the sample size
of the data. The expansion steps are as follows: a 32× 2,048 EEG
fragment is obtained by taking the first 2 s as a time window, and
a 32 × 512 sample is generated by taking the data with the 4-
point interval from the fist point. The starting position moves to
the second, the third, and the fourth point for further sampling.
In this way, a 2 s time window is divided into four samples.
Meanwhile, to avoid a high repetition rate between samples, the
next 2 s time window started from 1 s, and the following 2 s time
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FIGURE 10 | PLV of fatigue sensitive channel P2 to frontal channels of 10 elderly subjects.

window began on 2 s. With the data enhancement, each original
sample was converted into 12 32 × 512 samples, and the total
data dimension of the experiment became 1,920 × 32 × 512.
Then, it divided the training set and test set according to the
ratio of 8:2 mentioned above, and the training set with about
1,536 samples and the test set with about 384 samples would be
produced (except for S8), and compared the elderly and young
people separately, as shown in Figure 11.

From Figures 11A,B, it can be seen that the global average
accuracy rate of young people is higher than that of the elderly
group, with a peak value of 82.81%, while the average and
maximum accuracy rates of the elderly are lower than those of
young people. In addition, the overall accuracy rate for most of
the young subjects was above 0.7, while the older ones were a little
lower, around 0.7. During the training stage, the epochs of young
subjects gradually tended to stabilize around 240 iterations,
while most older ones stabilized after 350 iterations, and the
data quality of young persons is slightly better than that of the
elderly. In addition, from Figures 11B,D, it also can be seen that
the difference in the loss function of different young people is
significantly larger than that of different elderly people, and the
difference in data quality between young persons may be slightly
larger than that between elderly individuals.

In addition, it also attempted classification tests on the cross-
sample dataset for each age group. Here the data of two subjects

S6 and S8 were selected as the mixed dataset of young adults,
and the data of two subjects of T2 and T3 as the mixed dataset
of old ones. It can be clearly seen from Figure 12A that the
average accuracy of the youth mixed sample set is higher than
the two data sets of the elderly mixed sample, and the highest
accuracy rate of the mixed sample of young people can reach
0.725, indicating that the quality of mixed data between young
individuals is still better than that of older individuals. The loss
function on the training set is different. From Figure 12B, it
can be seen that the decline rate of the mixed sample of young
adults is lower than that of the mixed sample data of the elderly,
probably because the mixed sample of S6 and S8 has 80 more
trials than that of T2 and T3, and this result is also consistent with
the highest loss function for S8 in Figure 11B. At the same time,
due to the differences among subjects, the classification accuracy
on the mixed dataset is lower than the classification accuracy on
each separate dataset.

DISCUSSION

The analysis of the trend of decreasing ERD significance with
the increase of experimental time is conducted, and the average
of the RE of the six channels on the prefrontal lobe region
is calculated. From the function activity aspect, the work on
synchronization between the signal amplitudes and the phase has
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FIGURE 11 | (A) Classification results of the young. (B) Loss function situation of the young. (C) Classification results of the elderly. (D) Loss function situation of the

elderly.

been discussed (Rosenblum et al., 1996; Nolte et al., 2004). It
hypothesizes that integrating these complementary features will
allow a better characterization of the BCI-related mental states
and that including them in the feature extraction block, which
is helpful to increase the BCI accuracy compared to standard
approaches solely based on power spectra (Cattai et al., 2019).
In this way, the phase relationship between EEG signals on
the prefrontal and parietal lobes will be characterized by PLV.
Aiming at the calculation and analysis of classification accuracy
of 10 young subjects and 10 older ones in the previous sections,
it analyzed the correlation between classification accuracy and
the PLV, which is between the fatigue-sensitive channels on the
parietal lobe and the specified channels in the frontal lobe for
RE calculation.

Combined with the above conclusions, the average fatigue
value of 10 young subjects was 32.086, and that of 10 older
subjects is 25.796. The average fatigue value of young persons is
higher than that of the elderly, indicating that young adults are
more prone to fatigue during MI, which might be caused by their
more concentrated attention during theMI. At the same time, the
results of the PLV obtained above are statistically analyzed, with
the channels whose PLV is significantly higher than the mean
value of the corresponding test group removed. The average PLV
of the young is 0.398, and that of the elderly is 0.270. The average
PLV of young persons is higher than that of the elderly, indicating
that compared with the elderly, the parietal lobe fatigue sensitive
channels and specified prefrontal lobe channels have higher
synchronization. From the perspective of fatigue, RE, and PLV,
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FIGURE 12 | Classification results across subjects with mixed datasets. (A) Classification results across subjects with mixed datasets at different ages and (B) loss

function across subjects with mixed datasets at different ages.

young persons are more likely to concentrate on MI tasks and
thus fatigue is caused. The elderly subjects make more cognitive
efforts to complete the task, but the MI classification accuracy is
slightly lower than that of young adults, and it could hereby be
inferred that age may affect the ability of MI.

According to the classification accuracy results mentioned
above, the correlation between the PLV of young subjects
and the elderly subjects to each classification accuracy is
calculated here. For 10 young subjects, the correlation coefficient
between the average PLV from the fatigue-sensitive channel
P6 and the classification accuracy was 0.760, while for
10 elderly subjects, the correlation coefficient between the
average PLV from the fatigue sensitive channel P2 and the
classification accuracy was 0.731. The results show that there
is a strong positive correlation between the classification
accuracy and the average PLV of the fatigue-sensitive channel
to the specified prefrontal lobe channel in both young and
older subjects.

As a deep learning method, a CNN model is established
for detecting left and right hands MI using a Muse headband
that has potential use on older adults, but the experiment is
performed on four healthy users aging from 33 to 55 years
(Garcia-Moreno et al., 2020). More than 90% accuracy is
achieved, however, the classification method beyond the EEG
headset still requires further evaluation on aging people. For
cognitive tasks, it indicates that robust plasticity of the prefrontal
cognitive control system was found in the aging brain, and it
also provides a custom-designed video game environment to
assess cognitive abilities across the lifespan of human subjects
(Anguera et al., 2013). Therefore, it is necessary to apply a
CNN method by introducing the EEG data from channels on
both frontal and parietal lobes for the MI-EEG classification by
considering the ERD and fatigue phenomenon together in the
aging group.

It also mentions that change in the location of activation

in the brain is be more bilateral throughout the aging process.
In that case, the application of sensorimotor rhythm (SMR)

for BCI based on spatial information such as common spatial
pattern (CSP) and Laplacian filtering becomes not so effective

(Bashashati et al., 2007). The study also showed that age-
related electrophysiological changes in healthy older adults

significantly affected SMR characteristics in EEG, and found that
the classification accuracy in the elderly is significantly lower than
in the younger population by 15.9% (Chen et al., 2019). It means

that the traditional classification methods depend more on the
input features from the CSP enhancement. Compared with this
pipeline mode, as an end-to-end method, CNN does not require
these intermediate results of feature extraction, which can make
full use of the features from the EEG signals. Therefore, the CNN
classification accuracy keeps around 70% on the 10 older subjects
by selecting 32 channels in the frontal and parietal regions,
which have a close performance to young subjects. However, the
number of young and older subjects is limited in the current
study, and all the subjects are healthy ones. The classification
strategies of the MI-BCI system for those who suffer neurological
diseases such as stroke rehabilitation will be investigated in
the future.

CONCLUSION

The primary finding of our study is that the elderly are less
affected by the level of fatigue during MI, even though the
MI energy of the elderly is lower than that of the young.
However, the deep learning method by extracting frontal and
parietal channel data can be still suitable for the elderly, and
the classification accuracy on MI tasks is at the acceptable levels
of around 70% by CNN. It could be inferred that future BCI
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for the elderly population on MI will not merely depend on
the SMR, and appropriate algorithms can be applied without
obvious lateralization of ERD. However, the CNN model based
on fused spatial information greatly improves the accuracy of the
classification and leads to a longer training time. Supported by
the rehabilitation robot previously developed, more participants
will attend the EEG data collection, and an improved CNN
classification method for real-time BCI based on MI would be
attempted in the future.
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