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Abstract: Protein inhibitors of proteases are an important tool of nature to regulate and control
proteolysis in living organisms under physiological and pathological conditions. In this review, we
analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information
and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major
obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any
starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing
the inhibitory mechanism. The structural data make it clear that the “lock and key” mechanism
is a historical concept with limited validity. However, the analysis suggests that the shape of the
active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket
buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In
contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot
be employed. It appears that all proteases, with the exception of papain-like proteases, belong to
the first group of proteases. Finally, we show a number of examples and provide hints on how to
engineer protein inhibitors.

Keywords: mechanisms of inhibition; cysteine proteases inhibitors; structural-based inhibition;
compiled kinetic data

1. Introduction

Previously, we reviewed cysteine protease protein inhibitors and their role in reg-
ulation of proteolysis [1]. In the review, we classified the inhibitors according to their
physiological roles using quantitative criteria of enzyme kinetics, the delay time of inhi-
bition, and the stability time of inhibition, established by Joseph Bieth in the 1980s [2,3].
Delay time, d(t), is the time needed to achieve ≈99% of inhibition (d(t) = ln 2/Io × kass),
and roughly equals seven half-lives of the reaction. In this equation, Io represents the
physiological concentration of the inhibitor and kass is an approximation of the association
rate constant. The stability time of reversible inhibitors is defined as the minimal time in
which the EI (E, enzyme; I, inhibitor) complex remains undissociated (t(s) = ln 2/kdiss),
where kdiss represents the dissociation rate constant. This suggest that inhibitors were of
physiological relevance when the delay time was below 1 s and, for reversible inhibitors,
when the stability time was above 10 min [2]. Two types of inhibitors were introduced,
emergency and regulatory [1,4]. Emergency inhibitors rapidly trap a protease and maintain
it in a stable complex preventing any undesired activity. Regulatory inhibitors, by compari-
son, modulate the protease activity under physiological conditions. They can be further
divided into threshold, buffer, delay, and pro-inhibitor sub-types. The threshold-type
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inhibitors prevent undesired protease activation. The buffer-type inhibitors reversibly and
rapidly bind proteases, and when their physiological substrate appears, they also rapidly
release them and thereby prevent undesired and potentially harmful proteolysis in the
absence of their substrate. The delay-type inhibitors irreversibly (or pseudo-irreversibly)
and slowly bind their target, thereby enabling proteolysis for a limited amount of time,
whereas pro-inhibitors require initial processing by a protease to become inhibitory. De-
tailed kinetic studies in which Kass and Kdiss are measured are seldomly performed. To gain
insight into the relative differences between various protease inhibitor interactions, we rely
predominantly on their ratio, Ki. This link between biochemical principles of inhibition and
physiology does not require an update, however, the determination of a number of new
structures of cysteine protease inhibitors indicates that canonical mechanisms of inhibition
should be updated [5]. Because no review, including ours, completely covers a broad
topic such as protein inhibitors of cysteine proteases, we want to remind readers that other
related reviews have been undertaken that describe various aspects of cysteine protease
inhibition [6–14].

Cysteine proteases use the reactive site cysteine as the catalytic nucleophile and the
histidine to perform peptide bond hydrolysis. In MEROPS [15], an online database that
provides an insight into peptidases, there are 16 clans of cysteine peptidases and some
that are unclassified, of which four among them include proteases with mixed catalytic
types. They are further divided into 97 families of structurally and sequentially related
peptidases, of which 18 families belong to the four clans of mixed catalytic types. Activity of
many of these is regulated by protein inhibitors, which are either endogenous or originate
from the invading organisms [15]. The MEROPS list of clans and families of protein
inhibitors of proteases contains 27 clans and about four times as many structurally and
sequentially related families. Their classification has little relation to the type of protease
they target; inhibitors such as macrocypins, thyropins, and serpins can simultaneously
bind two different families of cysteine proteases with their two distinct reactive sites.
Tables 1–5 present the available structures of the complexes between protein inhibitors
and cysteine proteases, including their family classification, Protein Data Bank (PDB)
codes [16], and publication references. Table A1 shows the binding and kinetic constants
Ki for their interaction with target proteases to provide an experimental basis for their
classification. Due to the differences in Ki values, the same inhibitor can belong to several
types in respect to the protease they inhibit. For example, cystatins differentiate among
exo- and endo-peptidases, and the inhibitory fragment of the p41 form of the invariant
chain associated with the major histocompatibility class II molecule (the p41 fragment)
can be, in respect to the target, emergency and buffer inhibitors, and also the delay type
and pro-inhibitor (a detailed explanation and references are provided below). For our
review of the mechanisms of inhibition of cysteine proteases, we selected crystal structures
of diverse types of inhibitors, which either target large groups of related proteases, such
as papain-like proteases and caspases, or others including calpastatin and securin, with
unique mechanism(s) of inhibition.

2. Inhibitors of Papain-Like Cysteine Proteases

Papain-like cysteine proteases are the largest family (C1 according to MEROPS) among
the cysteine proteases, and likely the most studied. The subgroup of cysteine cathepsins
is involved in a myriad of physiological functions from protein turnover to processing of
antigens, hormones, and bone remodeling [11]. Moreover, the crystal structure of papain
was among the first enzyme structures determined [17], and Schechter and Berger intro-
duced the nomenclature of substrate binding sites and positioning of the substrate when
studying papain interaction with a polyalanine peptide [18]. Papain-like cysteine proteases
are inhibited by several groups of protein inhibitors that are involved in the regulation
of physiological and pathogenic conditions. In this section, we present cystatins as the
largest group of inhibitors [7,10], followed by falstatins, chagasins, thyropins, clitocypins
and macrocypins, and staphostatins inhibiting a papain-related protease staphopain from
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family C47. Serpins are an important group of inhibitors of serine and cysteine proteases,
including papain-like cysteine proteases. To the best of our knowledge, the structure of
their complex with a representative of cysteine proteases is still lacking. Thus, we include
a brief overview of their mechanism in Section 3.4.

2.1. Cystatins

Cystatins were the first discovered and are the best studied endogenous inhibitors
of cysteine cathepsins [19]. Their major function appears to be protection of the organism
from undesired endogenous proteases; however, they also protect against invading mi-
croorganisms and parasites, which apply cysteine proteases to invade the host. Cystatins
are divided into three families: the stefins, the cystatins, and the kininogens. Stefins and
cystatins are single-domain proteins, whereas kininogens contain three cystatin domain
repeats. The cystatin fold was revealed by the crystal structure of chicken cystatin ([20],
PDB code 1CEW), which provided the basis for the elephant trunk model of their inter-
action with papain-like cysteine proteases. The model was later confirmed by the crystal
structure of stefin B in complex with papain ([21], PDB code 1STF), shown in Figure 1a.
Cystatins block the reactive site with the N-terminal trunk and a loop. The positions of the
N-terminal trunk and the loop in the structure are stabilized by a β-sheet, which is at the
concave side stabilized by an α-helix. The second loop of cystatins interacts with the active
site cleft and contributes to the binding [22], however, it is not directly involved in blocking
the access to the cysteine histidine pair of reactive site residues. They bind to their targets
in a two-step mechanism, with the loops providing the initial binding and the N-terminus
locking the complex and strengthening the interaction [23], indicating that the inhibitor
undergoes a conformational change on binding. The structure of the complex showed
that cystatins do not interact with the reactive site of the target protease in a substrate-like
manner; hence, cystatins are not slowly degrading substrates, in contrast to at the time most
studied inhibitors of serine proteases, such as bovine pancreatic trypsin inhibitor (BPTI)
([24], PDB code 2TGP). Cystatins reversibly bind papain-like cysteine endopeptidases in
the nM to fM range [22,25–28], whereas cysteine exopeptidases are inhibited in the mM to
nM range [29–32]. Nevertheless, they bind to cathepsins B and H, as demonstrated by the
crystal structure of their complexes ([33], PDB code 3K9M; [34], PDB code 1NB5). Due to
the span in the binding constants, stefins and cystatins are emergency and buffer inhibitors.
Table 1 shows complexes for the cystatin family.

2.2. Falstatins

Falstatins, which are inhibitors of cysteine proteases (ICPs) from Plasmodium spp.,
as demonstrated by the crystal structure of a falcipain 2 complex ([37], PDB code 3PNR,
Table 2), seemingly use the same interaction pattern to inhibit their target cysteine protease
falcipain as cystatins—the N-terminal peptide interacts with the protease surface in a
similar manner to stefin B, followed by a two-loop arrangement filling the active site
(Figure 1b). This is the extent of the similarity, however, because the Plasmodium spp.
ICPs are based on a β-sandwich related to the immunoglobulin fold, and the apparent
N-terminal trunk is a partially disordered loop, which thereby lacks structure, whereas
the part in contact with the target protease is ordered. Hence, ICPs from Plasmodium spp.
utilize a three-loop arrangement to block the active site of papain-like proteases. The
visible interaction loop is the second loop and longer than the first interaction loop in
cystatins because it must span the space between the two β-sheets in the fold. ICPs
from Plasmodium spp. bind non-selectively, and bind to papain-like and related cysteine
proteases in the pM to nM range [44]. Falstatin does not inhibit cysteine proteases with
exopeptidase activity (cathepsins B and C), and proteases of other catalytic classes, such as
serine proteases (trypsin and chymotrypsin), aspartic proteases (pepsin and renin), and
metalloproteases (collagenase and matrix metalloprotease-2). Falstatins are also supposed
to inhibit calpain-1 in the sub-nM range, and caspases-3 and -8 in the nM range [44], yet
these results were later disputed by Hansen et al. [37].
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Figure 1. Inhibitors of papain-like and related proteases. Complexes are shown with the same view across the active site
cleft and the same scale after superimposition of proteases to cathepsin L in the p41 fragment complex. Figure was prepared
using MAIN [35] and rendered with Raster3d [36]. (a) Stefin B papain complex ([21], PDB code 1STF). The stefin B chain is
shown as a blue coil on the semitransparent background of the white surface of papain. (b) Inhibitor of cysteine protease
(ICP) (falstatin) falcipain complex ([37], PDB code 3PNR). ICP, also known as falstatin from Plasmodium berghei, is shown as
a cyan coil on the semitransparent background of the white surface of falcipain-2. (c) Chagasin cathepsin L complex ([38],
PDB code 2NQD). The chagasin chain is shown as a green coil on the semitransparent background of the white surface
of cathepsin L. (d) p41 fragment cathepsin L complex ([39], PDB code 1ICF). p41 fragment chain shown as a red coil on
the semitransparent background of the white surface of cathepsin L. The three disulfide bonds of the p41 fragment are
shown as yellow sticks. (e) Clitocypin cathepsin V complex ([40], PDB code 3H6S). The clitocypin chain is shown as a
yellow coil on the semitransparent background of the white surface of cathepsin V. (f) Staphostatin staphopain complex
([41], PDB code 1PXV). The staphostatin chain is shown as a green coil on the semitransparent background of the white
surface of staphopain.

Table 1. List of the available structures of the complexes between protein inhibitors and cysteine proteases: cystatins.

Protein Inhibitor Cysteine Protease
MEROPS ID Name Organism MEROPS ID Name Organism PDB ID Reference

I25 Cystatin
family

I25.001 stefin A Homo sapiens C01.060 cathepsin B Homo sapiens 3K9M [33]

I25.001 stefin A Homo sapiens C01.040 cathepsin H Sus scrofa 1NB3/1NB5 [34]

I25.001 stefin A Homo sapiens C01.032 cathepsin L Homo sapiens 3KSE

I25.001 stefin A Homo sapiens C01.009 cathepsin V Homo sapiens 3KFQ

I25.003 stefin B Homo sapiens C01.001 papain Carica papaya 1STF [21]

I25.006 cystatin E/M
(cystatin 6) Homo sapiens C13.004 legumain,

animal-type Homo sapiens 4N6N [42]
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Table 1. Cont.

Protein Inhibitor Cysteine Protease
MEROPS ID Name Organism MEROPS ID Name Organism PDB ID Reference

I25.011 ovocystatin Gallus gallus C01.046 falcipain-2 Plasmodium
falciparum 3D7 1YVB [43]

I25.014 tarocystatin Colocasia
esculenta C01.001 papain Carica papaya 3IMA

I25.014 CTD of
tarocystatin

Colocasia
esculenta C01.001 papain Carica papaya 3LFY

Table 2. List of the available structures of the complexes between protein inhibitors and cysteine proteases: falstatin,
chagasins, thyropin, clitocypin, and staphostatins.

Protein Inhibitor Cysteine Protease
MEROPS ID Name Organism MEROPS ID Name Organism PDB ID References

I71 Falstatin
family

I71.001 falstatin
(PbICP-C)

Plasmodium
berghei C01.046 falcipain-2 Plasmodium

falciparum 3D7 3PNR [37]

I42 Chagasin
family

I42.001 chagasin Trypanosoma
brucei C01.001 papain Carica papaya 2CIO [45]

I42.001 chagasin Trypanosoma
cruzi C01.001 papain Carica papaya 3E1Z [46]

I42.001 chagasin Trypanosoma
cruzi C01.046 falcipain-2 Plasmodium

falciparum 3D7 2OUL [32]

I42.001 chagasin Trypanosoma
cruzi C01.060 cathepsin B Homo sapiens 3CBJ/3CBK [47]

I42.001 chagasin Trypanosoma
cruzi C01.032 cathepsin L Homo sapiens 2NQD [38]

I31 Thyropin
family

I31.002
MHC II

invariant chain
p41 form

Homo sapiens C01.032 cathepsin L Homo sapiens 1ICF [39]

I48 Clitocypin
family

I48.001 clitocypin Clitocybe
nebularis C01.009 cathepsin V Homo sapiens 3H6S [40,48,49]

I57 Staphostatin
family

I57.001 staphostatin B Staphylococcus
aureus C47.002 staphopain B Staphylococcus

aureus 1PXV [41]

I57.001 staphostatin B Staphylococcus
aureus C47.002 staphopain B Staphylococcus

aureus 1Y4H [50]

2.3. Chagasins

Chagasins are endogenous inhibitors of papain-like cysteine proteases from parasites
such as Trypanosoma cruzi and Leishmainia mexicana. They have a similar fold as that of
ICPs from Plasmodium spp. In Figure 1c, the structure of the complex of chagasin from
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Trypanosoma cruzi with cathepsin L is shown ([38], PDB code 2NQD, Table 2). The N-
terminal trunk has been replaced by a loop, hence their interaction with the active site is
based on a three-loop arrangement. Several complexes of chagasin with other cysteine
cathepsins ([47], PDB code 3CBK, Table 2), papain ([46], PDB code 3E1Z; [45], PDB code
2CIO, Table 2), and falcipain-2 ([32], PDB code 2OUL, Table 2) have been reported. Chagasin
is a nonspecific inhibitor of papain-like proteases, with Ki values in the pM to 100 nM
range [32,38]. Several structures of complexes of chagasin with other cysteine proteases,
cathepsin B ([47], PDB code 3CBK, Table 2), papain ([46], PDB code 3E1Z, Table 2), and
falcipain 2 ([32], PDB code 2OUL, Table 2) have been reported. Endogenous physiological
inhibition of cruzipain by chagasin is reversible and tight-binding with a Ki value in the
pM range [51].

2.4. p41 Fragment

The p41 fragment sequence is embedded in the much larger invariant chain associated
with the major histocompatibility complex (MHC) class II-associated p41 invariant chain
fragment. The p41 fragment is homologous to sequential repeats, called thryoglobulin type-
1 domains, due to their numerous occurrences in thyrogobulin [52,53]. The inhibitors with
this sequential repeat are called thyropins [54]. The crystal structure of the p41 fragment in a
complex with cathepsin L ([39], PDB code 1ICF, Table 2) revealed its fold, which is stabilized
by three disulfide bonds (Figure 1d). The CWCV sequence, the signature of the fold, is at
its core, and with which two disulfide bonds stabilize the three stranded β-sheet. The third
disulfide bond attaches the helix to the body of the fold. The p41 fragment is the smallest
of the cysteine protease inhibitors composed of only 64 amino acid residues. Similarly
to inhibitors of cysteine proteases (ICPs) and chagasin, it uses a three-loop arrangement
to bind to the active site. The first and the second loops of the p41 fragment occlude the
reactive site, whereas the third forms additional contacts at the primed side of the active
site cleft. The p41 fragment is more selective than cystatins. It inhibits the endopeptidases
cathepsins L and V in the pM range, cathepsins K and F in the nM range, and cathepsin S in
the µM range, but does not inhibit exopeptidases [55,56]. On the basis of these values and
its concentration, we can consider the p41 fragment an emergency inhibitor (cathepsins
L and V) or a buffer-type inhibitor (cathepsin S) [56]. It may even be possible that its
inhibitory role is activated after processing of the invariant chain, hence the p41 fragment
may also be a pro-inhibitor or a delay-type inhibitor. In addition to thyroglobulin, several
other proteins contain this structural motif, such as saxiphilin, which binds saxitoxin, a
toxin from bullfrogs [57]. However, the inhibitory function has been confirmed for few of
these, including equistatin inhibiting cysteine cathepsins [58]; testicans-2 and -3, which
inhibit matrix metalloproteases and serine proteases’ saxiphilin, which inhibits papain
and cathepsin L; and the inhibitor from salmon egg, which inhibits papain and cysteine
cathepsins [58–64]. In other proteins, such as nidogen, insulin growth factor-binding
proteins, and the human carcinoma marker protein GA733 (also called TROP2 [65]), the
inhibitory role has not been demonstrated, although it has been suggested that their
thyroglobulin type-1 domains may serve as a buffer for the activity of endosomal proteases
during thyroglobulin processing [66–68]. Hence, the conclusion that the thyroglobulin
type-1 repeat is a structural motif occasionally employed as an inhibitor of proteases still
applies [69].

2.5. Clitocypins and Macrocypins

Clitocypins and macrocypins from mushroom species (basidiomycetes) Clitocybe
nebularis and Macrolepiota procera, respectively, are primarily inhibiting papain-like cysteine
proteases, although inhibition of legumain and serine proteases has also been observed [49].
This property is due to their β-trefoil fold, the hallmark of Kunitz-type inhibitors, which are
the classical serine protease inhibitors ([40], PDB code 3H6S, Table 2). The β-trefoil fold has
a remarkably simple core composed of a sixfold β-barrel and six exposed loops stabilized
by short β-antiparallel strand arrangements (reviewed in [48]). The crystal structure of
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the complex between clitocypin and human cathepsin V (Figure 1e) shows that clitocypin
(and similar macrocypins) binds in the active site of papain-like proteases with two broad
loops occluding the catalytic site residues from both sides of the active site cleft. Two
broad loops are a common denominator in all complexes presented in Figure 1 and indicate
convergence in the mechanism of inhibiting papain-like proteases. An exception is the
staphostatin/staphopain complex shown in Figure 1f, in which the protease staphopain is
not papain-like, but a papain-fold-related protease. Clitocypin and macrocypins inhibit
papain-like proteases in the 10 pm to 100 nM range [49,70].

2.6. Staphostatins A and B

Staphostatins A and B are endogenous inhibitors of the secreted cysteine proteases
from Staphylococcus aureus, staphopains A and B, which are remotely related to cysteine
cathepsins. Each staphostatin specifically inhibits its target staphopain. Staphostatins have
a β-barrel fold, which is similar to that of lipopains and different from that of cystatins [71].
The crystal structure of staphostatin B in complex with the staphopain B catalytic site
mutant C243A ([41], PDB code 1PXV; [50], PDB code 1Y4H, Table 2) shows that stapho-
statin B binds in the active site cleft of staphopain in a substrate-like manner with the
sequence IGTS mimicking the P2 to P2′ substrate residues (Figure 1f), which explains
why staphostatins are slowly degraded substrates. Filipek et al. [50] further showed that
the G98 residue is crucial for inhibitory activity because its mutations in other residues
converted staphostatin B to a significantly better substrate of staphopain B. The extended
conformation of the G98-T99 section is stabilized by a hydrogen-bonding ladder with
the antiparallel positioned S93-S92-T91 section in the central β-sheet, likely keeping the
G98-T99 peptide bond at a distance to prevent its hydrolyses. Hence, rather than a loop, an
antiparallel β-sheet hydrogen bonding ladder stabilizes the bound conformation.

2.7. Serpins

Serpins obtained their name from their ability to inhibit serine proteases, however, they
are cross-class inhibitors that also inhibit cysteine proteases such as cathepsins, calpains,
and caspases. With over 1500 representatives in Archaea, Prokarya, and Eukarya, in
addition to a number of viruses, serpins are the largest and most widely dispersed family
of peptidase inhibitors [72], and include 37 human serpins [73]. Squamous cell carcinoma
antigen 1 (SCCA1 also called serpin B3) is an epithelial-derived serpin that inhibits the
endopeptidases cathepsins K, L, and S [74,75]. Heparin was also found to enhance the
interaction with the target proteases, similar to the interaction of several serpins with
plasma serine proteases [76]. In addition to SCCA1, cathepsin L was shown to be inhibited
by the cross-class inhibitor endopin 2C [77], which preferentially inhibits cathepsin L over
papain and elastase.

Among cathepsins, cathepsin L is specifically targeted with another cross-class serpin,
hurpin (serpin B13) [78]. Another cross class inhibitor SRP-6 was shown to inhibit cathep-
sins K and L, and calpain-2 [79]. Although serpins are primarily endogenous inhibitors,
they are also employed as part of a defense against pathogens. SCCA1 was shown to
inhibit staphopains [80] and falcipain-2 [81], whereas SCCA 2 was shown to inhibit mite
allergen cysteine protease Der p1 [82]. Inhibition of caspases by serpins is described below.

3. Inhibitors of Caspases

Cell apoptosis is an important mechanism during embryogenesis and organism
growth to make place for new cells and tissues. Later in life, apoptosis is required for
removal of defected, infected, and malicious cells, and is crucial for organism survival. Cas-
pases take a central role in the apoptosis initiation and execution phases. They are cysteine
proteases belonging to their own C14 family (MEROPS: [15]). Because removal of infected
cells by apoptosis is also a defense mechanism against infections, it is no coincidence that
caspase inhibitors have been found in cell invaders such as viruses (baculovirus inhibitor of
apoptosis proteins (IAPs) and protein p35, cowpox virus serpin cytokine response modifier
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A (CrmA)) and bacteria (Escherichia coli effector protein Nlef). Figure 2 shows structures
of four caspase inhibitors, three in complexes made with X-linked inhibitor of apoptosis
(XIAP), Nlef, and p35, and the serpin CrmA. As Figure 2 demonstrates, the folds of these
four inhibitors have no common structural motif, which suggests their common role or at
least an evolutionary relationship. In addition, the view in which all three caspases are
superimposed shows that XIAP, Nlef, and p35 are positioned at positions most widely
spread from left to right in respect to the active site of their target caspases.
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3.1. XIAP

XIAP belongs to the protein family of inhibitor of apoptosis proteins (IAPs) present
in viruses [87,88] and eukaryotes. IAPs activity is embedded in the baculoviral IAP
repeat (BIR) domains, the homologues of which are present throughout all eucaryotic
kingdoms [89]. They are involved in regulation of the activity of executioner and initiator
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caspases-3, -7, and -9. The crystal structures of XIAP (BIR domain 2) in complex with
caspase-7 ([90]; PDB code 1I51, Table 3); [91]; PDB code 1I4O, Table 3) or caspase-3 ([83];
PDB code 1I3O, Table 3) revealed that XIAP binds along the active site cleft of the caspase
(Figure 3a).
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Figure 3. Other inhibitors. Complexes of inhibitors are shown in views and scales adjusted to each complex and size. Figure
was prepared using MAIN [35] and rendered with Raster3d [36]. (a) Procathepsin B ([98], PDB code 3PBH). The chain of
cathepsin B propeptide is shown as a blue coil on the white surface of mature enzyme part of the structure. The surface
part corresponding to the catalytic pair of C29 H199 residues is colored red. (b) Cystain E legumain complex ([42], PDB
code 4N6N). Cystatin E is shown as a blue ribbon, with the P1 residue N39 side chain bound in to the legumain S1 site
shown as a red stick model. Legumain is shown as a white surface with the S1 binding pocket colored orange and the part
corresponding to the reactive site residues C189 H148 colored red. (c) Calpastatin m-calpain complex ([99], PDB code 3DF0).
Calpastatin is shown as a blue surface with the loop out region indicating the position above the reactive site of calpain
shown in red. Calpain-m is shown as a semitransparent white surface. (d) Securin separase complex ([100], PDB code 5ULS,
5ULT). Securin is shown as a blue surface with the region from 262 to 265 bound above the reactive site of separase shown
in red. Securin is shown as a semitransparent white surface.
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Table 3. List of the available structures of the complexes between protein inhibitors and cysteine proteases: IAPs, p35,
and NIef.

Protein Inhibitor Cysteine Protease
MEROPS ID Name Organism MEROPS ID Name Organism PDB ID Reference

I32 IAP family

I32.002 cIAP-BIR3 Homo sapiens C14.010 caspase-9
(Nter pept) Homo sapiens 3D9T [92]

I32.004 XIAP Homo sapiens C14.004 caspase-7 Homo sapiens 1I4O [93]

I32.004 XIAP Homo sapiens C14.004 caspase-7 Homo sapiens 1I51 [90]

I32.004 XIAP-BIR2 Homo sapiens C14.004 caspase-7 Homo sapiens 1KMC

I32.004 XIAP-BIR2 Homo sapiens C14.003 caspase-3 Homo sapiens 1I3O [83]

I32.004 XIAP-BIR3 Homo sapiens C14.010 caspase-9 Homo sapiens 1NW9 [94]

I32.009 DIAP1 Drosophila melanogaster C14.019 caspase
Dronc (pept)

Drosophila
melanogaster 1Q4Q [95]

I32.009 DIAP1-
BIR1 Drosophila melanogaster C14.015 drICE Drosophila

melanogaster 3SIP [96]

I50 Baculovirus
p35 family

I50A p35 Autographa californica
nucleopolyhedrovirus C14.009 caspase-8 Homo sapiens 1I4E [85]

I50A p35 Autographa californica
nucleopolyhedrovirus C14.009 caspase-8 Homo sapiens 2FUN [97]

Family I94

I94.001 NIeF Escherichia coli C14.010 caspase-9 Homo sapiens 3V3K [84]

XIAP has a short helical region the authors called a “hook” followed by a long linker,
which runs along the active site cleft of the caspase and the terminal BIR2 domain with the
“sinker” interacting with the S4 pocket.

The “hook” and the “sinker” with the BIR2 domain attach to the caspase surface
and stretch the linker. The linker runs along the active site cleft in the direction opposite
to the substrate binding, thereby precluding its cleavage. The concept is reminiscent of
cysteine cathepsin inhibition by their propeptides in their zymogen form (Figure 3a shows
procathepsin B; [98], PDB code 3PBH, Table 4), in particular, the smallest one of cathepsin
X ([101], PDB code 1DEU, Table 4). The similarity is dual: (i) the propeptides of cysteine
cathepsins run along the active site cleft in the direction opposite to the substrate, and (ii)
the propeptides form smaller and larger domains, which all begin with a helix positioned at
the prime side of the active site cleft approximately above the reactive site cysteine histidine
pair. Because prodomains of cysteine cathepsins and BIR2 lie on opposite sides of the
active site cleft, the similarity reflects a convergent solution. The fold of the BIR domain is,
interestingly, not important for inhibition, as noted earlier [1]. An important contribution
of the XIAP BIR2 domain to a two-site interaction inhibition of caspases-3 and -7 has been
proposed by Scott et al. [102], in which the weak interaction of the linker sequence that
inhibits activity must be stabilized by the binding of the BIR2 domain surface groove
that binds caspase-7 at a site exposed only during the maturation cleavage. IAP proteins
inhibit caspases by several distinct mechanisms. For example, the BIR3 domain of XIAP
inhibits caspase-9 by blocking the dimerization of the catalytically-inactive monomers that
is required for activity ([94], PDB code 1NW9).
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Table 4. List of the available structures of the complexes between protein inhibitors and cysteine
proteases: proenzymes.

Zymogens
MEROPS ID Name Organism PDB ID References

C10.001 exotoxin B
(streptopain)

Streptococcus
pyogenes 1DKI [103]

C01.060 procathepsin B Homo sapiens 3PBH [98,104]

C25.003 gingipain RgpB Porphyromonas
gingivalis W83 4IEF [105]

C01.032 procathepsin L Homo sapiens 1CJL/1CS8 [106]

C01.001 propapain Carica papaya 3TNX [107]

C01.003 procaricain Carica papaya 1PCI [108]

C01.013 procathepsin X Homo sapiens 1DEU [101]

C01.060 procathepsin B Rattus norvegicus 1MIR [109]

C01.036 procathepsin K Homo sapiens 7PCK [110]

C01.036 procathepsin K Homo sapiens 1BY8 [111]

C01.034 procathepsin S Homo sapiens 2C0Y [112]

C01.040 procathepsin H Homo sapiens 6CZK/6CZS [113]

3.2. Escherichia coli Effector Protein Nlef

Escherichia coli effector protein Nlef inhibits caspases-4, -8, and -9 [84,114–118]. The
crystal structure of the complex between Nlef and human caspase-9 indicates two Nlef
segments interacting with the active site cleft of caspase-9, the protein C-terminal sequences
L196, Q197, C198, and G199; and the H145, H146, and S157 (Figure 2b) ([84], PDB code
3V3K, Table 3). The Nlef can be considered a substrate analog, only falling short of one
residue to be cleaved. Instead, its C-terminal residue lacks the side chain and deploys
the C-terminal carboxylic group of G199 to mimic the aspartate at the P1 position. This
concept is reminiscent of the cathepsin C exclusion domain-binding mechanism, which
provides the N-terminal carboxylic group of the aspartic residue to block access in the
active site beyond the S2 site, and thereby restricts activity of cathepsin C to a di-amino-
peptidase [119]. The similarity is even more striking in the case of a metalloprotease
inhibitor from Erwinia chrisantemi, which fills half of the active site with its N-terminus and
thereby blocks access to substrates [120]. Interestingly, it was shown that Nlef is only one
among many Escherichia coli effector proteins causing delay and inhibition of apoptosis. Its
role appears minor due to its low expression profile, however, when over expressed it can
severely impact apoptosis [84].

3.3. Baculovirus Protein P35

Baculovirus protein p35 is a broad-spectrum caspase inhibitor. It has a flexible reactive
loop with the caspase recognition sequence DQMD ([121]; PDB code 1P35). The crystal
structure of the p35 in complex with caspase-8 ([85], PDB code 1I4E, Table 3) shows how the
cleaved loop remains trapped in its covalent attachment to the enzyme with D87 forming
the thioester bond to the caspase-8 C360 reactive site cysteine and D84 bound to the S4
binding site. The covalent interaction explains why the crystal structure of the complex
shows loose packing of the p35 chains entering the active site cleft (Figure 2c). These two
chains belong to two different N-termini sequentially far apart: the D87 at the N-terminus
resulting from the p35 cleavage and the repositioned residue C2 at the p35 N-terminus.
Later, the sulfhydril group of C2 was shown to be crucial for preventing hydrolysis of the
caspase C360p35 D87 thioester bond by trapping it in the exchange with the p35 thioester
bond of C2D87, as demonstrated by Lu et al. ([97], PDB code 2FUN, Table 3), who found
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that the N-terminal fragment of p35 appeared as a circular peptide after dissociation from
the complex.

3.4. Cowpox Virus CrmA

The cowpox virus CrmA structure was chosen to represent serpins as inhibitors of
caspases. Its crystal structure was determined in the cleaved form (Figure 2d), with the
P1 and P1′ residues A359 and S359A, respectively, more than 60 Å apart ([86], PDB code
1F0C; [122], PDB code 1M93). At conditions preventing hydrolysis, it was shown that
serpins’ reactive site loop binds in the active site cleft of trypsin in extended conformation
([123], PDB code 1K9O), which is in a strong contrast with the cleaved form structure. The
mechanism of inhibition of cysteine proteases was not demonstrated with a crystal structure
of a complex of the cleaved form, however, the typical serpin insertion of the reactive site
sequence in the central β-sheet suggests the trypsin-like mechanism of inhibition ([124],
PDB code 1EZX), and formation of a thiol ester with the catalytic cysteine that in part
unfolds the target protease [125–127]. CrmA is a minimal serpin. It targets caspases-1
with Ki in the pM range [128,129] and caspase-8 in the sub-nM range [130–132], but poorly
inhibits executioner caspases-3, -6, and -7 [131,132], and probably caspase-10 [130]. Similar
to a number of other serpins, such as serpin B9 [133] and myxoma virus serpin serp2 [130],
it also inhibits serine protease granzyme B [130]. Although serpins eventually separate
from their target protease, they cannot bind back to it. Serpins are suicide substrates
irreversibly changed upon reaction. In fact, the pathway, called the suicide substrate
branched pathway mechanism, is even more complicated because it involves one two-
way and four one-way processes, all of which end in separation of serpin from its target
(reviewed in [12]). Therefore, in such cases Ki does not apply. For simple comparison of
inhibition rates of serpins, we advise the use the kinetic constant kass of the first step only.

4. Some Other Types of Inhibitors
4.1. Propeptides of Papain-Like Cysteine Proteases

Propeptides of papain-like cysteine proteases are in their essence inhibitors attached
to the framework of the mature protease structure [134,135]. They are not entirely specific
to their cognate enzyme and may inhibit other enzymes in the family [136]. All propeptides
share the same architecture. They fold around the L-domain of the mature enzyme, as
shown for the propeptide of cathepsin B (Figure 3a) ([98], PDB code 3PBH, Table 4).
Exceptionally, the papain-like enzyme is shown in an orientation in which the active site
cleft runs from left to right (standard view is from bottom to the top), which brings the
so-called R- and L-domains to the bottom and top of the image. They wrap around the
R-domain of the mature part of the enzyme. They build an N-terminal, predominantly a
helical domain of various sizes, which binds to the surface of the L-domain of the enzyme
on the prime side (left in the figure) and enters the active site cleft with an α-helix ending
above the pair of catalytic cysteine and histidine residues (colored red). Then, the chain
continues in the direction opposite to substrate binding along the active site and turns down
where it joins with the enzyme’s N-terminus. Several structures of proenzymes of papain-
like proteases (Table 4) have been determined (procathepsins B ([109], PDB code 1MIR; [98],
PDB code 3PBH), L ([106], PDB code 1CJL, 1CS8), H ([113], PDB code 6CZK/6CZS), K ([110],
PDB code 7PCK; [111], PDB code 1BY8), and S ([112], PDB code 2C0Y), and propapain
([107], PDB code 3TNX)); among them, the propeptide of procathepsin X appears the
shortest ([101], PDB code 1DEU). Table 4 shows the zymogens.

Its N-terminal domain is composed of a short peptide only, for which the reactive
site attachment is strengthened by a disulfide formed between the reactive site C31 and
propeptide C10P. In contrast, the propeptide of cathepsin L has the largest N-terminal
domain, composed of 96 residues. The role of N-terminal domains appears to be the same;
they anchor the propetide in the primed side of the structure to enable its stretched binding
along the active site cleft to the enzyme’s N-terminus.
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4.2. Cystatin E and Macrocypins

Cystatin E and macrocypins, such as macrocypins 1 and 3, can, in addition to papain-
like proteases, also inhibit legumain (known also as asparagine endopeptidase or AEP)
and macrocypin 4, and even the serine protease trypsin [49]. Among these, only the crystal
structure of the complex between cystatin E and legumain has been determined (Figure 3b)
([42], PDB code 4N6N). In the complex, cystain E makes contact with legumain with two
loops. The first, called the reactive center loop, encompasses residues from G37 to I41,
which bind across the reactive site in a substrate-like manner with the N39 side chain
binding in the pocket S1, which specifically recognizes asparagine residues and, under
acidic conditions, also accepts aspartic residues. The second loop from D72 to Q96, called
the exosite loop, includes residues from R74 to D81, which make contact in the region
of the primed substrate binding sites. Because the reactive site loop binds as a substrate,
Dall et al. [42] investigated the possible cleavage and observed that cystatin was indeed
cleaved after N39 and that, over time, the ratio between the cleaved and uncleaved cystatin
remained constant. On the basis of the subsequent analysis, which included chemical
modification of the reactive site C189 with S-methyl methanethiosulfonate, the authors
arrived at the conclusion that, at neutral pH, legumain behaves as a ligase and C189 is not
involved in this reaction. They assigned the catalytic activity to a different catalytic center,
which they assigned in an unorthodox manner to succinate 147, a chemical modification of
D147, clearly recognizable in the electron density map. In a follow-up theoretical work,
they confirmed the initial idea that cysteine is not involved in the ligase reaction, however,
the catalytic center was assigned to H148 [137], and succinate 147 carbonyl was used to
stabilize the side chain of H148. The ligase activity of cysteine proteases as a consequence
of the pH of the media may be a common phenomenon. It was also observed for papain at
pH above 9 [138] and cathepsin C at neutral pH [139,140].

4.3. Calpastatin

Calpastatin is a highly selective inhibitor of calpains, which are Ca2+-dependent mul-
tidomain cysteine proteases with the catalytic domain that shares some resemblance to the
papain fold. Calpains are involved in a number of processes including cell migration, cell
death, insulin secretion to synaptic function, and muscle homeostasis [141–145], whereas
under pathological conditions they have been linked to cell death by necrosis induced by
stroke [91], neuronal injury and perhaps Alzheimer’s disease [91,146], heart disease [146],
cataract formation [91,146], type 2 diabetes [91,146,147], cancer, and limb-girdle muscular
dystrophy type 2A [91,146,147].

The crystal structure of the complex between m-calpain and the first repeat of calpas-
tatin truncated to the residues from 119 to 238 ([99], PDB code 3DF0, Table 5) reveals that
calpastatin is a polypetide that adopts a three-dimensional structure in the presence of its
target, calcium-activated m-calpain (Figure 3c). Parts of the chain remained unstructured
even after binding to calpain. In Figure 3c, calpastatin is presented as a surface model
because the chain trace of the calpastatin coil appears too small to be resolved. The calpas-
tatin chain binds in the active site cleft in the direction of the substrate with L175 filling the
specificity pocket S1 (please note that we do not follow the authors numbering from the
publication, but instead follow the numbering of residues in the PDB file).
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Table 5. List of the available structures of the complexes between protein inhibitors and cysteine proteases: calpastatins,
securing, and designed ankyrin repeat proteins (DARPins).

Protein Inhibitor Cysteine Protease
MEROPS ID Name Organism MEROPS ID Name Organism PDB ID Reference

I27 Calpastatin
family

I27.001 calpastatin Rattus
norvegicus C02.002 calpain-2 Rattus norvegicus 3DF0 [99]

I27.001 calpastatin Rattus
norvegicus C02.002 calpain-2 Rattus norvegicus 3BOW [148]

securin Saccharomyces
cerevisiae S288C C50.001 separin Saccharomyces

cerevisiae S288C 5U1S/5U1T [100]

Interactor of
FizzY protein

Caenorhabditis
elegans C50.004 separase Caenorhabditis

elegans 5MZ6 [149]

DARPin synthetic
construct C14.006 Caspase-2 Homo sapiens 2P2C [150]

DARPin-3.4 synthetic
construct C14.003 Caspase-3 Homo sapiens 2XZD [151]

DARPin
C7_16

synthetic
construct C14.004 Caspase-7 Homo sapiens 4JB8 [152]

DARPin
D7.18

synthetic
construct C14.004 Caspase-7 Homo sapiens 4LSZ [153]

DARPin 8h6 synthetic
construct C01.060 Cathepsin B Homo sapiens 5MBM [154]

DARPin 81 synthetic
construct C01.060 Cathepsin B Homo sapiens 5MBL [154]

However, the chain then turns away from the catalytic residues, forming a cross-over
of the reactive site with the IKEGT sequence called “loop out”, colored red in Figure 3c,
and only thereafter following the active site cleft with I182 and a pair of proline residues
that lie at the N-terminus of a helix. The helix just beyond the active site cleft in the primed
side is reminiscent of cathepsin propeptide structures; however, their chains run in the
opposite directions so that the helix N-terminus of calpastatin, rather than the C-terminus,
is positioned near the active site. The exact sequence and length of the loop out region
appears crucial for inhibition because the deletion mutant of K178 abolishes any inhibition.

4.4. Securin

Securin inhibits separase, a protease involved in separation of sister chromatids during
chromosome segregation during somatic cell division at mitosis and meiosis [155–161]. The
crystal structure ([100], PDB code 5ULS, 5ULT) and the electron microscopy (EM) structure
of intermediate resolution ([149], PDB code 5MZ6) of the complex were determined almost
simultaneously (Table 5). Due to having a substantially more complete model and more
accurate insight, we have shown the crystal structure of Saccharomyces cerevisiae securin
(Figure 3d). Separases are large four-domain proteins with chains longer than 1600 residues.
The C-terminal domain is catalytic. There was a disagreement between Luo et al. [100] and
Boland et al. [149] regarding whether separase is a caspase-like enzyme. FatCat [162] found
that 146 residues could be aligned between the human caspase-3 and the catalytic domain of
S. cervisiae separase with an root mean square deviation (RMSD) of 3.1 Å and 8% sequence
identities. Hence, folds are superimposable. In addition, upon visual inspection, a high
similarity of the folds is clearly recognizable. However, a number of secondary structure
elements do not share deviations within the 3 Å of RMSD. Moreover, separase substrate
specificity differs from the specificity of caspases. In contrast to caspases, separase cleave
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substrates after an arginine at P1, which is, however, characteristic of metacaspases, and
glutamate at P4 [156,161,163]. In addition, loops surrounding the active site cleft provide a
different means of entry to the substrate and potential inhibitors. Hence, in addition to the
difference in molecular size and the number of domains, separases and caspases belong
to two different protease families according to MEROPS classification [15]. The structures
of the complex reveal that securin—which starts in the structure with M257 and runs to
E361, and is unstructured in the naked form—binds along and around all four domains of
separase, including the whole active site of the enzyme. No own secondary structure motifs
stabilize its conformation, which relies completely on binding to discontinuous grooves of
its target. Consequently, a substantial part of the securin structure in the complex remains
unstructured. When preparing Figure 3d, we decided to show securin in a similar fashion
to that of calpastatin in Figure 3c, that is, as a surface rather than a coil, due to its small
size in comparison to the large separase structure. The region P263 to R265 is colored red
to indicate the position of the reactive site. Although the securin chain binds in the active
site cleft in the direction of a substrate, it is not a substrate analogue. S3 is filled with I261,
however, the S1 pocket is instead filled with arginine covered with a proline residue P263,
conformational rigidity of which likely makes securin non-cleavable, and then turns away
from the catalytic pair C2110–H2083 and bypasses it. Securin regulates separase activity;
however, it interacts with all domains, including those carrying no proteolytic activity, and
hence its regulatory function is far more complex than the simple regulation of separase
proteolytic activity.

5. Mechanisms of Inhibition

The brief analysis presented here suggests that the protein fold does not present a
major obstacle for the evolution of a protease inhibitor. Numerous folds are adopted to
inhibit proteases. Simple and small folds exist, such as cysteine cathepsins’ propeptide
domains based on the α-helical folds, cystatins and p41 fragments using a β-sheet combined
with an α-helix, as well as ICPs from Plasmodium, staphostatin, chagasin, clitocypins and
macrocypins, and the exclusion domain of cathepsin C [119] using β-barrels of various
strand numbers and architectures. More complex folds also exist that contain several motifs
that combine α-helical and β-sheet elements, such as in serpin CrmA, p35, and XIAP. Some
of the inhibitors are embedded in larger protein chains, such as the p41 fragment, and some
appear as multiple repeats including kininogens [10], equistatin [58], and calpastatins ([99]).
In addition, peptide-like inhibitors exist without a folding pattern, such as calpastatin and
securin, which appear to fold only in contact with their target protease. Our understanding
of protein inhibitor protease interactions follows the understanding of the substrate enzyme
interaction models. The first model to explain the match between a substrate and an
enzyme, introduced by Fischer, used the “lock and key” analogy [164]. In the 1950s,
this model was enriched by Koshland with the ”induced fit” theory [165]. More recently
“conformational selection” was introduced to describe the dynamic of binding events [166].
From the behavior of partially or completely unfolded inhibitors, it appears that their
dynamic surpasses the extent of dynamics in the conformational selection model because
some protease inhibitors appear to lack discernable conformations in the pre-bound state.

Our survey of the structures of the majority of cysteine protease protein inhibitors
in complexes with cysteine proteases shows that the diversity of inhibition mechanisms
appears to be unlimited. It appears as if nature has found numerous means of successively
overcome almost any starting fold. Thus, it is to be expected that the folds first observed
in protein inhibitors, such as cystatins and serpins, may be used in proteins exhibiting
other physiological roles and functions, such as monellin, a sweet-tasting protein with
the cystatin fold (reviewed in [167]), or the non-histone architectural protein myeloid and
erythroid nuclear termination stage-specific protein (MENT), which participates in DNA
and chromatin condensation [168]. The challenge is whether we can do the same. Does
science provide enough insight, understanding, and tools to enable us to design protein
inhibitors of proteases for medical, agricultural, and industrial uses?
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To provide insight, we revisited the review of Bode and Huber of the interactions of
natural protein protease inhibitors [5]. This seminal work suggested that the era of the
substrate-like canonical serine protease inhibitors of different folds, and the same active
site binding geometry and product-like inhibition of carboxypeptidase inhibitor, ended
with complexes of stefin B with papain [21] and hirudin with thrombin ([169], PDB code
3HTC), which revealed non-substrate-like interactions. In addition, protein inhibitors of
cysteine proteases can be divided into two groups: those mimicking a protease substrate
and those that do not. To demonstrate the requirements imposed by the structure of the
active site cleft, we prepared Figure 4 with the canonical region of the BPTI in the complex
with trypsin to compare it with the modeled substrate in the active site of cathepsin L,
with the substrate analogue, inhibitor Z-Ala-Ala-Asn-chloromethyketone (ZAAN-CMK),
in the complex with legumain, and the loop out construct of calpastatin. The canonical
conformation of BPTI and the substrate model of cathepsin L, as well as ZAAN-CMK, all
bind in an extended conformation along the active site cleft in the direction of the N- to
C-peptidyl termini running from left to right. The up and down directions of the side
chains clearly demonstrate the opposite patterns. Using the same alternate red and orange
coloring for the surface of substrate-binding sites from S3 to S2′, one can expose a reverse
color pattern between the active sites of trypsin (Figure 4a) and legumain (Figure 4c) on
the one side and cathepsin L (Figure 4b) on the other. Whereas the trypsin and legumain
upper parts of the surfaces are red and lower orange, the opposite coloring pattern is
present in the cathepsin L surface. The orange S1 pocket pointing inwards in trypsin is the
structural feature that dominates its arginine/lysine specificity, similar to the S1 pocket
in legumain with asparagine/aspartate specificity, whereas the S1 in cathepsin L has no
pocket—it is merely a surface to which substrate side chains can attach from a side. Hence,
papain-like proteases provide significantly less structural restraints and enable broader
selectivity of residues at P1. There is one important consequence of the shape and position
of the S1 binding site, namely, the presence of the S1 pocket that requires the substrate P1
residue side chain to point away from the substrate surface—that is, towards the inside
of a protein substrate or towards the solvent in the case of structural restraints free of
peptide chains. This suggests that cathepsin L-like substrates must exhibit considerable
flexibility to be able to adopt their binding geometry to the active site of cathepsin L–like
protease. As a consequence, inhibitors of papain-like cysteine proteases cannot mimic a
“canonical” substrate-like geometry because it embeds flexibility of the putative “canonical”
region. Hence, their inhibitors also cannot mimic a substrate without being cleaved. We
are thereby compelled to suggest that protein inhibitors targeting papain-like proteases in
a substrate-like manner do not exist. Serpins are no exception to this rule, because they
do not bind their target papain-like protease in a stable canonical conformation, but are
essentially suicide substrates that, rather than remaining bound, use a flexible reactive site
loop to pull out a part of catalytic site before the reaction can be completed, and remain
loosely attached to the enzyme outside the immediate active site region, as indicated by
the structure of the trypsin anti-trypsin complex [124]. Serpins are a cross-class type of
protease inhibitors because they can pull out the catalytic residue using the ester bond-
formed nucleophilic residues, such as serine and cysteine. Because ester bonds attached
to the enzyme cannot be formed with the solvent molecule, which plays the role of a
nucleophile in aspartic/glutamic and metalloproteases, we are therefore unlikely to find a
serpin inhibiting these two classes of proteases.
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Figure 4. Substrate and substrate-like binding. Peptidyl substrates with their positions marked are shown as ball (nitrogen:
blue, oxygens: red, carbons: cyan) and stick (cyan) models on the background of the protease surface. The surface is white
with the exception of the substrate binding sites S3, S1, and S2′, respectively corresponding to substrate positions P3, P1,
and P2′ colored orange, and S4, S2, and S1′ respectively corresponding to substrate positions P4, P2, and P1′ colored red.
The figure was prepared using MAIN [35] and rendered with Raster3d [36]. (a) Canonical conformation of BPTI peptide
bound to trypsin ([24], PDB code 2TGP). BPTI peptide is shown as a ball and stick model on the background of trypsin
structure shown in white, with the exception of the substrate-binding sites surface from S3 to S3′ colored alternatively red
and orange. (b) Substrate model bound to cathepsin L. The cathepsin L model was used from a previous study [11]. (c)
Peptidyl inhibitor bound to legumain ([170], PDB code 4AWB). Z-Ala-Ala-Asn (ZAAN) binds to the non-prime region of the
active site cleft. (d) Calpastatin loop out region bound to calpain-m ([99], PDB code 3DF0). The 172–185 region of calpastatin
is shown as a coil for the main chain trace, and a ball and stick model for side chains on the background of the protease
surface. The calpain surface was generated with the residues from S241 to V253, I260, and Q261 excluded to enable the view
in the active site cleft. The surface of the reactive site residues C105S and H262 is purple.

Overall, the division of proteases according to those with the S1 binding site shaped
as a pocket, and those with the S1 binding site loosely formed at the surface, enables
identification of the families of proteases that can be targeted with protein inhibitors that
bind in the active site cleft in a substrate-like manner. Among the proteases inspected here,
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only papain-like cysteine proteases do not possess an S1 binding pocket. This explains
why protein inhibitors apply combinations of loops or chain-loop constructs to occlude
the reactive site, while binding into the active site cleft of their targets. However, when
the concept of spanning the active site by a peptidyl chain is applied, as in the case of
propeptides, the chain can only run in the direction opposite to the substrate binding.

For inhibition of the families of proteases that possess S1 shaped as a specific binding
pocket, there appear to be fewer restraints in the concept. It appears that the S1 binding
pocket implies smaller dynamics of a peptidyl substrate, and thus inhibitors can implement
a single chain that spans the active site and still bypass the catalytic site. Among these are
solutions such as “loop out” in calpastatin (Figure 4d) and specific uncleavable sequences
with residues at P1, such as glycine in staphostatin B and proline in securin. The mechanism
of cystatin inhibition of legumain is the closest to the “canonical” conformation of serine
proteases because it applies the substrate-like binding, however, in combination with a
loop. In concept, this is similar to the p35 inhibition mechanism of caspases. P35 uses
residue D87, which remains bound to the enzyme after cleavage. This concept is, in turn,
similar to the Nlef inhibition mechanism. Nlef binds with its last four C-terminal residues
in the non-primed part of the caspase active site cleft and provides the negatively charged
C-terminal G199 to bind in the S1 pocket.

6. Concluding Remarks

In the age of protein engineering, we would like to go beyond repurposing natural
design. We would like to apply our knowledge and understanding to the design of protein
inhibitors that regulate, mark, or block the activity of proteases in biological systems.
We found no inhibitors in clinical trials or in use as a drug (WHO International Clinical
Trials Registry Platform ICTRP: https://www.who.int/ictrp/en/; ClinicalTrials.gov:
https://clinicaltrials.gov/ct2/results?cond=COVID-19). Of interest, however, Novartis
developed a small molecule inhibitor, LCL-161, a second mitochondria-derived activator
of caspase (SMAC) mimetic, which binds to XIAP and loosens the binding of XIAP to
caspase-9, thereby promoting cell apoptosis [171]. LCL-161 is in clinical phase II for the
treatment of breast cancer. We are still at the beginning of the “de novo” design of proteins;
however, we are capable of adopting existing concepts found in nature. For substrate-like
inhibitors that bind to the non-primed part of the active site cleft, the simplest approach
appears to be to tap the substrate specificity with high throughput screens such as [172], and
build these sequences into the inhibitor of interest. Serpins, baculovirus p35, macrocypins,
Nlef and likely others, including BPTI, could be used to engineer the desired specificity.
Serpins appear to be an ideal scaffold because their flexibility and unique mechanism likely
address every protease class that contains a reactive site nucleophile capable of forming
ester intermediates. For example, Whisstock and his team engineered α1-antitrypsin to
inhibit cysteine cathepsins L, V, and K [173]. Moreover, the scaffold of stefins has also been
used to develop a targeted drug delivery system [174] and to generate binders for proteins
not related to cysteine proteases [175,176]. The binding loop of cystatins was engineered
in plant cyclotide, a 35-residues-long cyclic peptide cross-linked with three disulfide
bonds called McoTI-II, and reached µM binding [177]. However, to engineer tight binding
inhibitors of papain-like proteases (in addition to serpins) on the basis of non-substrate-like
approaches, generic tools should be utilized, including antibodies or structural repeats
such as designed ankyrin repeat proteins (DARPins), which were engineered to inhibit
cathepsin B in the pM range. These were found to have a substantially higher affinity than
those shown for any of endogenous inhibitors [154]. One of the most studied protein serine
protease inhibitors, BPTI, under the name aprotinin, has been in and out of and again
in use in surgery to slow fibrinolysis (blood clot degradation) during complex surgical
procedures. Recently, reexamination of its potential in the treatment of pancreatitis was
encouraged by analysis of previous studies, which argued that previous clinical studies
lacked an adequate biochemical background [178]. It appears that the technology and
knowledge of protein inhibitor engineering has not yet reached a level comparable to that

https://www.who.int/ictrp/en/
ClinicalTrials.gov
https://clinicaltrials.gov/ct2/results?cond=COVID-19
https://clinicaltrials.gov/ct2/results?cond=COVID-19
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of small molecule design. One obstacle is the specificity of binding. Protein inhibitors do
not inhibit a single protease molecule, but usually bind to a group of related enzymes with
different affinities. Nevertheless, we believe that the potential exists. Most mechanistic
studies mentioned in this review targeted the main interaction regions within the vicinity
of the reactive sites. Only a few studies, such as the study of interactions between the p41
fragment and cysteine cathepsins [49], systematically addressed the binding affinity of an
inhibitor against a group of related enzymes using site-directed mutagenesis. We hope
that the analysis and understanding of interactions between protein inhibitors and their
protease targets presented here may encourage and assist in the application of protein
inhibitors in medical, agricultural, and industrial applications.
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Appendix A

Table A1. Compiled kinetic constants Ki for the comparison of inhibitors potency presented as ranges of values reported by the researchers in the publications. (a) Ranges of binding
constants for cathepsin inhibitors Ki (nM). (b) Range of binding constants for caspase inhibitors Ki (nM). (c) Ranges of binding constants for papain and similar protease inhibitors Ki (nM).
(d) Ranges of binding constants for the small group of protease inhibitors Ki (nM).

(a)

Inhibitors of
Cathepsins Ki (nM) Cathepsin B Cathepsin L Cathepsin

H
Cathepsin

K Cathepsin S Cathepsin
V Cathepsin C Cathepsin

X
Cathepsin

F References

Stefin A 1.79->10,000 0.0034–1.3 0.069–
2400 0.053–0.27 1.1–5340 1.7 [34,56,174,179,180]

Stefin B 73 0.23–13 0.14–930 >250 [11,34,179,181]

Cystatin 101 11.5 0.63 25.4 [32]

Cystatin A 8.2 1.3 0.31 0.05 33 [6,30]

Cystatin B 16–73 0.23 0.58 0.07 0.23 [6,30,46]

Cystatin C 0.25–18,000 <0.02 <0.005–
1.8 0.008 0.5–3.5 12 [6,23,31,34,38,179,

182–184]

Cystatin Chicken 0.07–4 0.019 0.064 0.35 15 [6,27,31,98,179]

Cystatin D >1000 5.8–25 7.5–18 0.24 [11,30,38,182,183]

Cystatin E 32 [182]

Cystatin E/M 31–32 [38,183]

Cystatin F >1000 0.31 [38,183]

Cystatin SN 19 [30]

Kininogens HMW 400 0.019–0.109 1.1 [6,11,27,183]

Kininogens LMW 600 0.017–0.048 0.72–1.2 >130 >1000 [6,30,179,185]

Kininogen segment 1 >100 [6]

Kininogen segment 2 0.14 [6]

Kininogen segment 3 0.005 [6]

Falstatin 0.032 0.052 0.025 [44]

Chagasin 0.35–100 0.039–0.35 15 2 [32,37,38,46,47,51]
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p41 fragment >1000 0.00149–0.01 5.3 0.09 0.27–208 0.0072 >1000 0.51 [11,55,186]

Clitocypin >1000 0.02–0.03 0.02–0.03 2.2–3.2 0.08–1.9 [11,40,49,55,70,186]

Macrocypin 515 3.81 370 4.5 47.1 8.5–12.6 [40,49]

Macrocypin 1 490 0.64 100 170 23.1 0.69–12.5 [40,49]

Macrocypin 3 >1000 0.31 24 17.5 5.1 0.45–3.43 [40,49]

Macrocypin 4 125 2.76 32 21.8 6.3 1.44–10.2 [40,49]

Serpins 35.85–71.06 [81]

Equistatin 1.4 0.051 [58]

Leupeptin 0.37 0.52 3.2 0.64 [32]

Saxiphilin 1.67 0.02 [58]

Cysteine proteinase inhibitor 15.8–281 0.062–3.607 [64,185,187]

Propeptide Cathepsin K >600 3.6 5.5 6.3 [136]

Propeptide Cathepsin L >600 0.12 0.27 65 [136]

Propeptide Cathepsin S >600 0.46 7 7.6 [136]

Propeptide Cathepsin B 0.4–64 [134]

Propeptide Cruzipain 2.05 5.18 0.032 [188]

(b)

Inhibitors of
Caspases
Ki (nM)

Caspase-
1

Caspase-
2

Caspase-
3 Caspase-4 Caspase-

6
Caspase-

5 Caspase-7 Caspase-
8

Caspase-
9 Caspase-10

Pro-
Caspase

7
References

XIAP <0.4-
>1000 <0.05->1000 [102]

XIAP BIR2
BIR3 3 1 [189,190]

XIAP BIR3 >1000 >1000 13 [189,190]

XIAP BIR1 >1000 >1000 [189]

XIAP BIR1
BIR2 3 1 [189]
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XIAP BIR2 <0.4-
>1000 <0.05->1000 [83,91,102,189]

MLBIR 3200 [190]

MLBIR-Q <<10–4500 [190]

MLXBIR3 <<10–960 [190]

p35 9 0.11–
34,000 0.38 1.8 0.48–400 7 [85,114,191]

Serpin
Darpin
AR_F8

0.29 [150]

Serpin
DARPin

D3.4
3.49–16.8 [151]

Serpin
DARPin

D3.8
6.7 [151]

Serpin
DARPins

D7.18
144 295 [153]

Serpin
DARPins

D7.43
24.7 32.2 [153]

DARPin 33–597 [152]

Serpin
SERP2 0.1–0.2 0.5–7.4 1.3–200 [130]

CrmA 0.01 >10,000 500–1600 1.1 110–1300 <0.1 >10,000 <0.34 <2.3 17 [129–132]

Falstatin 376 80 [44]
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(c)

Inhibitors of Proteases
Ki (nM) Papain Calpain Calpain-1 Falcipain Falcipain-

2 Falcipain-3 Ficin Cruzi-pain Legu-main Actini-
din References

Stefin A 0.019–
87.20 0.021–0.072 [174,179,180,192]

Stefin B 0.12–110 0.06 [11,34,179,181,192]

Cystatin 6.5 100 [32]

Cystatin A 0.019 >10,000 [6,7,30]

Cystatin B 0.034–
0.12 >10,000 [30,46]

Cystatin C 0.00001–
11 >10,000 0.0013–29 0.0048–0.014 19-

≥40,000
[6,7,23,38,179,182,

184,192,193]

Stefin A 0.019 0.0072 [11]

Stefin B 0.12 0.06 [11]

Cystatin Chicken 0.00006–
0.005 >10,000 0.00005 0.001–0.0028 [6,27,31,179,192]

Cystatin C 0.00001–
1.7 23–29 0.014 1100–

40,000 [11,23]

Cystatin D 0.9–1.2 [7,11,38,182]

Cystatin E 0.39 [182]

Cystatin E/M 0.39–0.46 [38,183]

Cystatin F 1.1 [38,183]

Cystatin S 108 [7,30]

Cystatin SA 0.32 [7,30]

Cystatin SN 0.016 [7,30]

Kininogens HMW 0.02 [6,185]

Kininogens LMW 0.015–
0.017 1 0.041 [6,30,179,185,192]

Kininogen segment 1 >100 >100 [6]
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Kininogen segment 2 0.083 1 [6]

Kininogen segment 3 0.03 >100 [6]

Falstatin 53.5 0.196 0.021–
0.045 0.223 [44]

Serpin B3 220.48–
293.49

277.27–
338.11 [81]

Chagasins 0.013–
0.036 1.7 4.8 0.062 0.0067–0.095 [32,37,38,46,47,51]

p41 fragment 1.4 0.058 [55,186]

Clitocypin 2.5–6.2 7.1–21.5 [40,49,70]

Macrocypin 5.04 110 [40,49]

Macrocypin 1 0.95 3.38 [40,49]

Macrocypin 3 0.12 9.17 [40,49]

Macrocypin 4 0.19 2.86->1000 [40,49]

205-residue N-terminal
prodomain [105]

Equistatin 0.57-
>1000 [58]

Leupeptin 0.2 0.3 [32]

Phosphonoformate [194]

Saxiphilin 1.72 [62]

Cysteine proteinase
inhibitor

0.034–
0.35 8.7–37.1 [37,64,185,187]

Propeptide Cathepsin K >600 [136]

Propeptide Cathepsin L >600 [136]

Propeptide Cathepsin S [136]

Propeptide Cruzipain 0.018–0.2637 [188]

Propeptide Cathepsin B 2800–
5600 [134]
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(d)

Inhibitors of Proteases Ki
(nM)

Vivapain-
3

Berghepain-
2

Vinckepain-
2

Knowlepain-
2 Gingipain FosA Leishmainia mexicana

CPB2.8∆CTE Brucipain Thrombin References

Falstatin 0.065 0.048 0.15 0.078 [44]
205-residue N-terminal

prodomain 6.2 [105]

Phosphonoformate 400 [194]

ICP 0.071–0.495 [37,64,187]

Propeptide cruzipain 0.0163 [188]

Hirudin 0.00001–
0.01 [169]
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69. Mihelič, M.; Turk, D. Two decades of thyroglobulin type-1 domain research. Biol. Chem. 2007, 388, 1123–1130. [CrossRef]
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