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Dissection of intercellular communication using the
transcriptome-based framework ICELLNET
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Vassili Soumelis 1,2,3,6✉

Cell-to-cell communication can be inferred from ligand–receptor expression in cell tran-

scriptomic datasets. However, important challenges remain: global integration of cell-to-cell

communication; biological interpretation; and application to individual cell population tran-

scriptomic profiles. We develop ICELLNET, a transcriptomic-based framework integrating: 1)

an original expert-curated database of ligand–receptor interactions accounting for multiple

subunits expression; 2) quantification of communication scores; 3) the possibility to connect

a cell population of interest with 31 reference human cell types; and 4) three visualization

modes to facilitate biological interpretation. We apply ICELLNET to three datasets generated

through RNA-seq, single-cell RNA-seq, and microarray. ICELLNET reveals autocrine IL-10

control of human dendritic cell communication with up to 12 cell types. Four of them (T cells,

keratinocytes, neutrophils, pDC) are further tested and experimentally validated. In summary,

ICELLNET is a global, versatile, biologically validated, and easy-to-use framework to dissect

cell communication from individual or multiple cell-based transcriptomic profiles.
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Cell-to-cell communication is at the basis of the higher
order organization observed in tissues, organs, and
organisms, at steady-state and in response to stress. It

involves a messenger or sender cell, which transmits information
signals to a receiving or target cell. Information is generally coded
in the form of a chemical molecule that is sensed by the target cell
through a cognate receptor. Multiple cells or cell types commu-
nicating with each other form cell communication networks.

In mammalian organisms, endocrine communication involves
cells that may be at very distant anatomical sites. However, cell
communication also takes place locally through cell-to-cell con-
tacts, or through inflammatory molecules. Cytokines and other
mediators can be involved in distant as well as local commu-
nication1–3. Hence, when deciphering cell-to-cell communication,
one should account for potential signals coming both from spa-
tially proximal and distal cells.

Most studies in the past decades have focused on a limited
number of communication molecules in a given anatomical site
or physiological process. The availability of large-scale tran-
scriptomic datasets from several cell types, tissue locations,
and cell activation states, opened the possibility of reconstructing
cell-to-cell interactions based on the expression of specific
ligand–receptor pairs on sender and target cells, respectively.
Many of them exploit single-cell RNA-seq datasets to
infer communication between groups of cells within the same
dataset4–7. Despite leading to interesting and often innovative
hypotheses4,6,8, these methods do not integrate putative signals
that may come from more distant cells. Also, they cannot be
applied to bulk transcriptomic data derived from a given cell
population. Such datasets are numerous in public databases, and
can be a source of novel insights into how each cell type may send
or receive communication signals.

Another important aspect when inferring cell-to-cell commu-
nication is the use of databases of ligand–receptor interactions.
Some are very broad with over 2000 ligand–receptor pairs9, but
lack systematic manual or expert curation, which may impact the
quality and biological relevance of the annotation. Others include
lower numbers of ligand–receptor pairs and provide manually
curated information from the literature4,10, without necessarily
providing systematic combinatorial rules for the association of
protein subunits into multimeric ligands or receptors.

The last point relates to the granularity that is structuring the
biological information into families and subfamilies of function-
ally and structurally related molecules. We only found one tool
that provides a classification into four families of communication
molecules5, while suffering from other limitations in particular
the lack of manual curation.

In this study we develop ICELLNET, a versatile computational
framework to infer cell-to-cell communication from a wide range
of bulk and single-cell transcriptomic datasets. Each family of
communication molecules is expert curated and organized into
biologically relevant sub-families. ICELLNET offers an array of
visualization tools in order to facilitate biological interpretation
and discoveries. We provide applications to public datasets gen-
erated using different technologies and our own original tran-
scriptomic datasets, in non-immune (tumor fibroblasts) and
immune cell types. Experimental validation of ICELLNET-
derived predictions demonstrated IL-10 control of human den-
dritic cell communication.

Results
Expert-curated database of ligand–receptor interactions. In
order to globally reconstruct cell communication networks, we
curated a comprehensive database of ligand–receptor interactions
from the literature3,11,12 and public databases10,13. An expert

manual curation was performed based on a rigorous literature
screening of original articles, applying the following criteria: 1)
robustness of the findings, 2) consistency with international
classifications and nomenclature, 3) experimental validation of
the functionality of the ligand–receptor interaction (see Meth-
ods). We also used consensus reviews from leaders in the field, in
particular for cytokines3,14–16. This helped solving controversies
on how to classify some molecules, which have features of dif-
ferent molecular families. We did not include putative interac-
tions based on protein–protein interaction predictions, as it is
done in some other databases9. This led to the integration of 380
ligand–receptor interactions into the ICELLNET database (Sup-
plementary Data 1). Whenever relevant, we took into account the
multiple subunits of the ligands and the receptors (Fig. 1a).
Interactions were classified into 6 major families of commu-
nication molecules, with a strong emphasis on inflammatory and
immune processes: Growth factors, Cytokines, Chemokines,
Immune Checkpoints, Notch signaling, and Antigen binding
(Fig. 1b and Supplementary Data 1). Other families such as
hormones or adhesion molecules were more scarcely represented.
In order to simplify the subsequent graphical visualization, these
were grouped as other in our current classification (Fig. 1b and
Supplementary Data 1).

Cytokine–receptor pairs were mapped in an exhaustive
manner, by exploiting a series of reference articles and consensus
classifications. They represent 50% of the total interactions
included in the database (194 interactions), and were
further classified into 7 sub-families according to structural
protein motifs: type 1 cytokines, type 2 cytokines, IL-1
family, IL-17 family, TNF family, TGF-ß family, and RTK
cytokines3,14–16 (Fig. 1c).

This database is integrating information on both multiple
subunits of ligands and receptors, and a classification into
molecular families/subfamilies.

Development of a computational pipeline to dissect inter-
cellular communication. In the ICELLNET framework, we
developed an automatized tool in R script to infer communica-
tion between multiple cell types by integrating: 1) prior knowl-
edge on ligand–receptor interactions (Fig. 1); 2) computation of a
communication score between pairs of cells based on their
transcriptomic profiles, and; 3) several visualization modes to
guide results interpretation. Quantification of intercellular com-
munication was achieved by scoring the intensity of each
ligand–receptor interaction between two cell types from their
expression profiles (Fig. 2).

From each transcriptomic profile, all genes or only differen-
tially expressed genes could be used, and no filtering threshold
was applied to gene expression. Taking advantage of the
ICELLNET database, the genes coding for ligands/receptors were
selected from all 380 interactions to compute the score, but it is
also possible to restrict the database to specific families of
molecules, depending on the biological question.

A unique feature and strength of ICELLNET is its ability to
infer cell-to-cell communication even from an individual cell
population-based transcriptome of interest (the “central cell”).
The user should define this cell type of interest, and provide its
transcriptional profile, which for example may be selected from
different primary cell subsets, or from the same cell type cultured
in different biological conditions (Fig. 2 top-left). ICELLNET
separately considers other cell types with known transcriptomic
profiles (hereafter called « partner cells ») that can connect to the
central cell. These can be cell types coming from the same dataset
as the central cell, or from any other transcriptomic dataset. The
ICELLNET pipeline has integrated reference transcriptomic
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profiles by using the Human Primary Cell Atlas17,18. This public
dataset includes transcriptomic profiles of 31 human cell types
including immune cells, stromal cells, neural cells, and tissue-
specific cell types, all generated with the same Affymetrix
technology (Fig. 2 top-right). Human Primary Cell Atlas has
been downloaded and added to ICELLNET framework, in order
to be used as reference transcriptomic profiles of partner cell
types (Supplementary Data 2). The user always has the possibility
of providing original transcriptional profiles for central and
partner cells, or to use the reference transcriptomic profiles
included in ICELLNET R package to represent putative « partner
» cells.

Establishment of a score to assess the communication between
cells. From the transcriptomic profiles, we selected the genes
coding for the ligands and the receptors in our database. We
designed the tool to enable the user to focus on the ligands and/or
receptors that are differentially expressed between conditions of
study, or to use the entire ligand–receptor database to compute
the communication score.

Since cell-to-cell communication is directional, we considered
ligand expression from the central cell, and receptor expression
from the partner cells in order to assess outward communication.
Conversely, we then selected receptor expression from the central
cell, and ligand expression from partner cells in order to assess
inward communication (Fig. 2 middle). For each gene, expression
levels were scaled by maximum of gene expression in the dataset,
in order to avoid a communication score predominantly driven
by highly expressed genes. Indeed, bioactivity of communication
molecules varies a lot. Some cytokines, such as IL-12 and IL-4, are
very bioactive at low concentrations, and often expressed at very

low levels both in transcript and protein. Conversely, many
chemokines are produced at much higher levels, without
necessarily having a higher bioactivity. Not scaling the data
before inferring a communication score would systematically
favor a few highly expressed molecules, and would not allow
detecting the contribution of important molecules expressed at
much lower levels. In the ICELLNET framework, quantification
of intercellular communication consists of scoring the intensity of
each ligand–receptor interaction between two cell types with
known expression profiles. Whenever relevant, we took into
account multiple ligand subunits, or receptor chains, using logical
rules to impose their co-expression in order to consider
functionality. The score of an individual ligand–receptor inter-
action was computed as the product of their expression levels by
the respective source (central) and target (partner) cell. Whenever
a communication molecule (ligand or receptor or both) was not
expressed by a cell, the score of this particular interaction was set
to zero. Individual scores were then combined into a global
metric assessing the overall exchange of information between the
cell types of interest (Fig. 2 middle), defining a global
communication score. ICELLNET provides a matrix summariz-
ing all global communication scores as an output of these
analytical steps.

ICELLNET offers different graphical representations allowing
multiple layers of interpretation. ICELLNET generates a large
quantity of data and scores, which are complex to interpret and
analyze. In order to facilitate hypothesis generation, three gra-
phical representations were implemented to help visualize and
interpret the results (Fig. 2 bottom). The first representation
allows the visualization of intercellular communication networks
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Fig. 1 Structure of the ligand–receptor database. a Extract of the ligand–receptor database. The database is structured as the following scheme: the 4 first
columns correspond to gene symbol of each subunit of interacting ligand and receptor, the next two columns state the classification into families and/or
subfamilies of molecules, and the last column gives the source for manual curation (PubMed ID). b Histogram displaying the number of interactions
classified in each family of communication molecules included in the database (antigen binding, checkpoint, chemokine, cytokine, growth factor, notch
signaling). c Histogram displaying the number of interactions classified in the different defined subfamilies of cytokines: interleukin 1 family, interleukin 17
family, receptor tyrosine kinase (RTK) family, transforming growth factor beta (TGF) family, tumor necrosis factor family (TNF), type 1 cytokine family, and
type 2 cytokine family, and unclassified cytokines.
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in directed connectivity maps. In these graphs, nodes represent
cell types, the width of the edges connecting two cell types is
proportional to their global communication score and the arrows
indicate the direction of communication. The second visualiza-
tion mode breaks down the global scores into the contribution of
specific molecular families through a barplot representation. This
allows the identification of patterns of co-expressed molecules

from the same family, potentially contributing to coordinated
biological functions. We implemented statistical analyses of the
scores (see Methods) to evaluate the robustness of the differences
between scores. The resulting p-values can be visualized as an
additional heatmap. The third representation displays the highest
contributing ligand–receptor pairs to the communication score
within a given channel in a balloon plot. This enables the
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identification of specific interactions that may drive the global
intercellular communication. Thus, the ICELLNET framework is
a powerful tool to assess intercellular communication with dif-
ferent visualization modes that can be helpful to dissect under-
lying mechanisms and extend biological knowledge and
understanding.

Application of ICELLNET to study human breast cancer-
associated fibroblasts. Cancer-associated fibroblasts (CAFs) are
stromal cells localized in the tumor microenvironment that are
known to enhance tumor phenotypes, notably cancer cell pro-
liferation, and inflammation. Recently, four subsets of CAFs have
been identified and characterized in the context of previously
untreated Luminal and Triple Negative Breast Cancer (TNBC)19.
Notably, two subsets of CAFs named CAF-S1 and CAF-S4 spe-
cifically accumulated in TNBC microenvironment and CAF-S1
was associated with an immunosuppressive microenvironment.
This study raised important questions about the regulatory
mechanisms involved, in particular the role of cell-to-cell com-
munication. Using the available transcriptional profiles of CAF-
S1 and CAF-S4 in TNBC (Fig. 3a), we applied the ICELLNET
pipeline to reconstruct the intercellular communication network
with 14 other cell types potentially localized in the tumor
microenvironment (TME) (Fig. 3b and Supplementary Data 3).
The partner cells were selected from Human Primary Cell Atlas
and included innate immune cells (monocytes, macrophages,
pDC, DC1, DC2, NK cells, neutrophils), adaptive immune cells
(CD4+ T cells, CD8+ T cells, Tregs, B cells), epithelial and stomal
cells (fibroblasts and endothelial cells). In order to assess the
global intercellular communication, we first used the network
graphical visualization. This strongly suggested that CAF-S1 has a
greater communication potential than CAF-S4 (Fig. 3b) to
interact with other TME components. The rescaled commu-
nication scores were higher for CAF-S1 as compared to CAF-S4,
and the differences were statistically significant for epithelial cells
(score CAF S1 > Epith= 6, score CAF-S4 > Epith= 3, p value <
0.1), endothelial cells (score CAF-S1 > Endoth= 7, score CAF-S4
> Endoth= 4, p value < 0.1), plasmacytoid dendritic cells (score
CAF-S1 > pDC= 6, score CAF-S4 > pDC= 4, p value < 0.1) and
B cells (score CAF-S1 > B cells= 3, score CAF-S4 > B cells= 1,
p value < 0.1) (Fig. 3b, c and Supplementary Data 3).

CAF-S4 uses specific communication channels to interact with
the TME components. We focused on the biological composition
of the score, to identify families of molecules highly involved in
CAFs communication with the selected cells. We selected 4
partner cell types: epithelial cells, fibroblasts, Tregs and B cells.
Using the barplot representation, we looked for differences
between CAF-S1 and CAF-S4 in terms of genes coding for
families of communication molecules. We found that genes
coding for communication molecules inducing Notch signaling
were specifically expressed by CAF-S4 to communicate with other
cells (Fig. 3c). Looking at individual communication interactions

between CAF subsets and Tregs demonstrated that gene coding
for JAG1 protein was only expressed by CAF-S4 to interact with
NOTCH receptors (NOTCH1 and NOTCH2 genes expressed),
and thus potentially having a role in activating the Notch sig-
naling pathway (Fig. 3d and Supplementary Data 3). For both
CAF subsets, the barplot representation indicated that
cytokines–receptors interactions were highly contributing to the
global communication scores compared to other families of
molecules (Fig. 3c). This observation led us to focus on cytokine-
mediated communication using the ICELLNET pipeline (Fig. 3e).
By considering only cytokine–receptor interactions, the CAFs
appear to communicate more with other fibroblasts compared to
other cell types with a significant p-value (Fig. 3e, Supplementary
Fig. 1a). Also, this approach highlighted that RTK cytokines, and
notably PDGFB coding for PDGF, were preferentially expressed
by CAF-S4 compared to CAF-S1 (Fig. 3e, Supplementary Fig. 1b
and Supplementary Data 3). We also applied ICELLNET pipeline
to study inward communication between the partner cells and the
CAF subsets, which revealed no difference between CAF-S1 and
CAF-S4 in term of communication score intensities but also in
terms of the families of molecules involved in communication
(Supplementary Fig. 2). Thus, the ICELLNET framework allowed
us to identify specific communication channels revealing poten-
tial interactions between CAF-S4 and TME components.

Lupus nephritis cell–cell communication network inferred
from single-cell RNA-seq datasets using ICELLNET. Single-cell
technologies are now largely employed in various biological fields
to better characterize immune cell diversity and cell phenotypes.
They also offer insightful datasets to reconstruct cell–cell inter-
actions between different cell populations from the same sample
or tissue. We applied ICELLNET to a published single-cell dataset
of immune cells from lupus nephritis patients20. This dataset
included several immune cell subpopulations of T and B lym-
phocytes, but also natural killer cells, macrophages, and dendritic
cell populations20.We represented those cells into a Uniform
Manifold Approximation and Projection (UMAP) (Fig. 4a). We
decided to focus on the potential communication between the
conventional dendritic cell (cDC) cluster (CM3) and two clusters
of T cells, CT0a and CT3b, which respectively refer to effector
memory CD4+ T cells and TFH-like cells according to the ori-
ginal study20 (Fig. 4b). Because of sparsity and drop-out that are
inherent to single-cell data, we computed the average gene
expression profile for each cluster. Communication scores were
then computed with cluster’s mean expression profiles as input.
The communication score between CM3 cluster and CT3b was
higher than the score from CM3 to CT0a cluster (score CM3 >
CT3b= 1527, score CM3 > CT0a= 1123) (Fig. 4b and Supple-
mentary Data 4). In particular, it showed higher communication
potential for checkpoints, chemokine, and growth factors
(Fig. 4b). From this, we highlighted specific interactions that most
differed between the two communication scores, such as CD86/
CD28 (92 vs 40 for CM3 > CT3b and CM3 > CT0a, respectively),
CD86/CTLA4 (92 vs 14, respectively), PDCD1LG2/PDCD1 (72 vs

Fig. 2 ICELLNET pipeline to study intercellular communication from cell transcriptional profiles. (top) Selection of transcriptomic profile of cell
population of interest (central cell) and of other cells used to infer communication with among a public dataset (partner cells) (Supplementary Data 2).
(middle) Genes corresponding to ligands/receptors included in the database are selected, scaled by maximum of gene expression for each gene, and used
to compute a communication score between two cell types. (bottom) Graphical layers used to dissect intercellular communication scores between the
central cell (CC) and partner cells (Macroph: macrophage, Fblast: fibroblast, Epith: epithelial cell, B cell, Treg, NK: natural killer cell): global communication
network intensity assessment, contribution of each family or subfamily of molecules to the communication scores, statistical difference assessment of the
communication scores from the same central cell to the different partner cell types, and plots of specific interactions most contributing to communication
scores. Some schematic art pieces were used and modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License.
http://smart.servier.com/.
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19), CCL22/CCR4 (100 vs 39), or VEGFA/FLT1 (21 vs 0) (Fig. 4c
and Supplementary Data 4).

We then assessed the robustness of the communication scores
by subsampling the clusters of interest (either CM3 cluster or
CT0a and CT3b clusters). We randomly selected cells (number
defined by the size of the clusters) from the clusters and
computed again communication scores to assess variability
(Fig. 4d). We observed that the variability of the communication
score (measured using standard deviation) was anti-correlated

with the percentage of cells used from the cluster, ranging from
37 and 59 (value of SD, for CT0a and CT3b communication,
respectively) for 90% of the cluster cell to 146 and 215 (value of
SD, for CT0a and CT3b communication, respectively) for 10% for
CM3 subsampling (Fig. 4d and Supplementary Data 4). Similar
results were observed for CT0a and CT3b cluster subsampling.
This demonstrated the relevance of using the average of cluster
gene expression to assess communication, rather than
unique cells.
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We also used the Human Primary Cell Atlas transcriptomic
profiles of cDC to compute the communication scores between
dendritic cells and the same T-cell clusters from the lupus
nephritis dataset (CT0a and CT3b) (Supplementary Fig. 3a). Even
if the cDC transcriptomic profile came from a different
technology, it led to similar communication scores when
comparing with the ones computed exclusively from the original
single cell dataset (Fig. 4b, c, and Supplementary Fig. 3). The 122
ligand–receptor pairs contributing to the communication score in
the single-cell dataset were also found using Human Primary Cell
Atlas dataset (Supplementary Fig. 3c). The slight differences can
be explained by the fact that the cells were not in the same
biological state but also some genes were not captured with the
Affymetrix technology. Nevertheless, it demonstrated that the
Human Primary Cell Atlas can be very valuable to infer
communication potential with a cell type that is not represented
in a studied dataset.

Application of ICELLNET to in vitro-generated immune cell
states. We then focused on a controlled in vitro system to assess
whether ICELLNET would be able to predict cell–cell commu-
nication. We addressed the communication and underlying
mechanisms in resting and activated DC. We generated an ori-
ginal microarray dataset, and applied ICELLNET to assess
intercellular communication. LPS-activated human monocyte-
derived DC produce two important autocrine cytokines, TNF and
IL-10, which play a major role in regulating inflammation. We
asked whether this could be mediated by modulating DC com-
munication with partner cells. To this end, LPS-activated DC
were cultured in the presence and absence of blocking antibodies
(Abs) to the TNF and IL-10 receptors (aTNFR and aIL-10R). No
effect on cell viability was observed (Supplementary Fig. 4a). The
most prominent effect of LPS on DC hallmark maturation mar-
kers was observed at the mRNA level in the time frame of 4 to 8 h
following activation21. We performed large-scale microarray
analysis after 4 and 8 h of DC culture with LPS, with and without
blocking Abs to TNF and IL-10 receptors (Fig. 5a).

Despite extensive studies of both TNF and IL-10 in the context
of innate immunity, their different contribution to DC inter-
cellular communication could not be predicted a priori at this
systems level. We applied ICELLNET to reconstruct the
intercellular networks between DCs and putative target cells.
The network representation demonstrated an increase of the
global communication score in all 12 channels, when comparing
8-hours LPS-activated DC to resting (medium) DC (Fig. 5b).
Importantly, these maps revealed that blocking the IL-10 loop
determined the largest amplification of DC communication with

all 12 cellular targets, while blocking the TNF loop in LPS-
activated DCs had a negligible effect on the global communica-
tion score (Fig. 5b, Supplementary Fig. 4b and Supplementary
Data 5).

IL-10 controls an intercellular communication module in LPS-
activated dendritic cells. We compared the transcriptomic pro-
files of each condition (aTNFR and aIL-10R) to the LPS-alone
condition to extract the differentially expressed genes (DEG)
(Supplementary Data 5). We then screened the IL-10 and TNF
DEG to identify ligands and receptors included in the database.
We were able to extract 27 ligands and 23 receptors which were
differentially regulated from the aIL-10R condition, while there
were only 12 ligands and 10 receptors differentially regulated
from the aTNFR condition (Fig. 5c).

ICELLNET barplots suggested that cytokines were driving the
increase in the communication score when blocking IL-10R. We
looked at the subfamilies of cytokines to precisely identify the key
communication channels (Supplementary Fig. 4b) Type 1 and
TNF subfamilies were increased in aIL-10R condition compared
to others. This was confirmed by individual channel commu-
nication scores (Fig. 5d). To confirm the hypothesis that IL-10
controls cytokine-mediated DC communication, we selected four
important immunoregulatory molecules from the IL-6- and IL-
12-families, and further validated expression at the protein level
in 24 h culture DC supernatants using cytometric bead array
(CBA) and ELISA (Fig. 5e).

Experimental validation of multiple IL-10-dependent com-
munication channels. To assess communication efficiency, i.e.,
how increased connectivity translates into functional changes in
target cells, we turned to experimental validation of predicted
communication channels using immunological assays adapted to
the output response of each cell type. Due to its physiopatholo-
gical relevance, we first investigated the DC-T cell axis through
co-culture experiments of T cells with DCs treated by LPS with or
without TNFR and IL-10R blocking antibodies (Fig. 6). We found
that naive CD4+ T cells, when co-cultured with LPS-DC in the
absence of the IL-10 loop, globally increased and shifted their
pattern of cytokine secretion, compared to LPS-DCs, while
blocking the TNF loop had almost no effect (Fig. 6a). Similar
results were obtained with memory T cells (Fig. 6b).

Since the IL-10/IL-10R pathway may have a direct effect on T
helper cells during the differentiation process, we verified that the
observed T helper polarization was indeed due to the IL-10 loop
blockade in the DCs, and not due to a direct effect on T cells

Fig. 3 Dissection of intercellular communication between Triple-Negative breast cancer infiltrating CAF subsets and the tumor microenvironment.
a Workflow of the analysis. b Connectivity maps describing outward communication from cancer associated fibroblasts CAF-S1 (n= 6 biologically
independent samples) and CAF-S4 (n= 3 biologically independent samples) subsets to primary cells (Supplementary Data 2). The CAF subsets are
considered as central cells and colored in gray. Primary cells are considered as partner cells (DC1 and DC2: conventional dendritic cell 1 and 2, pDC:
plasmacytoid dendritic cell, Macroph: macrophage, Mono: monocyte, Endoth: endothelial cell, Fblast_B: breast fibroblast, Epith: epithelial cell, B cell, Treg,
CD8 T cell, CD4 T cell, Neutrop: neutrophil, and NK: natural killer cell) and are colored depending on the cell compartment (green: stroma, orange: innate,
blue: adaptive, pink: epithelium). The width of the edges corresponds to a global score combining the intensity of all the individual ligand/receptor
interactions. A scale ranging from 1 to 10, corresponding to minimum and maximum communication scores, is shown in the legend. A selection of
normalized scores is written directly on the network. c Barplot of communication score with contribution by families of communication molecules between
CAF subsets (n= 6 biologically independent samples for CAF-S1, n= 3 biologically independent samples for CAF-S4) and a selection of partner cells.
Significant differences are shown on the graph (two-sided wilcoxon test, and p values are adjusted with Benjamin–Hochberg method, *p-value≤ 0.1).
d Balloon plot of individual interaction scores between CAF subsets and Tregs. Only interactions with a score contribution above 10 to the score are
displayed for clarity purpose. Two biologically interesting communication channels were highlighted by red boxes. e Barplot of communication score with
contribution restricted to cytokines subfamilies between CAF subsets (n= 6 biologically independent samples for CAF-S1, n= 3 biologically independent
samples for CAF-S4) and a selection of partner cells. Some schematic art pieces were used and modified from Servier Medical Art, licensed under a
Creative Common Attribution 3.0 Generic License. http://smart.servier.com/ (a).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21244-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1089 | https://doi.org/10.1038/s41467-021-21244-x | www.nature.com/naturecommunications 7

http://smart.servier.com/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Supplementary Fig. 5a). It is possible that residual IL-10R
blocking antibodies could have acted directly on T cells during
DC-T co-culture. By adding IL-10R antibodies during DC-T co-
culture (not only during DC activation) we demonstrated that
any IL-10R antibodies in this setting would not have any direct
effect on T-cell polarization.

Among the factors explaining the secretion profile of T cells
determined by LPS+ aIL-10R-DCs, we observed a remarkable
emergence of Th17 cytokines (Fig. 6c), in line with murine
studies22,23. Strikingly, IL-9 secretion was also increased (Fig. 6c),
and produced by a T-cell population distinct from the Th17 cells
producing IL-17A alone or co-expressed with IL-9 and IFN-g
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(Fig. 6d). This provides the demonstration that LPS-activated
DCs, in the absence of an IL-10 loop, determine Th17 and Th9
polarization in humans, both of which participate in host defense
and autoimmunity24,25.

In order to validate the model-based hypothesis that there is
increased communication between DC and multiple cell types, we
considered three additional types of target cells: keratinocytes,
plasmacytoid DCs (pDC), and neutrophils. Similar to T cells, these
cell types play key roles in the inflammatory microenvironment and
had an increased global communication score. Target cells were
cultured with DC-derived supernatants, and their activation
assessed by qRT-PCR or FACS. LPS-DC supernatant induced
marginal keratinocyte activation, as assessed by the expression of
TNF, IL-1β and this was not affected by aTNFR (Fig. 7a). However,
blocking the IL-10 loop dramatically increased both factors (Fig. 7a),
validating a potent DC to keratinocyte communication controlled
by IL-10. This extends DC-induced keratinocyte activation26,27 to
the context of bacterial infection.

The DC-pDC communication channel was also controlled by
IL-10, since LPS+ aIL-10R-DC supernatants activated pDCs (as

assessed by CD86, HLA-DR, and ICOSL surface expression), in
comparison to LPS-DCs (Fig. 7b). DC-induced activation of pDC
and keratinocytes was not due to the presence of residual aIL-10R
(Supplementary Fig. 5b, c). DC-pDC crosstalk was suggested to
be important in antiviral28, antibacterial29, and antitumor30

immune responses. Through our systems approach, we have
shown that IL-10 controls DC-pDC connectivity.

Neutrophils contribute to DC migration to infection sites and
to their subsequent activation31,32. Reciprocally, it was proposed
that DCs can promote neutrophil survival33. LPS-DC supernatant
induced only a mild activation of neutrophils (as evaluated by
rapid upregulation of CD11b with concomitant downregulation
of CD62L), while LPS+ aIL-10R-DC supernatants led to a strong
activation of neutrophils (Fig. 7c), establishing an IL-10 loop
control of DC-neutrophils communication.

For all the abovementioned communication channels, we
aimed at getting further mechanistic insight. First, we performed
control experiments using exogenous LPS that formally excluded
any direct effect of LPS at the concentrations found in the DC
supernatants (Supplementary Fig. 5d). We then considered
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= 9 or n= 6 biologically independent samples depending on the conditions) (c) cultured with supernatant (diluted 1:100) of the indicated DC for 1 h.
Blocking antibodies for the cytokines GCSF, GM-CSF, TNF, and IL-12 (for pDC) or IL-6 (neutrophils) were added to LPS+ aIL-10R-DC supernatant for 1 h
incubation before culture. Each biological replicate comprised independent DC donor paired to independent pDCs/neutrophils donor. Data are represented
as mean values ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001 (two-sided paired t-test without correction). d For each target cell, we reduced the different
activation markers to a single parameter normalized between 0 (Ø) and 1 (max) in the rectangles. The value 0 corresponds to the activation level induced
by supernatants from untreated DC, while 1 corresponds to the maximum activation level from all the observed conditions. These experimentally validated
activation scores were in qualitative agreement with the ICELLNET communication scores between DC and the target cells, represented by the width of the
edges. Some schematic art pieces were used and modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License.
http://smart.servier.com/ (a, b, c).
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ligand–receptor interactions showing high intensity, and thus
more likely to mediate cellular crosstalk as observed with the
LPS+ aIL-10R-DC supernatants (Supplementary Data 6). We
blocked, in each DC communication channel, four of the ligands
known as potential activators of the target cell type: GCSF, GM-
CSF, IL-6, and TNF for neutrophils, IL-19, IL-36 gamma, OSM
and TNF for keratinocytes, and G-CSF, GM-CSF, TNF and IL-12
for pDCs. Importantly, blocking TNF alone in the LPS+ aIL-
10R-DC supernatant was sufficient to inhibit keratinocyte, pDC
and neutrophil activation (Fig. 7a–c). By comparing the predicted
communication intensities with a global score describing the
activation level of keratinocytes, pDC and neutrophils, we
observed a qualitative agreement (Fig. 7d), demonstrating
increased communication efficiency. In all cases, the target cells
were most activated in LPS+ aIL10R condition.

Discussion
The majority of studies which aim to reconstruct intercellular
communication from transcriptomic datasets integrate prior
knowledge in the form of a ligand–receptor interaction database.
This provides a straightforward manner to infer communication
when a match is identified between a ligand and a cognate
receptor for two respective cell types. The largest of such data-
bases9 integrated over 2500 ligand–receptor pairs through lit-
erature mining and computational analysis, and has been
exploited in multiple computational tools for predicting cell-to-
cell communication5,8,34,35. However, this approach lacks
experimental validation of predicted ligand–receptor interactions,
and it does not take into account the different subunits of ligands
or receptors. With ICELLNET, we have developed a fully
manually curated database, combining biological relevance, ease
of use, and experimental validation. Except for one study5,
ICELLNET is the only database offering a classification of pre-
dicted interactions into biological families. Similar to CellPho-
neDB10, ICELLNET takes into account the multiple subunits of
ligands and receptors, by introducing logical rules for co-
expression of protein subunits. A systematic comparison of
cytokine interactions revealed 14 interactions included in
ICELLNET but not in CellPhoneDB, such as MIF/CXCR2 and
MIF/CXCR436. Although ICELLNET includes a relatively small
number of interactions compared to other existing databases, it is
very specific and exhaustive for cytokine interactions, and will in
time be extended to all chemokine and checkpoint interactions,
thus providing a unique resource to study intercellular commu-
nication within the immune system.

To make ICELLNET a valuable resource, we have established a
strategy to keep the database updated and integrate missing
knowledge. A significant number of interactions have been estab-
lished in the past 20 years, but there are still receptors without
known ligands, such as DR6 (TNFRSF21), RELT, TROY and NGFR
from TNF receptor family37, and ligands without known receptors
such as IL17D16. New receptors for existing ligand–receptor pairs
can also be uncovered using this approach. For example, even
though it was already known that IL34 and M-CSF could separately
activate M-CSFR38 it was then described that IL34/M-CSF het-
erodimer was also capable of activating M-CSFR39. We will apply a
PubMed alert strategy to cover all new interactions that could be
described on these pre-identified ligand and/or receptor partners.

Existing tools infer communication between cells from single-
cell RNA-seq datasets4,5,7. We have designed ICELLNET as a
versatile tool, which can be applied to bulk cell profiles (Affy-
metrix or RNA-seq) widely available in public databases, but also
to fully documented single-cell RNA-seq datasets to infer com-
munication between clusters or groups of cells. This could be also
easily adapted to other types of data such as flow cytometry data.

By using the Human Primary Cell Atlas as a reference for tran-
scriptomic profiles17,18, ICELLNET allows us to integrate cell
communication partners (sender or receiver) not included in a
given original experimental dataset. We identified the Human
Primary Cell Atlas as a particularly suitable resource, as it inte-
grates transcriptional profiles of over thirty human primary cell
types generated with the same Affymetrix platform18. While
previous applications of this atlas enabled the identification of
specific tissue-related genes40,41, we developed an original use for
this resource to simulate cell cross-talks in diverse micro-
environments. In addition, ICELLNET can accommodate other
original RNA-seq datasets of cell populations42,43 as reference
profiles to infer intercellular communication. Hence, ICELLNET
is a flexible tool, which can be easily adapted depending on the
biological question, by offering the possibility to select commu-
nication molecules families and cell types of interest.

Interesting approaches that integrate downstream signaling
pathways and target gene expression have been explored as a
surrogate of an effective communication7,44. Even if very relevant,
these approaches can lead to false positive and false negative
predictions, the frequency of which is almost impossible to pre-
dict. Redundancy and promiscuity in signaling pathways can lead
to false positive results, for example due to co-expressed receptors
triggering the same canonical pathway. Conversely, functional
interactions, due to the possible presence of numerous commu-
nication molecules targeting the same cell, may perturb the
downstream canonical pathways, leading the false negative
results, i.e., an effect not attributed to a given ligand–receptor
interaction, when such interaction effectively occurs. We have
previously established the multimodality in interactions between
two stimuli, which makes their prediction almost impossible
given the current state of knowledge in downstream signaling
pathways45. Due to these limitations, we have decided not to
integrate downstream effectors in ICELLNET, at this stage. This
may evolve as our understanding of interactions between stimuli
improves.

A key aim in studying cell–cell communication is to represent
cellular interactions in a clear and biologically relevant manner.
Visualization is important to understand the different levels of
interactions, at the cellular and molecular levels. Most of the
available tools use two main graphical representations; heatmaps
and circos plots. These complex plots represent all possible
interactions at once and can be difficult to read and interpret.
ICELLNET offers four original visualization modes with different
properties to represent cell-to-cell communication from a global
view of specific interactions. These different representations sim-
plify interpretation of the results, help users to elaborate
hypotheses, and allow in-depth analysis of cell-to-cell interactions.

The cytokine family of communication molecules plays a key role
in homeostatic processes, such as cell development and differ-
entiation, tissue homeostasis, and inflammation3,14,46. In the past 20
years, a large number of new cytokines have been identified, cloned,
and studied to elucidate their biological function. This has sig-
nificantly enriched the classification of cytokines into structural
families matching evolution and functional processes3,47. ICELL-
NET is now providing an exhaustive and expert curated resource of
all known cytokines and their receptor interactions, according to
reference knowledge. This opens possibilities for researchers to
decipher complex cytokine-mediated communication, and the
implication of specific cytokines in disease.

Fibroblasts are important structural stromal cells at steady state
and inflammation. Yet, how they communicate with neighboring
cells is not well described. Applying ICELLNET to breast cancer
fibroblasts’ bulk cell transcripts revealed potentially novel interac-
tions between CAF subsets and tumor microenvironment compo-
nents. The CXCL12/CXCR4 interaction that we found within
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CAF-S1-to-Tregs (Fig. 3d) was also described in other studies19,48,
and contributes to the immunosuppressive phenotype displayed by
CAF-S1. ICELLNET also highlighted interactions specific to CAF-
S4 subset such as JAG1 with Notch receptors (NOTCH1,
NOTCH2), and expression of PDGF proteins interacting with their
cognate receptor. These proteins have never been associated spe-
cifically to CAF-S4 subset at the transcriptomic level and warrant
further experimental validation studies.

Other studies have shown that IL-10 regulates DC-derived
inflammatory cytokines and chemokines, in particular IL-1249,
and that IL-10 secreted by LPS-activated DC controls a com-
munication channel in an autocrine manner50. Through our
systems approach, we could demonstrate that endogenous DC-
derived IL-10 governs the global connectivity of DC with multiple
cell types. This original in vitro dataset generated in a controlled
system allowed us to experimentally validate four intercellular
communication channels, which established the robustness and
biological relevance of ICELLNET predictions. We did not find
this level of experimental validation in any of the other cell–cell
communication inference methods to date5,10,35.

In conclusion, ICELLNET is an adaptable tool that allows us to
gain insight into communication channels between cells from one
bulk transcriptomic profile of a cell population. By focusing on
specific cell types or families of molecules, ICELLNET provides
several representation modes to help the interpretation of the
results. Experimentally validated with an in vitro system,
ICELLNET enables the dissection of intercellular communication
in complex systems.

Methods
Human primary cell atlas dataset. The dataset contains 745 samples of over
thirty human primary cell types in different biological conditions (rested or acti-
vated). Included in BioGPS platform, all the samples have been generated with the
same Affymetrix technology (Human Genome U133 Plus 2.0 arrays). For this
study, an already processed and normalized dataset has been downloaded and
added to ICELLNET package. This dataset is described in Supplementary Data 2.

CAFs RNA-seq data processing. The dataset contains 77 samples from Luminal
(Lum) and Triple Negative Breast Cancers (TNBC) from 16 patients (10 Lum, 6
TNBC)19. The samples correspond either to tumor tissue or juxtatumoral tissue.
Cells corresponding to CAF-S1 and CAF-S4 have been isolated, collected, and
sequenced. Average sequencing depth was 30 million for paired-end reads, with a
read length of 100 bp. Reads were mapped on the reference genome (hg19/GRCh37
from UCSC genome release) using Tophat_2.0.6 algorithm. Duplicates were
removed and gene expression quantification was performed using HTSeq-Count
and featuresCount. Only genes with five reads in at least 25% of all samples were
kept for further analyses. Normalization was done using the method implemented
in DESeq2 R package (version 1.26.0). In this study, only 6 biologically indepen-
dent samples of CAF-S1 and 3 biologically independent samples of CAF-S4 from
TNBC were considered in the analyses.

Purification of peripheral blood mononuclear cells (PBMCs) from adult blood.
Fresh blood samples were collected from healthy donors and obtained from
Hôpital Crozatier Établissement Français du Sang (EFS), Paris, France. A contract
(convention) has been established between French Blood establishment (EFS) and
Institut Curie, in conformity with national regulations and ethical guidelines.
Written informed consent was obtained for each healthy donors. PBMCs were
isolated by centrifugation on a Ficoll gradient (Ficoll-Paque PLUS, GE Healthcare
Life Sciences).

Monocyte-derived dendritic cells generation and activation. Monocytes were
selected from PBMCs using antibody-coated magnetic beads and magnetic col-
umns according to manufacturer’s instructions (CD14 MicroBeads, MiltenyiBio-
tec). To generate immature DCs, CD14+ cells were cultured for 5 days with IL-4
(50 ng/mL) and GM-CSF (10 ng/mL) in RPMI 1640 Medium, GlutaMAX (Life
Technologies) with 10% FCS. Monocyte-derived DCs were pre-treated for 1 h with
mouse IgG1 (20 µg/mL, R&D Systems), mouse anti-IL-10R blocking antibody (10
µg/mL, R&D Systems) or mouse anti-TNFα Receptors 1 and 2 (10 µg/mL, R&D
Systems) (Fig. 5 and Supplementary Fig. 4b) and then cultured with medium or
LPS (100 ng/mL, LPS-EB Ultrapure, activates TLR4 only, Invivogen) for 24 h. DCs
from donors which responded to (a) LPS and (b) IL-10R blocking antibody, as
evaluated by maturation markers, were included in this study. The following

cytokines were measured in culture supernatants by CBA (BD Bioscience): IL-6,
IL-12p70, and OSM. IL-23 was measured using ELISA (eBioscience).

DC gene expression profiling. Monocyte-derived DCs were pre-treated with
blocking Abs as described above for 1 h and then cultured with medium or LPS
(100 ng/mL, Invivogen) for an additional 4 or 8 h. Total RNA was extracted using
the RNeasy micro kit (Qiagen). Samples were then amplified and labeled according
to the protocol recommended by Affymetrix for hybridization to Human Genome
U133 Plus 2.0 arrays. If multiple probes corresponded to the same receptor, we
selected the optimal probe based on the Jetset optimality condition51.

Curation of the ligand/receptor database. Surveying the literature for any
potential interactions, we manually curated a ligand–receptor database using
STRING (https://string-db.org/), Ingenuity (https://www.ingenuity.com/), and
BioGRID (https://thebiogrid.org) online tools to verify protein–protein interac-
tions, as well as Reactome (https://reactome.org) and CellPhoneDB (https://www.
cellphonedb.org) databases, already dedicated to ligand–receptor interactions.

As robustness of an interaction, we considered interactions described in at least
two independent published resources (reviews, original papers, existing
ligand–receptor database), written by different authors for reviews and original
articles. Consistency criterion was used to compare interactions described in different
resources, checking that same protein subunits are involved. “Experimental
validation” criterion was in particular useful to check for specific interactions with few
descriptions or no consistency between resources. Original articles demonstrating the
interaction were reported in PubMedID column of the database.

The interactions were classified into families of molecules based on the known
biological function of the ligand and the receptor. The subfamilies of cytokines
were defined based on molecular structures, as defined in the literature3,14–16. The
database of ligand–receptor interactions is contained in the Supplementary Data 1.

Gene expression matrix scaling method. After selecting the genes corresponding
to the ligands and/or receptors from the transcriptional profiles, each ligand/
receptor gene expression is scaled by maximum of gene expression among all the
conditions and then multiplied by 10, to have values ranging from 0 to 10. For each
gene, the maximum value (10) is defined as the mean of expression of the 5%
highest values of expression for RNA-seq and microarray datasets. Outliers are
rescaled at 10 if above maximum value.

Intercellular communication score computation. To score the intensity of a
particular ligand–receptor interaction between a central cell and a given partner cell,
we considered the product of the expression of the ligand in the central cell and of the
cognate receptor in the partner cells. Formally, if lij is the average expression level of

ligand i by the central cell in the experimental condition j, and rik is the average
expression of the corresponding receptor by cell type k, the intensity sij;k of the

corresponding interaction was quantified by sij;k ¼ lij � rik: For interactions requiring
multiple components of the ligand and/or of the receptor, we considered a geometric
average of the receptor components. For example, if a given interaction corresponding
to ligand i required two chains of the receptor, the score was computed as

lij �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ri;1k :ri;2k

q

, where ri;1k and ri;2k are the expression levels of the two receptor chains in

cell type k. To assign a global score Sj,k to the communication between the central cell
in the condition j and cell type k, a composite score was defined by summing up the
intensity of all the possible ligand–receptor interactions, i.e., Sj;k ¼

PN
i¼1 s

i
j;k , N being

the total number of interactions. If there is any technical effect in one dataset (central
cell or partner cell) it is considered as a weight coefficient w:

Sj;k ¼ ´
X

N

i¼1

wi
jl
i
jw

i
kr

i
k ð1Þ

Sj;k ¼ w ´
X

N

i¼1

sij;k ð2Þ

This weight is common for all cells selected from the dataset of central or partner cell
and can be considered as a multiplication factor, so it only affects the range of the
communication score but not the relative difference between them. Regarding the
four DC experimental conditions (Medium (j = 0), LPS (j = 1), blocking TNF loop
(j = 2), blocking IL-10 loop), we normalized the global scores Sj,k to the Medium
condition (j = 0) across the four conditions. Thus, the final scores Sj;k used to
measure the communication intensity between DC in the condition j and the target
cell k were computed using the following formula:

Sj;k ¼ Sj;k=S0;k ð3Þ

Sj;k ¼
PN

i¼1 s
i
j;k

PN
i¼1 s

i
0;k

ð4Þ

The score corresponding to each interaction and each target cell in the
experimental condition of CAF subsets, lupus nephritis patients single-cell
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RNA-seq dataset, and the four DC experimental conditions are provided in
Supplementary Data 3, 4, and 5 respectively. The generation of the inward
connectivity maps was done by reversing the role of the central cell and their
cellular targets.

Global intercellular communication score scaling method. The intercellular
communication scores are rescaled ranging from 1 to 10, considering all the scores
computed for each biological condition between the central cell and all selected
partner cell types. This step allows us to increase the differences between the scores
and facilitate the network visualization of the communication scores.

Statistical comparison of communication scores. To compare the commu-
nication scores obtained from the same central cell to different partner cells we
compute several communication scores considering the average expression of
ligands for the central cell and each replicate separately for the receptor expression
of the partner cells. In this way, for one partner cell type, we obtain a distribution of
n communication scores, n being the number of partner cells replicates for this
particular cell type. Second, we can compare communication scores between two
biological conditions. In this case, we compute several communication scores
considering each replicates of the central cell separately, and the average gene
expression for the partner cells. We obtain a distribution of n communication
scores, n being the number of central cell replicates in one biological condition. For
both cases, we then perform a Wilcoxon statistical test to compare the commu-
nication scores distributions. The p-values are adjusted with p.adjust() function
from the R package « stats » (version 3.6.1) using the Benjamini & Hochberg52

method in R. This returns the p-value matrix of statistical tests, that can be
visualized in a heatmap representation with the pvalue.plot() function from «
icellnet » R package.

Statistical analysis of gene expression data. Expression data were normalized
with Plier. Transcriptomics analysis was performed in Matlab (version R2010). For
independent filtering, we used the function geneverfilter, which calculates the
variance of each probe across the samples and identifies the ones with low variance.
Probes with variance less than the 40th percentile were filtered out. Differential
analysis was performed using an ANOVA test (function anova1) at 4 h and 8 h.
p-values were adjusted for multiple testing using the Benjamini–Hochberg cor-
rection using the function mafdr. Adjusted p-values < 5% were considered sig-
nificant (see Supplementary Data 5).

Purification of naive CD4+ T lymphocytes. CD4+ T lymphocytes were purified
from PBMCs by immunomagnetic depletion with the human CD4+ T cell Isolation
KitII (MiltenyiBiotec), followed by staining with allophyco-cyanin-anti CD4 (VIT4;
MiltenyiBiotec, dilution 1:40), phycoerythrin-anti-CD45RA (BD, dilution 1:20),
fluorescein-isothiocyanate-anti-CD45RO (BD, dilution 1:20), and phycoerythrin-7-
anti-CD25 (BD, dilution 1:20). Naive CD4+ T cells sorting of CD4+CD45RA+

CD45RO−CD25− and memory CD4+ T cells sorted as CD4+CD45RA−CD45RO+

CD25− had a purity of over 99% with a FACSAria (BD Bioscience). A representative
gating strategy is provided in Supplementary Fig. 6a.

DC–T cells coculture assays. To analyze T-cell polarization, 24 h activated DC
and T cells were incubated in 96 well plates at a DC/T ratio 1:5 in Xvivo15 medium
(Lonza). After 6 days, T cells were resuspended in fresh Xvivo15 medium at a
concentration of 1 million cells per mL and restimulated with anti-CD3/CD28
beads (life Technologies) at a ratio bead/cell 1:1. Supernatants of T cells were
collected after 24 h of restimulation. The following cytokines were measured in
naive culture supernatants by Cytometric Bead Array (CBA) (BD Bioscience)
according to the manufacturer’s instructions: IL-2, IL-3, IL-4, IL-9, IL-10, IL-17A,
IL-17F, and IFN-γ. Additional cytokines were measured in memory T cells
supernatant: IL-5, IL-13, TNF, and GM-CSF. Cytokine-producing cells were ana-
lyzed by intracellular staining after addition of brefeldinA (10ug/mL) during the
last 3 h of the 5 h restimulation in PMA and ionomycine (100 ng/mL and 500 ng/
ml, respectively). Cells were stained for 30 min with the yellow live dead kit
(Invitrogen). Finally, cells were fixed and permeabilized using the Staining Buffer
Set (eBiosciences) and stained with PerCPeFluor710 anti-IL9 (eBiosciences, 1:20),
Pe-Cy7 anti-IFNg (eBiosciences, 1:50), and anti-IL17A (Biolegend, 1:80), and
analyzed by flow cytometry (BD Fortessa).

Measurement of surface molecules expression by plasmacytoid dendritic
cells. In order to enrich plasmacytoid dendritic cells (pDCs), cells expressing CD3,
CD9, CD14, CD16, CD19, CD34, CD56, CD66b, and glycophorin A were depleted
from PBMCs using magnetic sorting (Human Pan-DC Pre-Enrichment Kit,
StemCell Technologies). pDCs were then sorted on a FACS Vantage instrument
(BD Biosciences). A representative gating strategy is provided in Supplementary
Fig. 6b. pDCs were cultured for 24 h at 37 °C and 5% CO2 with medium RPMI
1640 Medium, GlutaMAX (Life Technologies) with 10% FCS, GM-CSF (10 ng/mL)
used as a positive control or DC supernatants. Cells were stained for 15 min at 4 °C
using a FITC-anti-CD86 (BD, 1:20), an APC-anti-ICOSL (R&D Systems, 1:20) and

Alexa-Fluor-700-anti-HLA-DR (Biolegend, 1:20) or with the corresponding iso-
types. Cells were analyzed on an LSR II instrument (BD Biosciences).

Measurement of adhesion molecules expression at the neutrophil surface.
PBMCs were stimulated for an hour at 37 °C with medium, LPS (100 ng/mL) used
as a positive control or DC supernatants. Cells were stained at 4 °C for 15 min with
an APC-anti-Human-CD62L (clone DREG-56, BD Pharmingen, 1:50), a BV650-
anti-Human-CD11b (BioLegend, 1:120) and a PE-anti-Human-CD15 (BD Phar-
mingen, 1:20) or with the corresponding isotypes. Erythrocytes were lysed with 1X
BD Pharm Lyse Solution (BD Pharmingen). White cells were resuspended in PBS
supplemented with 1% human serum and 2 mM EDTA and analyzed on an LSR
Fortessa instrument (BD Biosciences).

Real-time quantitative RT-PCR. The keratinocyte cell line HaCaT was kindly
provided by Prof. Dr. Bernhard Homey. HaCaT cell line was cultured in DMEM
(Gibco) supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were
cultured with medium, LPS (100 ng/ml), or with DC supernatant diluted 1:10 for
4 h. Total RNA was extracted by RNeasy Mini kit (Qiagen). RNA was then tran-
scribed to cDNA using Superscript II reverse transcriptase based on the manu-
facture’s protocol (Invitrogen). The Taqman method was used for real-time PCR
with primers from Life technologies (Supplementary Table 1). The expression of
mRNA was normalized to the geometrical mean of 3 house-keeping genes: ACTB,
GAPDH, and RPL34. All HaCaT cells were negative for Mycoplasma contamina-
tion, standardized and regular tests were performed by PCR for mycoplasma
detection.

Statistical analysis of DC–T-cell protein data. All analyses were generated with R
3.1 or 3.6.3. For principal component analysis (PCA) of the T-cell secretion profile,
a data matrix was formed whose rows corresponded to conditions and columns to
the different cytokines (each column was scaled using zscore). PCA was done using
the function princomp. Where appropriate, a two-sided paired student t-test was
performed. Significant differences were considered with p < 0.05.

Calculation of the activation score of target cells. To compute a global activation
score of keratinocytes, neutrophils and pDC, each activation marker output was first
normalized in the range 0–1, 0 being to the untreated condition and 1 being to the
maximum value observed in all the conditions. An average of the normalized outputs
corresponding to the same cell type was then considered. All of the measured factors,
with the exception of CD62L in neutrophils, were positively correlated with cell
activation. In order to make CD62L consistent with the other factors, we considered
the reciprocal of its value. The numerical results are in the Supplementary Data 6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The gene expression profiles generated for this publication have been deposited in
NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession
number GSE89342.

The CAFs dataset has been published by Costa et al.19, and is accessible through the
accession number EGAS00001002508. The single cell dataset of immune cells from lupus
nephritis patients has been published by Arazi et al.20, and is accessible through the
ImmPort repository (accession code SDY997).

Code availability
ICELLNET package is available at https://github.com/soumelis-lab/ICELLNET and has
been deposited in Zenodo (https://doi.org/10.5281/zenodo.4327491)53.
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