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Abstract
Background: In recent times, there has been an exponential rise in the number of protein
structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is
becoming an increasingly important research issue. This paper reports an algorithm, motivated
from spectral graph matching techniques, for retrieving protein structures similar to a query
structure from a large protein structure database. Each protein structure is specified by the 3D
coordinates of residues of the protein. The algorithm is based on a novel characterization of the
residues, called projections, leading to a similarity measure between the residues of the two
proteins. This measure is exploited to efficiently compute the optimal equivalences.

Results: Experimental results show that, the current algorithm outperforms the state of the art
on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95%
nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that
the current method performs competitively with the standard algorithm CE. The algorithm is also
capable of detecting non-topological similarities between two proteins which is not possible with
most of the state of the art tools like Dali.

Background
Retrieval of similar proteins from a database is a funda-
mental problem in Bioinformatics. Traditionally, similar-
ity is defined in terms of scores of optimal sequence
alignment between the amino acid sequences of the two
proteins involved. However, it is well known that struc-
tures of proteins relate more accurately to their functions
and evolutionary history than amino acid sequences.
Thus, retrieval of structurally similar proteins becomes an
important problem.

There has been a very rapid growth in the number of struc-
tures in protein databases in the past few years, with PDB
[1] having more than 32000 structures (about 24 GB of
data). Very fast algorithms are required for searching
through such a huge amount of data for similar proteins.
Many protein structure comparison algorithms have been
proposed for finding out the extent of similarity between
two proteins.  Unfortunately, the formulations have
turned out to be NP-Hard [2].
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Many heuristics have been proposed for comparing pro-
tein structures, e.g. Dali [3,4], C-alpha match [5], LOCK
[6], SSAP [7], etc. Two main issues about protein structure
comparison algorithms are:

• To what extent are extra atoms (those that are not
present in the other structure) called indels tolerated.

• Whether non-topological similarities (those not following
sequence order of the protein) are detected.

Unfortunately, most of the above mentioned algorithms
are very slow for searching through databases of size sim-
ilar to PDB. CE [8] was designed to search through PDB,
and is very fast. However, it can't detect non-topological
similarities. This is a limitation as many types of non-top-
ological similarities (e.g. circular permutations [9-11]) are
known to exist in nature. Some algorithms, e.g. [5] and
[12] are capable of detecting non-topological similarities.

The aim in this paper, is to derive an alternate formulation
of the protein structure comparison problem, resulting in
development of a fast algorithm for comparing protein
structures, called Matchprot. Moreover, this algorithm is
capable of detecting non-topological similarities. Our for-
mulation is motivated from the distance matrix overlap
formulation [3]. A novel characterization of the residues
of a protein in the context of its overall structure is calcu-
lated by projecting them on the real line in a neighbor-
hood preserving way. This characterization is used to
define a similarity function between the residues of two
proteins and find the optimal equivalences. Our method
is closely related to the Umeyama's method of matching
weighted graphs [13] which uses eigenvectors of adja-
cency matrices.

Speedup in the computation of alignment is achieved by
using the similarity function between residues from two
structures, as opposed to similarity function on pairs of
residues defined by the distance matrix formulation. Such
an attempt has been made in SSAP [7], by using two level
dynamic programming (DP). However, no single repre-
sentation of each residue is obtained, leading to similarity
scores with conflicting residue equivalences. Moreover,
for every pair of residues a DP has to be run, making the
program very slow. The current algorithm gives a single
projection of the residues on the real line using eigenvec-
tor decomposition, for which highly efficient algorithms
are known. Also, methods described in [6] and [14] use an
initial secondary structure alignment to derive similarity
score between residues. The current algorithm takes only
tertiary structure into account and computes the align-
ment in one step, not iteratively.

The algorithm was tested extensively using 2 comprehen-
sive benchmark datasets. The results obtained on bench-
mark datasets are comparable to those obtained with
Dali, a state of the art protein structure comparison algo-
rithm. Moreover, the algorithm was used to query a data-
base of about 10000 protein structures (about 9 GB of
data), for 5 different query proteins from the different
protein classes. Results of this search, compared to the
standard database search algorithm CE, are encouraging.
Since the residues are characterized in the context of the
whole structure, indels in the structures affect the actual
characterization values. However, experimental results
show that, in case of high structural similarity, correct
equivalences are retrieved for upto 40% indels. Experi-
mental results also confirm the algorithm's ability to
detect non-topological similarities. Timing tests show that
the algorithm is 2–3 times faster than CE, and 15–20
times faster than Dali.

Results
A comprehensive set of experiments were performed in
order to evaluate the fitness of Matchprot for protein
structure retrieval and to ascertain the possible applica-
tions of such a retrieval tool. For this purpose, we imple-
mented the algorithm on GCC/GNU-Linux. LAPACK [15]
was used for eigenvector computations. Rasmol [16] was
used for visualization of the structural superpositions and
generating the images presented in this paper.

Firstly, in order to assess the quality of alignments gener-
ated by Matchprot vis-a-vis the standard protein structure
comparison algorithm Dali, we run both the algorithms
on two benchmark datasets: Fischer's [17] and Novotny et
al.'s [18]. These datasets have over 200 pairs of similar
protein structures from a varied class of proteins, which
are "difficult" to detect. In the next subsection, we report
detailed results from Matchprot and benchmark it against
DALI.

Circular permutations are a specific type of non-topologi-
cal similarity observed in nature [9,10], having many
important applications. In the section titled Nontopolog-
ical similarities we explore the ability of Matchprot for
detecting non-topological similarities. The alignment, for
a well known circularly permuted protein pair is reported.
Next, in order to test Matchprot's performance in presence
indels, we use it to compare domains of multi-domain
proteins with with the full protein.

Structural Classification of Proteins (SCOP) [19] is a man-
ually curated hierarchical classification system of proteins
having about 70000 domains. Domains are classified at 4
levels of similarity: class, fold, superfamily and family.
The level of similarity between two proteins is gives a lot
of insight into their functions. In the next experiment (see
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the following section on SCOP), we searched SCOP 95%
non-redundant dataset having about 10000 domains for
5 randomly selected query proteins using Matchprot,
making a total of 50000 pairwise comparisons. We also
compared the results at the fold level of similarity with
that of the standard program CE.

Finally, we compare the running times taken by Match-
prot, CE and Dali for proteins of different sizes. It clearly
shows that matchprot is much faster than Dali and signif-
icantly faster than CE.

Validation using Fischer's and Novotny et al.'s dataset
In order to assess the performance of Matchprot on
benchmark datasets, we ran Matchprot on Fischer's [17]
and Novotny et al.'s [18] dataset, and compared the
results with those from Dali. Fischer's data set in a well
known benchmark, and contains many difficult similari-
ties. Novotny et al. have recently compared 11 fold recog-
nition programs using their dataset.

There are 4 parameters to Matchprot, dimension of repre-
sentation k, parameter for calculation of nearness matrix
α, threshold for the similarity function T, and gap penalty
g. In absence a clearly best set of values for parameters,
Matchprot was run for 72 combinations of parameters,
making a total of 4896 pairwise comparisons. Total time
(user + system) taken by Matchprot was 27 min 38.58 s,
whereas Dali took 52 min 8.21 s. The range of parameter
values over which search was made is: k : {1, 3}, α: {5, 10,
15, 20}, T : {0.2, 0.5, 0.8}, and g: {0.1, 0.4, 0.7}.

Table 1 reports a summary of results from the experiment.
The alignments were compared on the basis of RMSD and
length of alignment. An alignment is said to be better than
another (between the same pair), if the former has a
higher length and lower RMSD than the later. Two align-
ments are called level if one has higher RMSD and higher
length than the other.

Z-score measures the statistical significance of an align-
ment. However, it was noted that the Z-scores computed
by the Matchprot and Dali were different even in case of
similar alignments. For this reason, we chose to use RMSD
and length of alignment, rather than Z-score for compar-
ing alignments between Dali and Matchprot. The test on
the benchmark data set shows that the quality of align-
ments given by Dali and Matchprot are comparable.

Non-topological similarities, multiple domains and 
proteins with internal repeats
In order to demonstrate the performance of Matchprot in
detecting non-topological similarities, we show the align-
ment of the famous circularly permuted pair 2pelA-5cnaA
in detail. Figure 1 shows the alignment graphs for 2pelA-
5cnaA with Y-axis showing the residue number as they
appear in the chain. The negative jump in alignment given
by Matchprot indicates a circular permutation.

For 2pelA-5cnaA, Matchprot gives a 223 residue align-
ment with RMSD 1.48Å whereas Dali gives a 117 residue
alignment with RMSD 1.3Å. The superpositions generated
by the 2 programs are also shown. The equivalenced por-
tions are shown in color combination blue ↔ red and yel-
low ↔ green. It is very clear that Dali detects only a portion
of the total alignment.

Next, to test the extent to which Matchprot can handle
indels in the structures, we compared 2 multi-domain
proteins (each having 3 separate domains), taken from
Novotny et. al.'s article [18], with various partial struc-
tures of the same proteins, including the individual
domains. Table 2 gives results from these experiments.
The first six entries in the table report comparison of
2HCK with partial structures obtained by deleting 4, 8, 12,
20, 50, and 100 residues, respectively. It can be seen these
deletions are handled properly by the current algorithm.

Next six entries in Table 2 give results from comparison of
2HCK and 2SRC with their individual domains. In each

Table 1: Comparison of results from Matchprot and Dali using Fischer's and Novotny's Benchmark Dataset.

Data set/Classifn. Total pairs Better Worse Level

Fischer Novotny et. al. 68 17 18 33
1.10.40 21 8 1 12
1.10.164 10 2 0 8
1.25.30 21 3 0 18

2.30 110 6 1 2 3
2.40.100 28 4 3 21
2.100.10 15 5 4 6
3.10.70 10 0 2 8
3.40.91 6 6 0 0
3.70.10 15 1 3 11
2.40.20 21 1 4 16
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case, only the largest domain is detected properly, which
indicates that 'indels' upto 160 residues in a 440 amino
acid protein is tolerated quite well. The present imple-
mentation however is not suitable to detect very large
domain deletions, inducing indels more than 40% of the
size of the query structure. This, although a limitation in
that sense does not hinder commonly required structural
comparisons, where each indel is generally in the order of
a few residues only. Even in cases where large domain

deletions exist, Matchprot returns a close but not a perfect
alignment, which can be used as a seed to tune the query
to that of an appropriate size to the structure of interest to
subsequently get a more accurate alignment, thus over-
coming the minor limitation of not tolerating very large
deletions at the outset. Moreover (see section on SCOP)
even with this limitation, the current algorithm performs
competitively with state of the art algorithms for structure
retrieval from databases.

2pelA – 5cnaA alignments generated by Dali and MatchprotFigure 1
2pelA – 5cnaA alignments generated by Dali and Matchprot.
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Finally, in order to ascertain whether the local alignment
procedure is fooled by proteins having internal symmetry,
we compared 6 proteins showing high degree of internal
symmetry with their homologues. Table 3 report the
results from these experiments vis-a-vis those from Dali. It
is clear that Matchprot detects all the matches correctly.

We tested the alignments given by matchprot on more
than 100 other protein structure pairs. The experiments
suggest that in most cases, Matchprot performs compara-
bly with Dali.

Structure based search on 5 SCOP classes
In order to judge Matchprot's performance in retrieving
structurally similar proteins from databases, we searched
the SCOP 95% non-redundant database, for similarities
with 5 randomly selected SCOP domains (d101m__,
d1htia_, d1jzba_, d2pela_, d7rsa__) from the 5 major
SCOP classes. The ASTRAL (a derived dataset from SCOP)
[20] 95% non-redundant dataset has about 10000
domains, occupying about 9 GB of disk space. Thus,
about 50000 pairwise comparisons were performed.
Since, the computation was performed on shared
machines, reporting exact timing of the experiment is not
possible. The computation takes roughly 1 day time on a
2.4 GHz mahcine.

Table 4 reports a summary of the search performed on 5
randomly selected domains. For each domain that is
searched for, and for 3 levels of structural similarity (fold,
superfamily & family), we report the number of similar
structures in the database, the number of similar struc-
tures detected by Matchprot, and the number of false pos-
itives. In absence of other measures, the similarity was
ascertained using a cuto3 on the Z-score. Accuracy of clas-
sification for a large number Z-score cutoffs were
observed, and the best range of cutoffs were determined to
be 2 – 6 for fold classification. It can be seen that Match-
prot detects all structures having family level similarity
and most of the structures having superfamily level simi-
larity. Matchprot also detected some similarities in struc-
tures which are not in classified in the same SCOP fold
(currently reported as false positives). Biological signifi-
cance of these similarities are under study, and will be
reported elsewhere. For detecting fold level similarity, we
recommend a Z-score cuto3 value of 5. Also, Z-score
increases with the average size of the structures. Thus,
appropriate adjustments should be made in case of
extremely low or high structure sizes.

Recently, CE [8] was rated to be the top fold recognition
server [18]. Table 5 compares the effectiveness of Match-
prot and CE for fold recognition purpose. We used a CE Z-
score cuto3 of 4.0 as recommended for detecting hits. For
both the programs, number of structures correctly

Table 2: Results from comparison of multi-domain proteins with partial structures and individual domains.

ID1 – ID2 No. of Deletions/Total Size Matchprot (Lali/RMSD/Zscore) Dali (Lali/RMSD/Zscore)

2hcka – 2hcka-4 4/437 433/0.00/91.60 434/0.00/60.5
2hcka – 2hcka-8 8/437 429/0.00/91.21 430/0.00/60.5
2hcka – 2hcka-12 12/437 425/0.00/90.85 426/0.00/60.5
2hcka – 2hcka-20 20/437 417/0.00/90.75 418/0.00/60.3
2hcka – 2hcka-50 50/437 387/0.00/93.63 388/0.00/60.5
2hcka – 2hcka-100 100/437 337/0.00/76.49 338/0.00/49.3

2hcka – d2hcka1 374/437 34/2.81/-1.18 63/0.0/15.1
2hcka – d2hcka2 334/437 59/3.12/-0.63 103/0.0/21.6
2hcka – d2hcka3 166/437 271/0.00/58.53 272/0.0/43.3
2src – d2src_1 387/449 45/3.33/-1.56 62/0.0/15.1
2src – d2src_2 346/449 68/3.31/-0.83 103/0.0/22.9
2src – d2src_3 165/449 284/0.00/64.61 285/0.0/46.4

Table 3: Results from comparison of proteins with internal repeats.

PDB1 – PDB2 Matchprot (Lali/RMSD/Zscore) Dali (Lali/RMSD/Zscore)

1gyhA – 1tl2A 179/3.36/7.79 196/3.9/7.4
1nscA – 3sil 291/2.99/37.52 289/3.2/23.5

1bd8 – 1ihbA 154/1.26/27.99 154/1.3/25.2
1l4aA – 1n7sA 62/1.58/5.61 62/1.7/5.6
2pec – 1bn8A 282/2.07/49.15 287/2.5/32.1
1kapP – 1sat 444/1.43/70.71 448/1.7/49.9
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detected, no. of false positives detected, precision and
recall are reported. Precision and recall are defined as:

It can be seen

that Matchprot performs favorably with CE. Thus, Match-
prot is found to be effective for retrieving proteins having
similar folds.

Timing comparison
Matchprot was designed for fast comparison of protein
structures. In this section, we compare the time taken by
Matchprot with those taken by CE and Dali. Each of the
programs was run 30 times on protein structures for each
size. The homologous structure was created from the par-
ent structure by perturbing it randomly. The average time
taken the programs for each size is reported in fig. 2. The
sizes were varied from 50 to 650 in steps of 50. All the
experiments were run on an Intel Pentium4 2.4 GHz
machine. Also, in the experiment with Fischer's dataset,
Matchprot was run for 72 combinations of parameters for
68 protein pairs, making a total of 4896 pairwise compar-
isons. Total time (user + system) taken by Matchprot was

27 min 38.58 s on a 2.4 GHz machine. Dali took 52 min
8.21 s for the same 68 protein pairs. The results in figure
2 demonstrate that Matchprot is 15–20 times faster than
Dali. Moreover, it is 2–3 time faster than CE, which a well
known database search program. Thus, Matchprot can
used efficiently for searching databases of proteins.

Conclusion
In this article, we describe a new protein structure retrieval
algorithm called Matchprot. The algorithm was first vali-
dated on two comprehensive benchmark datasets against
the standard protein structure comparison algorithm
Dali. Performance of Matchprot was shown to be compet-
itive with DALI on the benchmark. Next, it was shown
that Matchprot can successfully detect non-topological
similarities between two protein which is missed by DALI.
Further validation was performed with proteins having
multiple domains and internal repeats. Comparison of
multi-domain proteins with individual domains showed
that Matchprot is able to detect correct similarities in pres-
ence of up to 40% indels.

As a retrieval tool, Matchprot was successfully used to
search SCOP 95% non-redundant dataset, having nearly
10000 protein structures, for 5 diverse types of proteins.
The results showed encouraging accuracy when validated

precision
no of structures correctly detected

no of structures d
= .

. eetected

recall
no of structures correctly detected

actual no of
= .

. sstructures

Table 4: Detection of Similar Proteins by Matchprot.

Query ID (SCOP classfn.) SCOP sim. level Z-Score cutoff No. of structures (actual/detected/false +ve)

d101m__ Family 12 64/64/0
(a.1.1.2) Superfamily 5 93/93/0

Fold 5 97/93/0
d1htia_ Family 20 15/15/0
(c.1.1.1) Superfamily 20 15/15/0

Fold 6 327/272/56
d1jzba_ Family 4 17/17/0
(g.3.7.1) Superfamily 2 55/23/0

Fold 2 238/23/0
d2pela_ Family 25 26/26/0

(b.29.1.1) Superfamily 5 87/70/50
Fold 5 87/70/50

d7rsa__ Family 5 18/18/0
(d.5.1.1) Superfamily 5 18/18/0

Fold 5 18/18/0

Table 5: Comparison of results for SCOP database search from Matchprot with those from CE.

Query ID Matchprot (detected/false +ve/precision/recall) CE (detected/false +ve/precision/recall)

d101m__ 93/0/1/0.95 96/2/0.97/0.99
d1htia_ 272/56/0.82/0.83 307/29/0.91/0.93
d1jzba_ 23/0/1/0.1 33/270/0.1/0.14
d2pela_ 70/50/0.58/0.8 61/36/0.62/0.70
d7rsa__ 18/0/1/1 17/1/0.94/0.94
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against SCOP. Matchprot was found competitive the
standard database searching algorithm CE, in terms of
search accuracy. Finally, the previous section shows that
Matchprot outperforms state of the art programs in terms
of speed.

The key to the speed of Matchprot is the a similarity func-
tion, based entirely on the structures, which measure the
structural similarity between 2 residues, one from each
structure. Such a function is designed using a novel char-
acterization of residues of a structure based on projections
that try to preserve neighborhoods. This characterization
also connects to the spectral graph theoretic techniques
popular in many disciplines. Optimal equivalences are
calculated using a greedy fragment pair search heuristic.
The algorithm has a running time of O(n3).

The main drawback of the current algorithm is it's inabil-
ity to perform in the presence of a large number of indels.
Thus, it needs to be made more robust toward indels.
Though a small amount of indels (about 20%) are toler-
ated by the algorithm, in the case of multiple domains,
only the largest one is detected. A work arround this prob-
lem could be to search through a domain database, e.g.
ASTRAL, instead of the PDB, and decompose the query
into constituent domains. Theoretical bounds on per-
formance is another desirable development. Since, the
problem of comparing protein structures is NP-hard,
approximations having a comprehensive theory behind
them are highly desirable.

Empirical results show that Matchprot is capable of
detecting non-topological similarities (circular permuta-

Comparison of time taken by CE, Matchprot and Dali for different sizes of structuresFigure 2
Comparison of time taken by CE, Matchprot and Dali for different sizes of structures.
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tions in particular) between two proteins. Circular permu-
tations are connected to many important questions in
molecular biology. A study of suitability of Matchprot for
automatic detection circularly permuted pairs of proteins
is underway and will be reported elsewhere.

Methods
Problem description
A protein is a polymer of amino acids (also called resi-
dues). The protein sequence is a string comprising of the
type of residues arranged in the order they are connected
in the polymer. The protein structure is described by the
3D coordinates of all non-hydrogen atoms present in the
protein. However, following the common practice we will
use the coordinates of the Cα atoms of the residues to
describe each protein structure. Thus, a protein structure
having m residues will be given by a set of points A = {x1,
x2,...,xm),xi ∈ � 3, 1 ≤ i ≤ m, where each point represents
one residue. The sequence ordering of the residues of the
protein is given by the indices of the points.

A structural alignment between two protein structures A
and B is given by a set of equivalences (1 – 1 correspond-
ences) between the residues of the 2 proteins. So, a struc-
tural alignment Φ between structures A and B, of length L,
is denoted as:

Φ(A, B) = {(il, jl)|1 ≤ l ≤ L, 1 ≤ il ≤ m, 1 ≤ jl ≤ n, and il = ik

or jl = jk iff l = k}. In the alignment the  residue of pro-

tein A is said to be matched or equivalenced with the jlth

residue of protein B.

Intuitively, an alignment is said to be good if the matched
residues could be superposed on each other using a rigid
transformation. This is captured by the most commonly
used measure of similarity called Root Mean Square Devi-
ation (RMSD), defined as RMSD =

, where  is the optimal

transformation. However, small RMSDs can be obtained
by choosing a very small no. of matched residues, which
can be superposed tightly. Thus, the no. of matched resi-
dues (also called length of alignment) is also an impor-
tant parameter. Detection of non-topological similarities
increases the length of an alignment while keeping the
RMSD same. For example, in figure 3, fragments A, B, and
C of the first protein could be superposed with the frag-
ments A', B', and C' of the second protein respectively.
However, an algorithm incapable of detecting non-topo-
logical similarities will only matches of fragments A, B
with A', B' or A, C with A', C'.

Minimization of RMSD has been the objective of many
methods including those described in [6,21], etc. How-
ever, many other formulation have been described in lit-
erature. Two other popular formulations are distance
matrix overlap [3,4] and contact map overlap [22] prob-
lems, both of them being NP-Hard. The distance matrix
overlap formulation involves finding permutations of
rows and columns of the distance matrices of the 2 struc-
tures, so that the corresponding pairwise distances are
roughly the same. Solution to this problem has been
attempted in Dali [3] using Monte Carlo optimization.
Combinatorial Extension (CE) [8] uses heuristic cutoffs
on pairwise distance scores to develop a fast algorithm.
Solution of the contact map overlap problem has been
attempted using Integer Programming and Lagrangian
relaxation method in [23]. A review of the methods is
available in [24]. The problem can also be viewed as a
weighted maximum common subgraph problem.

Next section discusses the distance matrix formulation of
the problem [3], and motivates a new scoring function.
The distance matrix d, is defined as: dij = ||xi - xj||2. We will

denote the i, jth entry of the distance matrix of structure A

by  Frobenius norm is defined as ||A||F =

.

Motivation from Dali score function
To derive intuitions for the proposed formulation, it is
instructive to understand what alignments Dali [3,4]
might prefer. Dali defines the score of an alignment Φ(A,
B) as follows

where  = (  + )/2. Dali searches the space of

all feasible alignments for the Φ which maximizes SDali.

There are two properties that make terms in the Dali scor-
ing function (1) contribute high values to the total score.
The first point to be noted is that residues which are spa-
tially far do not contribute much to the Dali score. See that

whenever residues il, ik and jl, jk are far apart  is high,

driving the exponential weighting term to 0. Hence spa-
tially far residues have no impact on the score function.
Dali thus considers only those residues which are spatially
close, hence effectively defining a neighborhood.
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The second observation is that Dali will try to match those
residues which have a similar neighborhood. This is
because the Dali score (1) function gives a higher score to

those Φ's, whose residues are such that |  - | is

low. Thus Dali tries to pick up alignments whose residues
have similar spatial neighborhoods.

Searching for such alignments in the space of all possible
alignments is an extremely difficult task. Dali uses inter-
esting heuristics to solve the problem. However, as seen in
the experiments, the solution is too slow for searching
large databases of protein structures. The key to efficiently
locating such alignments lies in utilizing the neighbor-
hood information for characterizing the residues so that

they can be compared readily. In the next section we dis-
cuss one such characterization.

Optimally neighborhood preserving projections
As described earlier, a protein can be viewed a collection
of points (residues) in �3. We propose to assign real num-
bers (called projections) to these points satisfying two crite-
ria. Firstly, points which are close to each other in the
original structure should have projection values close to
each other. Secondly, the projection values should be
directly comparable across structures. Note that the first
criterion comes from the study of Dali score function in
the previous section. The second criterion is imposed to
aid the design of a novel similarity function which will be

di i
A
l k

dj j
B
l k

Non-topological similarity between 2 proteinsFigure 3
Non-topological similarity between 2 proteins. Sequence ordering of the first protein is A-B-C and that of the second pro-
tein is A'-C'-B'.
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useful later. In this section we discuss a formulation to
optimally compute such projections.

To capture the notion of closeness we define the nearness
matrix  of a protein as the following nonlinear decreas-
ing function of the distance matrix:

where, di,j is the distance between ith and ith residues, dij =
||xi - xj||2. The parameter a governs the rate of decrease of
the nearness value.

Let f = [f1, ..., fn]T be the vector of projections of a protein

having n residues. We require that whenever ij is high,
|fi - fj| should be low. This can be directly translated as the

objective function:

.

However, this problem has a trivial solution, i.e., f = ce, e
= [1,..., 1]T ∈ �n. Instead, consider the problem:

which is same as: fT f.

However, this objective function has an unbounded solu-
tion. So, we fix the norm of f, to some constant value c.

For a given c, solving (4) is equivalent to finding the eigen-
vector corresponding to the maximum eigenvalue of ,
normalized to c2. This formulation essentially tries to keep
|fi + fj| high in addition to keeping |fi - fj| low, for i, j for

which ij is high. The optimal solution to (4), is the opti-

mally neighborhood preserving projection of a protein with
nearness matrix .

Given two proteins, A and B, consisting of m and n resi-
dues, the second criterion requires that the respective pro-
jections fA and fB be comparable. We use this criterion to

fix values for cA and cB. To do this, one can impose various
criteria. We require the mean squared distance of the pro-
jection values of two proteins, from the origin to be equal,

i.e.,

Thus, we have (cA)2 = m and (cB)2 = n. Our final optimiza-
tion problem for calculating comparable, optimally
neighborhood preserving projections becomes:

As noted earlier, this problem is equivalent to finding the
eigenvector corresponding to the largest eigenvalue of ,
a problem that can be solved in O(n2) time [25]. In the
next section, we give an alternative interpretation of this
formulation followed by a generalization.

0.1 k-mutually orthogonal projections
In the previous section, we have described a formulation
for computing projections of residues that optimally pre-
serve the neighborhoods. It turned out to be same as com-
puting the eigenvector corresponding to maximum
eigenvalue of the nearness matrix, and assigning it's com-
ponents to the corresponding residues.

A structural alignment is a 1–1 map between subsets of
residues of the 2 proteins, or equivalently, a 1–1 map
between subsets of basis directions of the space in which
the projection vectors are embedded. From the distance
matrix overlap formulation [3], we can also view a struc-
tural alignment as a 1–1 map from a subset of the basis of
one distance matrix to that of the other distance matrix.
Since, we use an invertible function to calculate the near-
ness matrices from distance matrices, the same formula-
tion holds true for nearness matrices as well. The only
difference being that, as intended, lower distances will
have more significant values.

From the spectral decomposition of square symmetric
matrices having full rank, we know that,

 where ζi is the ith eigenvector of  nor-

malized to 1. For convenience, arrange λis and ζis such

that λi ≥ λj if i <j.

If A and B are nearness matrices of two similar pro-
teins, they will have a common similar sub-matrix under
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a permutation of their bases. Considering only the two
sub-matrices, and only the first term on the right hand
side of the above equation, it is clear that the correspond-

ing sub-vectors of  and  will have similar values

under the same permutation of bases, as they are the same
eigenvectors of similar matrices.

Under the assumption that the eigenvector entries for
equivalenced residues are not significantly perturbed by
inclusion of other entries in the matrix (we will come back
to this later in the article), we can compare entries of the
first eigenvector for finding the best permutation (or
equivalences).

We make amendments for unequal number of residues in
the two proteins by normalizing the eigenvectors to the
number of residues in each protein. Explanation for the
choice of eigenvector corresponding to the maximum
eigenvalue can be given using the equation:

It can be seen that the error in reconstruction (η) of  is

minimized if the values of λjs on the RHS of eqn (6) are

low. So we arrive at the same formulation of the character-
ization as in eqn (5).

We can generalize the formulation by requiring k mutu-
ally orthogonal projections instead of just one. We are
looking for k vectors f1, · · · , fk, such that

In order to maintain the property of being comparable
across structures, we normalize all the eigenvectors to the
number of residues. Thus, each residue i of a protein is
now characterized by a k-component projection vector say

pi, calculated as pi(j) = , i = {1, · · · , n}, j = {1, · · · ,

k}. Experimental results on random matrices show that
about 20% and 40% error in incurred by choosing k to be
3 and 1 respectively. Empirically, it is seen that not much
accuracy is gained by chosing k greater than 3. In the next
section, we use this characterization of the residues to
define a similarity function between them.

A measure of similarity
The problem we encounter while defining a similarity
function using the characterization of the residues
obtained in the previous section is that the solution to eqn
(7) is not unique. It can be easily seen that if f is a normal-
ized eigenvector of a matrix, then so is -f. Thus the solu-
tions of eqn (7) for two proteins can not be compared
directly.

There can be many ways of taking care of this ambiguity
in representation. For example, we could have compared
the absolute values of the projections. However, this has
less discriminative power due to the loss of sign. Another
way is to consider all 2k combinations of ± fj, j = 1, · · · ,
k and choose the best. The characterization of residues in
the k-dimensional projection space, as derived the previ-
ous two sections can be compared in various ways. We
consider the norm of difference of projections of 2 resi-
dues, a measure of distance between them. Thus, we
define the similarity between residue i from protein A and
residue j from protein B as:

where T (threshold) is a parameter and pi(j) = , i = {1,

· · · , n}, j = {1, · · · , k}.

The most important feature of the above similarity meas-
ure is that it can score 2 residues one from each structure
based on purely structural properties (no information
about the protein sequence or secondary structural ele-
ments have been used). Secondly, this similarity measure
gives a similarity between 2 residues, one from each struc-
ture, as opposed to the typical ones which take 4 residues,
2 from each structure (e.g. Dali [3] and CE [8]). Such a
similarity function can be used to design very fast algo-
rithms, and is the key to the speed of Matchprot.

The above formulation works perfectly when there are no
extra residues (indels) in the two proteins. However, if
there are a large number of indels between the structures,
the projections of the residues participating in the align-
ment are likely to be disturbed by the extra residues,
thereby giving incorrect equivalences. We have also inves-
tigated the maximum percentage of indels that are toler-
ated. In the next section, we describe a method for finding
the optimal equivalences from the above derived similar-
ity function.

Finding optimal equivalences
Given an alignment Φ = {(il, jl)|1 ≤ l ≤ L}, and a scoring
function of the form s(il, jl), an obvious measure of good-
ness of Φ is:
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The problem of finding alignment that maximizes the
objective function (9), can be posed as an assignment
problem and solved exactly. However, the solution will be
slow and will not have any relation to the protein
sequence.

On the other hand, one can compute a structural align-
ment between two protein structures by globally aligning
the sequences of the two proteins using s(i, j) as the score
function. However, this will not capture the non-topolog-
ical similarities between the two proteins.

We propose to greedily pick common subsequences with
high structural similarity. The problem can be posed as
that of finding two subsequences which have maximum
similarity with the pairwise similarity score given by eqn
(8). This is same as the Local Alignment problem [26] and
can be solved efficiently using dynamic programming. We
call such pairs of subsequences as High Scoring Fragment
Pairs (HSFPs). The algorithm operates in 2 stages:

(1) Calculation of the local alignment matrix with similar-
ity score given by equation 4.

(2) Iterative determination of HSFPs and their elimina-
tion from the local alignment matrix.

The local alignment matrix L, is computed as:

where, g is the gap penalty provided as a parameter to the
program. The highest scoring entry (corresponding to
highest scoring fragment pair) is detected and traced back
to get the highest scoring fragment. The indices corre-
sponding to the residues participating in the current align-
ment are eliminated from the matrix and the above step is
repeated to get the next highest scoring fragment. This is
stopped when there are no more positive scoring frag-
ments. The steps are given in Algorithm 1.

Algorithm 1 Finding Equivalences

1: Alignment ← φ.

2: Compute highest = maxi,j Li,j.

3: Compute (u, v) = arg maxi,j Li,j. {u and v are the residues
indices}

4: while highest > 0 do

5: Alignment ← Alignment ∪ traceback (u, v) {traceback
returns the alignment obtained by tracing back from it's
argument}

6: Mark the rows and columns of L corresponding to the
residues returned in the current alignment done.

7: Compute highest = maxi,j Li,j such that i or j is not marked
done.

8: Compute (u, v) = arg maxi,j Li,j such that i or j is not
marked done.

9: end while

Finally, the fragment pairs found above are concatenated
to get the whole alignment. To get the equivalences, all the
residues aligned to gaps are discarded, and matching resi-
due pairs are taken as equivalenced residues.

Computation of the (m + 1) × (n + 1) entries of the local
alignment matrix takes O(mn) time. Detection of align-
ment fragments is done by searching through the (m + 1)
× (n + 1) matrix for at most min(m, n) times, which takes
O(min(m2n, mn2) time. This computation is repeated for
2k times, thus making the overall time complexity of the
algorithm to be O(2kmax(m3, n3)). For the current algo-
rithm, k is taken to be very small thus making it O(n3). At
any point of time, the program stores a constant number
of m × m, n × n and m × n matrices. Thus, it consumes
O(max(m2, n2)) memory space.

Superposition, RMSD and statistical significance
From the equivalences, we can compute the rigid transfor-
mation of one structure into the other that minimizes the
RMSD between the matching residues, using the method
by Horn [27]. The optimal transformation can then be
applied to the appropriate structure to compute the super-
position. Once the optimal superposition has been com-
puted, the similarity score is recomputed as s(i, j) = 5.0 -
||Xi - Yj||. The final equivalences are calculated using Algo-
rithm 1. This post-processing helps to keep the total
RMSD low and also corrects some minor shifts in equiva-
lences. We compute the Dali Z-score [28] to give a meas-
ure of the statistical significance of the alignment.
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