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Abstract: Polymer inclusion membranes (PIMs) are an attractive approach to the separation of metals
from an aqueous solution. This study is concerned with the use of 2-alkylimidazoles (alkyl = methyl,
ethyl, propyl, butyl) as ion carriers in PIMs. It investigates the separation of copper (II), zinc (II),
cobalt (II), and nickel (II) from aqueous solutions with the use of polymer inclusion membranes. PIMs
are formed by casting a solution containing a carrier (extractant), a plasticizer (o-NPPE), and a base
polymer such as cellulose triacetate (CTA) to form a thin, flexible, and stable film. The topics discussed
include transport parameters, such as the type of carrier, initial fluxes, separation coefficients of
copper in relation to other metals, as well as transport recovery of metal ions. The membrane was
characterized using AFM and SEM to obtain information on its composition.
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1. Introduction

The need for a more specific system for the recovery of non-ferrous metal, one that is
more practical from both an economic and ecological standpoint, has led to the development
of a new separation technique [1–4].

In recent years, it has been shown that membrane techniques have advantages
over traditional metal compound removal and separation methods [5]. The use of liq-
uid membranes—particularly polymer inclusion membranes (PIMs)—is especially distin-
guished in this respect [6,7]. PIMs have been proven to be a better alternative than ion
exchange and solvent extraction methods. The advantage of using them is that the separa-
tion process is carried out in one step (unit process) and no toxic organic solvents are used
because in PIMs both the extraction and back extraction processes occur simultaneously.
For example, PIMs are successfully used in the recovery and separation of such metals
as Cu [8,9], Co [10,11], Ni [10,12,13], Zn [12,14–16], Pb [12,17,18], Cd [10,12,19], Hg [20,21],
Cr(III) [12,22], Cr(VI) [23], Mn [12], As [12,24], Fe [12], U [12,25], Ag [26,27], Au [28], as
well as platinum group metals [29,30], lanthanides, and actinides [12,31,32].

A PIM is made from a base polymer, plasticizer, and carrier of metal ions. The polymer
plays a key role in providing the membrane with mechanical strength, and its properties
greatly affect the membrane’s permeability and durability. The solutions most often used
as polymer matrices are CTA (cellulose triacetate) and PVC (polyvinyl chloride) [1,5,6,33].
The role of the plasticizer is to increase the flexibility and mechanical strength of the
polymer matrix by penetrating between its polymer molecules and reducing the strength of
the intermolecular forces, thereby increasing the distance between the polymer molecules.
Some of the most commonly used plasticizers include o-nitrophenyl octyl and o-nitrophenyl
pentyl ethers [6,34]. In principle, carriers used in PIMs are the same organic compounds
as those used as extractants in solvent extraction [2,3,5,6,12]. It is crucial for a carrier to
be stable on the feed phase side, as well as to readily decay at the membrane/receiving
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phase interface. Furthermore, a good carrier should be inexpensive, non-toxic, and soluble
in the membrane [5,6,34,35]. The carrier’s primary function is to facilitate the transport of
separated ions across the membrane. The following groups of carriers can be distinguished
based on the chemical properties and the nature of interactions with metal ions:

• acidic carriers—capable of exchanging a proton for a metal ion; the most commonly
used transporters of this group include organophosphorus acids (e.g., D2EHPA,
Cyanex 272, Cyanex 303) [25,36–38], as well as hydroxyoximes (e.g., LIX-84 I) [39–41];

• alkaline carriers—organic compounds whose nature corresponds to Lewis bases; they
form ionic pairs with metal ions. This group includes quaternary ammonium [42–44]
and phosphonium salts [33,43], tertiary amines [44,45], pyridine and pyridine deriva-
tives [6,46,47], and alkyl imidazole derivatives [8,27,48];

• inert carriers—capable of forming an inert complex with metal ions in the organic
phase by replacing the water molecules in the metal aqua complex with their own
molecules, which are more lyophilic. The group of these transporters includes such
compounds as phosphoric acid esters [49,50] and phosphinic acid esters [51].

While commercial carriers of metal cations commonly used in the membrane technique
enable the effective separation of ions, their selectivity is rather poor. Therefore, new complex-
ing reagents are sought—ones that can selectively separate metal ions from aqueous solutions.

This paper presents a laboratory experiment in which polymer inclusion membranes
doped with 2-alkylimidazole (alkyl = methyl, ethyl, propyl, butyl) were tested in order
to assess their efficiency in the separation of copper, zinc, cobalt, and nickel ions from
their equimolar mixtures. These metals are important for the development of the economy,
especially for the development of modern technologies. The demand for them is still
growing. In our previous work, alkyl imidazole derivatives were used as carriers in
PIMs to separate non-ferrous metal ions [48]. It has been observed that the ion separation
efficiency is affected by both the hydrophobic effect, which depends on the length of
the alkyl substituent bound to the imidazole molecule [8,52], and the steric effect (steric
hindrance) induced by the methyl substituent located in the imidazole molecule at position
2 or 4, i.e., at the donor nitrogen atom [53,54]. In this study, the influence of the length of
the alkyl substituent at position 2 in the alkylimidazole molecule was investigated—i.e.,
the influence of the growth of the hindrance on the separation efficiency of copper, zinc,
cobalt, and nickel ions.

2. Materials and Methods
2.1. Materials

All the reagents used were of analytical grade. Cellulose triacetate, 2-nitrophenyl
pentyl ether (NPPE,) and dichloromethane were obtained from Fluka. All the stock solu-
tions were prepared by dissolving the salts in distilled water. CoCl2 6H2O, NiCl2 6H2O,
ZnCl2, and CuCl2 2H2O were purchased from POCh, Gliwice, Poland. The 2-alkylimidazole
(alkyl = methyl, ethyl, propyl, butyl) were synthesized by A. Skrzypczak (Poznan Univer-
sity of Technology, Institute of Chemical Technology and Engineering) according to the
procedure described in [55]. Table 1 shows certain physical and chemical properties of the
2-alkylimidazoles used in this study.

Table 1. The general formula of the 2-alkylimidazoles used in the tests and some of their physico-
chemical properties.

R = alkyl No Dissociation Constants,
pKa [56]

Melting
Point, ◦C

Boiling
Point, ◦C
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2.2. Procedure

PIMs were made from CTA, NPPE, and 2-alkylimidazole and were prepared according
to the procedure reported in the previous paper [8,52–54]. As shown in papers [8,48,52–54],
the composition of a membrane containing alkylimidazoles as a carrier is optimal when
such membrane contains 2.6 cm3 of NPPE per 1 g CTA and 1.0 mol/dm3 of alkylimidazole
calculated on plasticizer.

Transport experiments were carried out at a temperature of 20 ± 0.2 ◦C, according
to the procedure described in our previous paper [8,52–54]. The initial concentration (C0)
of each metal ion in the feed phase was 10−3 mol/dm3. The feed aqueous phase was an
aqueous solution with a pH of 6.0 (tetramethylammonium hydroxide) while the receiving
phase was distilled water. In the feed phase, the metal concentration (Ct) was determined
at appropriate time intervals using the atomic absorption spectroscopy method (AAS
Spectrometer, AAS240FS, Agilent, Santa Clara, CA, USA).

The kinetics of the transport across PIMs was described as a first-order reaction in
metal ion concentration (ln(C0/Ct) = −kt; where k is the rate constant, and t is the time of
transport). The k values were calculated from the plots of ln(C0/Ct) vs. time. As expected,
the relationship of ln(C0/Ct) vs. time was linear. The initial fluxes (Jo) were determined
as Jo = (−kV/AC0), where V is the volume of the feed phase and A is the area of the
membrane.

3. Results and Discussion
3.1. Membrane Characterization

As shown in numerous studies [10,15,48,50–54], the membrane’s physicochemical
properties affect the selectivity of metal ion transport. Both scanning electron microscopy
(SEM) (Hitachi SU3500 SEM/EDS Energy-Dispersive Spectroscopy Hitachi, Tokyo, Japan)
and atomic-force MultiMode Scanning Probe Microscope IIIa (AFM) (Digital Instruments
Veeco Metrology Group, Santa Barbara, CA, USA)—utilized in air and at room temperature—
were used to characterize the PIM surfaces. Figure 1 shows AFM and SEM images of PIMs
with carriers 1–4.

Both the SEM and AFM images in Figure 1 indicate that the carrier distribution in the
investigated membranes is homogeneous throughout the entire surface after the solvent’s
evaporation.

The average thickness of all membranes was measured using a Panametrics® Magna-
Mike® 8500 (San Diego, CA, USA) manual precision thickness gauge. Mean roughness
values of the membrane were calculated using AFM. Both the average thickness and
roughness values are summarized in Table 2.

Table 2. Average thickness and roughness of PIMs.

Membrane, no 1 2 3 4

Roughness, nm 3.55 ± 0.05 3.86 ± 0.05 4.12 ± 0.05 4.47 ± 0.05

Thickness, µm 26 28 27 30

Membrane: 2.6 cm3 o-NPPE/1 g CTA and 1.0 mol/dm3 carriers (1–4) (calculated on plasticizer).

CTA-NPPE-2-alkylimidazole (1–4) membranes form thin films with a thickness of
26–30 µm. Many authors [57–61] have shown that microstructure of PIMs affects the
transport of metal ions. Their roughness of PIMs 1–4 varies from 3.55 to 4.47 nm. These
values are comparable to the values obtained for PIMs with other homologous series of
alkylimidazoles (roughness of 2.2–7.2 nm) [48,57–59]; however, it is less than that of the
CTA membrane obtained by Tor et al., which amounted to 14 nm [22]. The roughness
values are also comparable with a CTA membrane doped with a thioazocrown derivative
imidazole (a roughness of 3.3–5.3 nm) reported by Ulewicz [60] and with a membrane
containing D2EHPA prepared by Salazar-Alvarez [61], whose roughness was 4.6 nm.
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Figure 1. SEM and 2D AFM images of PIMs doped 2-methylimidazole (1), 2-ethylimidazole (2),
2-propylimidazole (3), and 2-butylimidazole (4).

3.2. Membrane Transport

The transport of Co(II), Cu(II), Ni(II), and Zn(II) ions through PIMs from an equimolar
mixture was studied using 2-alkylimidazole (alkyl = methyl, ethyl, propyl, butyl) as a
carrier. Figure 2 shows changes in the ion concentration of the studied metals in the feed
phase during this process.
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Figure 2. The concentration Cu(II), Zn(II), Co(II), and Ni(II) ions vs. time for PIMs with 2-
alkylimidazole as the carrier. 2-methylimidazole (1), 2-ethylimidazole (2), 2-propylimidazole (3), and
2-butylimidazole (4). Membrane: 2.6 cm3 o-NPPE/1 g CTA and 1.0 mol/dm3.
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On the basis of Figure 2, it can be seen that regardless of the type of carrier used in the
membrane, the changes in the concentrations of the tested metal ions can be arranged in
the order Cu(II) > Zn(II) > Co(II) > Ni(II).

The optimal transport time is 24 h. After this time, the state of equilibrium is estab-
lished and a further extension of the time does not change the concentrations of metals.

Table 3 shows the initial flux values (J0) of the studied metal ions, depending on the
type of carrier used.

Table 3. Kinetic parameters of transport by PIMs containing 2-alkylimidazoles and selectivity
coefficient of Cu(II) ions.

2-Alkylimidazole Metal Ion J0, µmol/m2·s SCu(II)/M(II) = J0(Cu)/J0(M)

1

Cu(II) 6.28 ± 0.01

Cu(II) > Zn(II) > Co(II) > Ni(II)
1.5 2.8 52.3

Zn(II) 4.31 ± 0.01

Co(II) 2.26 ± 0.01

Ni(II) 0.12 ± 0.01

2

Cu(II) 5.75 ± 0.01

Cu(II) > Zn(II) > Co(II) > Ni(II)
1.7 4.3 71.9

Zn(II) 3.35 ± 0.01

Co(II) 1.33 ± 0.01

Ni(II) 0.08 ± 0.01

3

Cu(II) 3.64 ± 0.01

Cu(II) > Zn(II) > Co(II) > Ni(II)
2.1 4.6 182

Zn(II) 1.75 ± 0.01

Co(II) 0.79 ± 0.01

Ni(II) 0.02 ± 0.01

4

Cu(II) 3.19 ± 0.01

Cu(II) > Zn(II) > Co(II)
2.6 6.9

Zn(II) 1.22 ± 0.01

Co(II) 0.46 ± 0.01

Ni(II) 0.00 ± 0.01

The data in Table 3 show that the rate of transport of the studied metal ions decreases
in the series Cu(II) > Zn(II) > Co(II) > Ni(II). As the length of the alkyl chain in the
carrier molecule increases, the initial fluxes of all ions decrease. This phenomenon may
be explained by kinetic factors in the formation of complexes of the studied metals at the
membrane/feed phase interface. Ni(II) ion transport is particularly low, and in the case of
membrane 4, it is completely inhibited. Ni(II) ions are virtually never transported across
membranes containing 2-alkylimidazoles as carriers; they remain in the feed phase.

3.3. Complexation Mechanism

The transport process is similar for all carrier types, especially alkyl imidazole deriva-
tives [8,27,48,52–54]. The alkyl substituent at position 2 hinders the formation of all metal
complexes, as evidenced by the lower values of the stability constants (log β) exhibited by
2-alkylimidazole complexes compared to 1-alkylimidazoles (Table 4).

The alkyl substituent located at position 2 in the alkylimidazole molecule is a steric
hindrance to the binding of metal ions as it blocks access to the donor nitrogen atom. The
longer the substituent, the more difficult the complexation reaction (Figure 3).
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Table 4. Comparison of the stability constant values (log β) of Cu(II), Zn(II), Co(II), and Ni(II)
complexes.

Alkyl= Cu(II) [62] Zn(II) [63] Co(II) [64] Ni(II) [65]

1-Alkylimidazole

methyl 4.30 2.70 2.40 3.05

ethyl 4.40 2.50 2.40 3.04

propyl 4.25 2.62 2.38 3.06

butyl 4.40 2.57 2.75 3.30

2-Alkylimidazole

methyl [66] 3.60 2.38 1.73 1.05

ethyl [67] 3.35 1.80 1.49 0.65

propyl [68] 3.11 1.12 0.57 0.24

butyl [69] 2.86 0.74 0.23 -
Given values, the stability constants carry 5% tolerance.

Membranes 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 
1 2 3 4 

Figure 3. Models of the 2-alkylimidazole molecule, 2-methylimidazole (1), 2-ethylimidazole (2), 2-
propylimidazole (3), and 2-butylimidazole (4). 

The steric effect represents a particular hindrance to the formation of Ni(II) as well as 
Zn(II) and Co(II) octahedral complexes. It is difficult for Ni(II) ions to bind with 2-
alkylimidazoles, and in the case of 2-butylimidazole, a binding reaction does not occur at 
all (Table 4). Ni(II) ions mostly form 6-coordination complexes, because they have a rigid 
octahedral structure that is hard to deform. On the other hand, apart from the 6-
coordinated ones, Zn(II) and Co(II) ions can also form tetrahedral complexes, which are 
more easily transferred by PIMs due to their smaller volume. Among the four cations 
studied, coordination sphere deformation is highly likely to occur only in the case of Cu(II) 
ions—due to the Jahn–Teller effect [70]—making the transport of such ions the easiest. 

Due to differences in the complexation reaction using 2-alkylimidazoles, it is possible 
to selectively separate Cu(II) ions, particularly from Ni(II) ions (Table 3). 

Figure 4 presents the proposed mechanism of the transport of M(II) ions across PIMs. 

 
Figure 4. Schematic transport of metal ions across PIM doped 2-alkylimidazoles. 

In the transport mechanism shown in Figure 4, the complexation reaction takes place 
between the metal ion and 2-alkylimidazoles (L). Complex ions are formed in the 
membrane: 

for Cu(II), Zn(II) Co(II)  M2+ + 4 L ↔ [ML4]2+ 
for Ni(II)    M2+ + 6 L ↔ [ML6]2+ 

The complex ion is then transferred across the membrane towards the receiving 
phase. Complex ions dissociate at the interface between the membrane and the receiving 
phase. 

At the same time, the proton ions are transported from the receiving phase in the 
same way towards the feed phase. 

3.4. Diffusion of Metal Ions across PIMs 
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2-propylimidazole (3), and 2-butylimidazole (4).

The steric effect represents a particular hindrance to the formation of Ni(II) as well
as Zn(II) and Co(II) octahedral complexes. It is difficult for Ni(II) ions to bind with 2-
alkylimidazoles, and in the case of 2-butylimidazole, a binding reaction does not occur
at all (Table 4). Ni(II) ions mostly form 6-coordination complexes, because they have a
rigid octahedral structure that is hard to deform. On the other hand, apart from the 6-
coordinated ones, Zn(II) and Co(II) ions can also form tetrahedral complexes, which are
more easily transferred by PIMs due to their smaller volume. Among the four cations
studied, coordination sphere deformation is highly likely to occur only in the case of Cu(II)
ions—due to the Jahn–Teller effect [70]—making the transport of such ions the easiest.

Due to differences in the complexation reaction using 2-alkylimidazoles, it is possible
to selectively separate Cu(II) ions, particularly from Ni(II) ions (Table 3).

Figure 4 presents the proposed mechanism of the transport of M(II) ions across PIMs.
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In the transport mechanism shown in Figure 4, the complexation reaction takes place
between the metal ion and 2-alkylimidazoles (L). Complex ions are formed in the membrane:

for Cu(II), Zn(II) Co(II) M2+ + 4 L↔ [ML4]2+

for Ni(II) M2+ + 6 L↔ [ML6]2+

The complex ion is then transferred across the membrane towards the receiving phase.
Complex ions dissociate at the interface between the membrane and the receiving phase.

At the same time, the proton ions are transported from the receiving phase in the same
way towards the feed phase.

3.4. Diffusion of Metal Ions across PIMs

The next step consisted in calculating the diffusion coefficient (Do) of the metal complex
across the membrane doped with 2-alkylimidazole. Figure 5 shows the correlation graphs
C0-Ct vs. time of transport for metal ions with the carriers 1–4 across PIMs.
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Figure 5. The relationship C0-Ct vs. time of metal ions transport across PIMs with 2-alkylimidazole
1–4 as the carrier; 2-methylimidazole (1), 2-ethylimidazole (2), 2-propylimidazole (3), and 2-
butylimidazole (4).

The diffusion coefficient of each metal ion was calculated, substituting Do = do/∆o,
where do is the thickness of the membrane (Table 2), and ∆o could be evaluated based on
the angle of inclination of the lines presented in Figure 5. Table 5 shows the obtained values
of diffusion coefficients.
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Table 5. Diffusion coefficients (Do) of Cu(II), Zn(II), Co(II), and Ni(II) complexes with 2-
alkylimidazoles and membrane diffusion resistance values (∆o).

Carrier Metal Ion ∆o, s/m Do, cm2/s

1

Cu(II) 114.1 2.38 × 10−8

Zn(II) 153.8 4.21 × 10−8

Co(II) 245.2 7.63 × 10−8

Ni(II) 616.3 1.42 × 10−10

2

Cu(II) 136.5 1.17 × 10−8

Zn(II) 187.2 3.96 × 10−8

Co(II) 361.8 5.15 × 10−8

Ni(II) 983.2 2.02 × 10−11

3

Cu(II) 206.4 3.13 × 10−8

Zn(II) 415.6 4.68 × 10−8

Co(II) 712.1 3.25 × 10−9

Ni(II) 1083.7 4.13 × 10−13

4
Cu(II) 312.1 4.05 × 10−9

Zn(II) 625.3 6.27 × 10−9

Co(II) 947.5 2.01 × 10−10

The value of the diffusion coefficient of M(II)-carrier species of 2.38 × 10−8–4.13 ×
10−13 cm2/s (Table 5) is smaller than the value of 1.5 × 10−7 cm2/s reported for the Pb(II)
complex with the D2EHPA in PIM by Salazar-Alvarez [61] and is within the range of
10−8–10−13 cm2/s, which indicates that the rate-determining step in the transport of metal
ions is the passage across the membrane.

3.5. Transport Recovery

The transport recovery of Cu(II), Zn(II), Co(II), and Ni(II) ions from their equimolar
solutions as a result of transport by PIMs doped with 2-alkylimidazoles 1–4 is shown in
Figure 6.
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Figure 6. Transport recovery of Cu(II), Zn(II), Co(II), and Ni(II) ions after 24 h depending on the carrier
used; 2-methylimidazole (1), 2-ethylimidazole (2), 2-propylimidazole (3), and 2-butylimidazole (4).

Metal recovery depends on the carrier used in the membrane, with the highest recovery
values achieved in the case of 2-methyl- (1) and 2-ethylimidazole (2) (Figure 6). Cu(II)
recovery is the highest, ranging from 95.5 (membrane 1) to 85.4% (membrane 4) depending
on the membrane used. Zn(II) and Co(II) recovery clearly decrease for carriers 3 and 4.
There is little transport of Ni(II) ions across all the membranes tested, hence the Ni(II)
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recovery is 14% for membrane 1. In the case of the 2-butylimidazole membrane (4), Ni(II)
ions remain in the feed phase.

3.6. Comparison of the Results with Previously Tested Alkyl Imidazole Derivatives

Table 6 shows the copper (II) separation coefficients in relation to Zn(II), Co(II), and
Ni(II) from their equimolar solutions after a 24 h transport across PIMs with alkylimidazoles
(1-alkylimidazoles, 1-alkyl-2-methylimidazoles, and 1-alkyl-4-methylimidazoles).

Table 6. The copper (II) separation coefficients in relation to Zn(II), Co(II), and Ni(II) from their
equimolar solutions after a 24 h transport across PIMs with alkylimidazoles.

Separation Coefficients Cu(II)/M(II)

Carrier Zn Co Ni Ref.

1-hexylimidazole 4.3 39.7 46.9 [48]

1-hexyl-2-methylimidazole 3.9 24.8 59.1 [48]

1-decyl-4-methylimidazole 2.8 11.6 32.8 [48]

2-methylimidazole 1.5 2.8 52.3 this work

2-ethylimidazole 1.7 4.3 71.9 this work

2-propylimidazole 2.1 4.6 182 this work

2-butylimidazole 2.6 6.9 this work

In the case of PIM with 2-alkylimidazoles, the copper (II) separation coefficients in
relation to Zn(II) and Co(II) are lower (Table 6). However, these membranes efficiently
separate Ni(II) ions from Cu(II)-Zn(II)-Co(II)-Ni(II) mixture.

Table 7 contains the values of Cu(II) recovery in transport across PIMs doped with
alkylimidazoles.

Table 7. The values of Cu(II) recovery after a 24 h transport across PIMs doped with alkylimidazoles.

Carrier Cu Recovery, % Ref.

1-hexylimidazole 99.4 [48]

1-hexyl-2-methylimidazole 83.2 [48]

1-decyl-4-methylimidazole 93.0 [48]

2-methylimidazole 94.8 this work

2-ethylimidazole 94.0 this work

2-propylimidazole 90.0 this work

2-butylimidazole 87.0 this work

The data in Table 7 indicate that copper recovery after a 24-hour process of transport
using alkylimidazole derivatives as carriers are high, which proves the efficiency of alkylim-
idazoles in the process of separation of Cu(II) ions. The highest Cu(II) recovery factors
were achieved when using 1-hexylimidazole [48].

PIMs with 2-alkylimidazoles can be used both for the recovery of Cu(II) from Cu(II)-
Zn(II)-Co(II)-Ni(II) mixtures, as well as for the separation of Cu (II) from Ni (II).

4. Conclusions

In the process of transport across polymer inclusion membranes using 2-alkylimidazole
as a carrier, the rate of transport of metal ions studied decreases in the series Cu(II) > Zn(II) >
Co(II) > Ni(II). The presence of a substituent at position 2 affects the value of all parameters
characterizing transport. As the length of this substituent increases, the following changes
can be observed:
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• An increase in the initial fluxes of Cu(II) ions and a decrease in the initial fluxes of
Zn(II), Co(II), and Ni(II) ions, up to a complete disappearance of the flux of Ni(II) ions
when using 2-butylimidazole,

• An increase in the separation coefficients of Cu(II) ions relative to those of other metals.
The highest separation coefficient values for Cu(II)/Zn(II) and Cu(II)/Co(II) are 2.6,
6.9 (membrane 4), and in the case of Cu(II)/Ni(II), 182 (membrane 3), respectively.

• A decrease in the recovery efficiency of each metal. Cu(II), Zn(II), Co(II), and Ni(II)
recovery is the highest for the membrane with carrier 1 (2-methylimidazole) and
amounts to 95.5%, 88.8%, 66.7%, and 14.1%, respectively.

The differences in ion transport and separation efficiency are caused by differences in
the complexation reaction of Cu(II), Zn(II), Co(II), and Ni(II) with 2-alkylimidazoles.
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