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Abstract

Following injury to the peripheral and central nervous systems, tissue levels of transforming

growth factor (TGF)-β1 often increase, which is key for wound healing and scarring. How-

ever, active wound regions and scars appear to inhibit process outgrowth by regenerating

neurons. We recently showed that corneal wound myofibroblasts block corneal nerve regen-

eration in vivo, and sensory neurite outgrowth in vitro in a manner that relies critically on

TGF-β1. In turn, delayed, abnormal re-innervation contributes to long-term sensory dysfunc-

tions of the ocular surface. Here, we exposed morphologically and biochemically-differenti-

ated sensory neurons from the ND7/23 cell line to TGF-β1 to identify the intracellular signals

regulating these anti-neuritogenic effects, contrasting them with those of Semaphorin

(Sema)3A, a known inhibitor of neurite outgrowth. Neuronal morphology was quantified

using phase-contrast imaging. Western blotting and specific inhibitors were then used to

identify key molecular mediators. Differentiated ND7/23 cells expressed neuron-specific

markers, including those involved in neurite extension and polarization. TGF-β1 increased

phosphorylation of collapsin response mediator protein-2 (CRMP2), a molecule that is key

for neurite extension. We now show that both glycogen synthase kinase (GSK)-3β and

Smad3 modulate phosphorylation of CRMP2 after treatment with TGF-β1. GSK-3β
appeared to exert a particularly strong effect, which could be explained by its ability to phos-

phorylate not only CRMP2, but also Smad3. In conclusion, TGF-β1’s inhibition of neurite

outgrowth in sensory neurons appears to be regulated through a highly-conserved signaling

pathway, which involves the GSK-3β/CRMP-2 loop via both canonical and non-canonical

mechanisms. It is hoped that by defining the signaling pathways that control neurite out-

growth in wound environments, it will become possible to identify optimal molecular targets

to promote re-innervation following injury.

Introduction

Nerve injuries pose many challenges to patients, ranging from mild discomfort to life-long

impairment due to pain, loss of sensitivity, motor function and/or autonomic control [1].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234950 November 24, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jeon K-I, Huxlin KR (2020) How scars

shape the neural landscape: Key molecular

mediators of TGF-β1’s anti-neuritogenic effects.

PLoS ONE 15(11): e0234950. https://doi.org/

10.1371/journal.pone.0234950
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While adult peripheral nerves can regenerate, reinnervation does not always recapitulate the

original anatomic distributions, nor do all patients with injured nerves regain appropriate

functions [2, 3]. Successful structural and functional regeneration depends on many factors,

including the intrinsic growth capacity of the injured cells, the presence of a local, permissive

environment and appropriate axonal guidance cues [4–6].

Wound environments are not generally permissive to nerve regeneration. One factor that

contributes to this phenomenon is transforming growth factor (TGF)-β1, which is normally

present at low levels in intact peripheral and central nervous systems, but increases massively

both proximal and distal to injury sites [7, 8]. TGF-β1 controls master switches for key events

in extracellular matrix formation and wound healing [9, 10], via both canonical, Small Moth-

ers Against Decapentaplegic (Smad) signaling and noncanonical pathways [11]. The increased

expression of TGF-β1 after injury plays positive roles by regulating the immune response,

modulating neuronal phenotype and regulating expression of growth factors important for

neuronal repair [12–14]. However, TGF-β1 also stimulates the formation of fibrotic scars at

the lesion site; this can be problematic for nerve regeneration, as scar-forming cells can inhibit

regrowth, plasticity and recovery of damaged neurons [15–18]. Scar formation is particularly

detrimental in the cornea, where it decreases transparency and the ability to see. The cornea is

also interesting in the context of TGF-β1-regulated scarring, because it is the most densely

innervated peripheral tissue in the human body [19]. Corneal nerves arise from the trigeminal

ganglion, and as schematically represented in Fig 1, are distributed through the anterior half of

the stroma and the epithelium. They are predominantly mechano-sensory and nociceptive,

and serve to protect the eye from outside elements [20–22]. Although corneal nerves are part

of the peripheral nervous system and able to regenerate, wounding of the cornea often results

in abnormal reinnervation, with surprisingly serious and long-lasting effects [23–30]. We

recently showed that corneal myofibroblasts, which differentiate largely from stromal kerato-

cytes in and around the wound site [31], inhibit the regrowth of corneal nerves into the wound

area [16, 18]–Fig 1. Key to the present experiments, this effect was reproduced in vitro, when

corneal myofibroblasts were co-cultured with neurons derived from the ND7/23 cell line, they

inhibited neurite outgrowth [16]. ND7/23 cells are created by fusing N18tg2 mouse neuroblas-

toma cells and neonatal rat dorsal root ganglion cells [32], and they are often used as an

immortalized proxy for peripheral [including corneal] sensory neurons because they are read-

ily differentiated by addition of nerve growth factor (NGF) [33–35]. Differentiated ND7/23

neurons extend neurites and express molecular markers that identify them as A-fiber

mechano-sensors and C-fibers [36]–two major classes of sensory nerves found in the cornea

and other peripheral tissues. Importantly, TGF-β1 was shown to be both necessary and suffi-

cient for the anti-neuritogenic effect of myofibroblasts on differentiated ND7/23 cells [16],

allowing us to now use this growth factor as a surrogate [in place of myofibroblasts] to define

molecular pathways that inhibit neurite outgrowth in pure neuronal cultures (i.e., cell-

autonomously).

Neurites are projections from the filopodia or lamellipodia of a neuron, which can subse-

quently become polarized into an axon or dendrite [37, 38]. During their elaboration, neurites

undergo stereotypical changes [39] that rely on the response of the intracellular cytoskeleton

to a variety of extracellular cues, including secreted factors [38]. Microtubules, cylindrical

polymers composed of α- and β-tubulin heterodimers, are the primary cytoskeletal elements

forming the core of cylindrical neurites [40]. Collapsin-response mediator protein-2 (CRMP2)

functions as a carrier of free tubulin heterodimers [41], which it delivers to the assembly-plus

ends of nucleating sites in growing microtubules, consequently promoting acetylation and

neurite extension. We previously reported that TGF-β1-induced reduction in neurite out-

growth by ND7/23 cells is associated with increased phosphorylation of CRMP2 [16]. One
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class of molecules previously shown to phosphorylate CRMP2 in developing central neurons

and a number of commercially-available neuronal cell lines is glycogen synthase kinase

(GSK)-3β [42, 43]. GSK-3s are Ser/Thr protein kinases whose GSK-3α and GSK-3β isoforms

are ubiquitously expressed [44] and play important roles in fundamental cellular processes

such as differentiation, proliferation, motility and inflammation [45]. The present set of exper-

iments asked if the inhibitory effects of TGF-β1 on neurite outgrowth occur through activation
(i.e., de-phosphorylation) of GSK-3β and whether this is the key event causing increased

CRMP2 phosphorylation, and the associated decreased neurite elongation (Fig 1). However,

because TGF-β1 is well-known to exert many of its effects through canonical Smad signaling

[11], we also investigated the role of this pathway in CRMP2 phosphorylation and GSK-3β
activation (summarized schematically in Fig 1).

Materials and methods

Culture and priming of ND7/23 cells

The neuronal hybridoma cell line ND7/23 (Sigma Aldrich, St. Louis, MO) was maintained in

Dulbecco’s modified Eagle’s medium (DMEM) (D6046; Sigma Aldrich) with 10% [vol/vol] of

fetal bovine serum (FBS; Sigma Aldrich) + 1% [vol/vol] penicillin/streptomycin (Corning Inc.,

Corning, NY). Cells were multiplied until passage 10 (freshly thawed cells were considered

passage 1). They were passaged by trypsinization (Corning Inc.) every 3–5 days, when approxi-

mately 70–90% confluent. Cells were seeded at a density of 5x104/cm2. After attachment, they

were washed twice with 1x Dulbecco’s phosphate-buffered saline (dPBS; Thermo Fisher Scien-

tific, Waltham, MA) and with serum free medium (SFM) and then incubated with SFM for 1

day to inhibit mitosis before adding nerve growth factor (NGF) [46, 47]. Such SFM-primed

cells were used in all experiments below, unless otherwise specified.

Fig 1. Cellular and molecular events impacting nerves after injury of the anterior cornea of a large mammal. The

schematic illustrates specific gaps in our understanding of signaling pathways mediating the anti-neuritogenic effects

of TGF-β1 on neurons addressed by the present experiments. Left panel: intact cornea. Right panel: damaged cornea.

https://doi.org/10.1371/journal.pone.0234950.g001
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Phenotypic characterization of SFM-primed ND7/23 cells after NGF

treatment

Recombinant rat NGF (rNGF, 556-NG-100, R&D Systems Inc. Minneapolis, MN) was used to

induce differentiation and neurite outgrowth in SFM-primed ND7/23 cells. SFM-primed ND7/

23 cells (6x105 cells/6cm primaria culture dish, Corning Inc.) were treated with 50ng/ml rNGF

+ 0.5% FBS. Phase-contrast images of each culture dish were captured using an inverted Olympus

IX73 microscope (Olympus Corporation of the Americas, Center Valley, PA) at 1, 3, 5 and 7 day

(s). Cells were treated with fresh media containing 50ng/ml rNGF every second day. After imag-

ing, western blotting was performed; whole cell lysates were fractionated by sodium dodecyl sul-

fate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a 0.2μm pore-size

nitrocellulose membrane (Millipore-Sigma, Burlington, MA). After transfer, the membrane was

cut into separate proteins according to molecular mass, and probed with antibodies against rabbit

monoclonal growth associated protein-43 (GAP-43; 1:2000; #ab75810, Abcam, Cambridge, MA),

mouse monoclonal neurofilament light polypeptide (NF-L; 1:1000; sc-20012, Santa Cruz Biotech-

nology, Dallas, TX), mouse monoclonal antibodies to anti-calcitonin gene-related peptide

(CGRP; 1:500; C7113, Sigma Aldrich), rat monoclonal antibodies to substance P (SP, 1:500;

MA5-17201, Thermo Fisher), and a mouse monoclonal antibody to acetylated α-tubulin (Ac-

Tub; 1:5000, 6-11B-1, Santa Cruz Biotechnology). Responsiveness to NGF was assayed by prob-

ing for the expression of tropomyosin receptor kinase A (Trk-A; 1:2000; #06–574, Millipore-

Sigma) [48]. Finally, we probed for changes in the expression of signaling molecules that could

mediate the anti-neuritogenic effects of TGF-β1 on ND7/23 cells: total (t)-GSK-3α/β (mouse

monoclonal antibody, 1:2000; sc-7291, Santa Cruz Biotechnology), and t-CRMP2 (mouse mono-

clonal antibody, 0.2ug-0.4ug/ml; C4G, Immuno-Biological Laboratories, Minneapolis, USA).

The expression of β-actin (mouse monoclonal antibody, 1:10,000; sc-166729, Santa Cruz Biotech-

nology) was used as a loading control.

Phenotypic characterization of ND7/23 cells after TGF-β1 treatment

To investigate the effects of TGF-β1 on neuritogenesis, we examined the morphology of ND7/

23 cells after 1 day in culture, and measured their relative expression of pGSK-3β/tGSK-3α/β
and pCRMP2/tCRMP2 using western blots. As a control, we contrasted the strength of TGF-

β1’ effects with those of Semaphorin 3A (Sema3A), a well-known inhibitor of neurite exten-

sion [49–51]. While earlier studies [49–51] found 4ng/ml Sema3A sufficient to produce 50%

collapse of DRG growth cones, 10ng/ml of recombinant Sema3A was necessary to exert a com-

parable effect in SFM-primed ND7/23 cells and was thus used in all experiments.

Quantitative analysis of neuronal polarity and neurite length. SFM-primed ND7/23

cells (8x104 cells/6cm primaria culture dish) were pretreated with 1, 10 ng/ml TGF-β1 (240-B-

010, R&D Systems) or 10ng/ml Sema3A (1250-S3-025, R&D Systems). After 1hr, either 0.5ng/

ml or 50ng/ml rNGF (R&D Systems) was added for 1 day. Phase-contrast images were cap-

tured using an inverted Olympus IX73 microscope (Center Valley, PA) under 20X magnifica-

tion. A 19-hole imaging template was used for analysis, covering ~8.6% of the dish area and

~100 cells/dish. The development of polarity by cultured cells can be divided into 5 stages [39,

40], but only stages 1 to 3 were evident after 1 day in our culture system (see examples in Fig

3A–3C). In Stage 1, short neurites emerge from the cell body, extending as protrusions and

lamellipodia (lamellipodial veil). In Stage 2, some lamellipodia are replaced by short (less than

10μm) neurites, which appear as flattened processes with extensive, protrusive activity at their

tips. In Stage 3, one of these neurites elongates at a faster rate, developing into an axon-like

process (at least 10μm longer than the other neurites) [52], causing the neuron to become

polarized. The CellSens imaging software (Olympus CellSens Standard ver. 1.12, Olympus)
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was used to manually tag and count the number of cells in Stages 1, 2 and 3 in each of the 19

photographs taken for each culture plate. For each of the neurons in Stages 2 and 3, we then

traced and measured the length of neurites extruded using the CellSens imaging software.

From these tracing, we counted the number of neurites >40μm in length (two-fold longer

than the average diameter of a cell soma) per image. These analyses allowed us to evaluate the

neuronal differentiation attained following exposure to different factors, as well as the procliv-

ity for significant (>40μm long) neurite extension.

Effect of TGF-β1 on GSK-3β signaling in ND7/23 cells. Passage 5, SFM-primed cells

(3x105cells/35mm dish) were treated with 50ng/ml rNGF in 0.5% FBS-DMEM for 1 day. They

were then washed with 1x dPBS and incubated in 0.5% FBS-DMEM. After 30min, cells were pre-

treated with either 10ng/ml of TGF-β1 or 10ng/ml Sema3A (as a positive control) for 30min

before adding either 0.5ng/ml or 100ng/ml rNGF for 1hr. The cells were processed for western

blots, which were stained using a rabbit polyclonal anti-pGSK-3βSer-9 antibody (1:2000; D85E12,

Cell Signaling Technology) to detect and quantify the expression of p-GSK-3β relative to that of

mouse monoclonal (total) t-GSK-3α/β (1:2000; SC-7291 Santa Cruz Biotechnology).

To determine if GSK-3β activity was a key regulator of CRMP2 phosphorylation, we used

the natural GSK-3α/β inhibitor, lithium chloride (LiCl), to block its activity [53]. Passage 4–6,

SFM-primed cells (3x105cells/35mm dish) were treated with 50ng/ml rNGF in 0.5%

FBS-DMEM for 1 day. The cells were then washed and pretreated with 10ng/ml TGF-β1 or

10ng/ml Sema3A with/without 10mM LiCl (Sigma Aldrich) for 1hr. Finally, the cells were

incubated with 100ng/ml rNGF for 1day before western blotting. A rabbit polyclonal anti-p-

CRMP2Thr-514 antibody (1:2000; STJ91107, St John’s Laboratory Ltd, London, UK) was used to

detect and quantify the expression of p-CRMP2 relative to that of total CRMP2 (see above,

Immuno-Biological Laboratories).

Role of Smad3 in TGF-β1/CRMP2 signaling in ND/23 cells. While Smad2 and 3 are pri-

mary canonical mediators of TGF-β1’s actions [11], Smad2 lacks a commercially-available,

specific inhibitor. As such, we focused our studies on the contributions of Smad3 by employ-

ing SIS3 (Specific Inhibitor of Smad3), which specifically blocks activation of Smad3 [54]. Pas-

sage 4–6 SFM-primed cells (3x105cells/35mm dish) were incubated with 50ng/ml rNGF for

1day, then washed and pretreated with 10ng/ml TGF-β1 with/without 1μM of SIS3 (Sigma

Aldrich) or 10 mM LiCl (Sigma Aldrich), the GSK-3β blocker, for 1hr. Higher concentrations

of SIS3 (2.5, 5 and 10 μM) proved cytotoxic to ND7/23 cells cultured for 1 day and were there-

fore not used in the present experiments. Finally, 100ng/ml rNGF was added before harvesting

and western blotting to check for the expression of p-GSK-3β/t-GSK-3α/β and of pCRMP2/β-

actin (see above for antibodies used).

Statistical analysis

When three or more intervention groups were compared, inter-group differences were assayed

with one or two-way ANOVAs, followed by Tukey’s post-hoc tests, as appropriate. When only

two groups were compared, two-tailed paired or unpaired Student’s t-tests were performed. A

probability of error of P<0.05 was considered statistically significant.

Results

ND7/23 cells become neuron-like after sequential treatment with SFM and

rNGF

When cultured with 10% FBS/DMEM, ND7/23 cells proliferated rapidly, with a strong ten-

dency to form clumps that were loosely attached to the culture dish and occasionally became
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free-floating (Fig 2A). When FBS was removed from the culture medium to block prolifera-

tion, the majority of the attached, clumped cells spread into a monolayer. After 1day of addi-

tion of rNGF, the cells began to display clear neurite outgrowth, with the majority belonging

to the Stage 1 phenotype. Over ensuing days, an increasing proportion of ND7/23 cells transi-

tioned to Stage 2 or Stage 3 morphologies (Fig 2B), similar to DRG neurons in culture [55].

After 7 days, ND7/23 cell cultures developed aggregations of rounded, phase-bright cell bodies

and an extensive network of dendrites that spread over the culture dishes’ surface between

these aggregations (Fig 2C).

We then asked if the morphological changes observed in ND7/23 cells were accompanied

by the appearance of neuron-specific markers and molecules involved in neurite extension

and polarization. Compared to undifferentiated ND7/23 cells (grown in 10% FBS, lane 1, Fig

2D), culture in SFM for 1 day caused an upregulation of GAP-43, Ac-Tub and CGRP (lane 2,

Fig 2D). Even more dramatic changes were seen in these molecules after rNGF was added

(lanes 3–6, Fig 2D). The relative expression of the NGF receptor TrkA was only seen to

increase after addition of rNGF (lanes 3–6, Fig 2D). NF-L and t-CRMP2 increased more

slowly, peaking at 7 days in culture (lane 6, Fig 2D). Although substance P was not expressed

by proliferating cells (lane 1, Fig 2D) and did not appear during the first 4 days of culture with

rNGF (lanes 3–4, Fig 2D), it was induced in detectable amounts after 5 and 7 days in culture

(lanes 5–6, Fig 2D). In contrast, the expression of t-GSK-3β and β-actin (the loading control)

remained relatively unchanged throughout (lanes 1–6, Fig 2D).

Fig 2. Phenotypic characterization of differentiated ND7/23 cells. (A) Phase-contrast image of ND7/23 cells

cultured under 10% FBS/DMEM (control) conditions (see lane 1 in D). (B) Phase-contrast image of ND7/23 cells

cultured in SFM (Serum-Free Medium) for 1 day, then re-plated with 0.5% FM (FBS+DMEM) + 50ng/ml rNGF for 1

day (lane 3 in D). (C) Phase-contrast photograph of ND7/23 cells cultured in SFM for 1 day, then re-plated in 0.5% FM

+ 50ng/ml rNGF for 7 days (lane 6 in D). Scale bar applies to all 3 photographs. (D) Representative Western blots of

ND7/23 cells treated with 10% FBS/DMEM (lane 1, Cont.), or grown in SFM for 1 day (lane 2) or in 0.5% FM+50ng/

ml rNGF for 1, 3, 5, or 7 days (lanes 3–6). The relative expression of TrkA, GAP43, acetylated α-tubulin (Ac-Tub),

NF-L, CGRP, substance P, and t-CRMP2 all increased when cells were exposed to rNGF, albeit at different rates. t-

GSK3 α/β expression appeared relatively stable. β-actin was used as a loading control.

https://doi.org/10.1371/journal.pone.0234950.g002
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Impact of TGF-β1 on neurite outgrowth

Having first established that differentiated ND7/23 cells express both TGF-βRl and TGF-βRll

in their soma and neurites (S1 Fig), we then assessed how TGF-β1 impacted neurite out-

growth. When SFM-primed ND7/23 cells were cultured for 1 day with minimal (0.5 ng/ml)

rNGF, the majority (~80%) of cells that extruded processes were in Stage 1 (Fig 3A), with the

remaining 20% evenly divided between Stages 2 and 3 (Fig 3B and 3C). If instead, these cells

were cultured with 50ng/ml rNGF for 1 day (Fig 3A–3C and 3E), the proportion of cells in

Stage 1 decreased (two-tailed paired t-test for 0.5 versus 50 ng/ml rNGF conditions: t3 = 4.33,

p = 0.023), while the proportion of Stage 3 cells nearly doubled (two-tailed paired t-test: t3 =
3.58, p = 0.037) The proportion of Stage 2 cells remained unchanged (two-tailed paired t-test:

ns). Addition of 1, 10ng/ml TGF-β1 or 10ng/ml Sema3A to cultures exposed to 50ng/ml rNGF

for 1 day maintained >80% of the cells in Stage 1 and kept the proportion in Stage 3 below

10%, in essence negating the impact of adding rNGF (Fig 3A–3C and 3E). There were no sig-

nificant differences between these 3 treatments (1, 10ng/ml TGF-β1 or 10ng/ml Sema3A) and

the low rNGF condition: a two-way ANOVA with repeated measures on 1 factor (Stages)

showed no significant effect of treatment (F3 = 0.28, p = 0.84), a significant effect of Stage (1

Fig 3. Inhibitory effect of TGF-β1 on neurite extension in differentiated ND7/23 cells. (A) Plot of percentage of

cells counted that exhibited Stage 1 morphology when cultured with different concentrations of rNGF, TGF-β1 or

Sema3A. Note the significant drop in the proportion of Stage 1 cells exposed to 50 ng/ml rNGF relative to all other

conditions. Inset shown typical morphology of Stage 1 ND7/23 neuron. (B) Plot of percentage of cells counted that

exhibited Stage 2 morphology under different culture conditions, as in A. The proportion of Stage 2 cells remained

relatively unchanged across conditions. Inset shown typical morphology of Stage 2 ND7/23 neuron. (C) Plot of

percentage of cells counted that exhibited Stage 3 morphology under different culture conditions, as in A and B. Inset

shown typical morphology of Stage 3 ND7/23 neuron. Note the significant increase in the proportion of Stage 3 cells

after exposure to 50 ng/ml rNGF and the lack of such increase in cells treated with NGF+TGF-β1 or Sema3A. (D) Plot

of the number of neurites of different lengths per plate of ND7/23 cells grown under the same culture conditions as in

A-C. Note the general increase in the number of neurites of all lengths>50μm long when cells are treated with 50 ng/

ml rNGF, and the lack of such increase when the cells are treated with additional TGF-β1 or Sema3A. � p<0.05 relative

to baseline (0.5ng/ml rNGF). E. Illustrations of phenomena shown in A-D using phase-contrast photographs of

cultured ND7/23 cells treated either with 50 ng/ml rNGF, or with 50ng/ml rNGF+1 ng/ml TGF-β1, or with 50ng/ml

rNGF+ 10 ng/ml Sema3A. Scale bar applies to all 3 photographs. S1: Stage 1 cells, S2: Stage 2 cells, S3: Stage 3 cells.

Graphs in A-D show means and standard deviations, with n = 4 in all cases except for the Sema 3A conditions, for

which n = 3.

https://doi.org/10.1371/journal.pone.0234950.g003
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versus 3, F1 = 1628.35, p<0.0001) and no significant interaction between the two (F3 = 0.48,

p = 0.703). Finally, the number of neurites of lengths 40–149μm paralleled the proportion of

cells in Stage 3 in each treatment group (Fig 3D). There were significantly more neurites 40–

149μm in length when ND7/23 cells were cultured with 50 than with 0.5ng/ml rNGF; a two-

way ANOVA with repeated measures on neurite length (40–49μm, 50–99μm or 100–149μm)

showed a significant effect of neurite length category (F2 = 20.64, p = 0.00013), of treatment

(F1 = 27.42, p = 0.0019) and no significant interaction (F2 = 1.32, p = 0.303). Neurites longer

than 150μm were very rare and their incidence appeared not to change dramatically under dif-

ferent treatment conditions (Fig 3D). Overall, the number of neurites >40μm went from 22.5

±3.3/plate in 0.5ng/ml rNGF to 45.8±8.7/plate in 50ng/ml rNGF. Addition of 1, 10ng/ml TGF-

β1 or 10ng/ml Sema3A to ND7/23 cells cultured with 50ng/ml rNGF negated the impact of

rNGF on neurite outgrowth, with total number of neurites >40μm remaining around 20/

plate, not significantly different than in the 0.5ng/ml rNGF condition (one-way ANOVA: F3 =
0.84, p = 0.4999). All in all, TGF-β1 appeared to have a similar effect on neuritogenesis as

Sema3A.

Effect of TGF-β1 on intracellular signals associated with neurite outgrowth

Consistent with the notion that GSK-3β activity is a key regulator of NGF’s neuritogenic effects

[56] (S2 Fig), 100ng/ml rNGF dramatically increased levels of p-GSK-3β (the inactive form)

while leaving levels of t-GSK-3 relatively unaffected (Fig 4A and 4B—lane2). As a result, there

was a significant increase in the ratio of p-GSK-3β/t-GSK-3 after treatment with 50-100ng/ml

rNGF (two-tailed Student’s t-test: t2 = 4.48, p = 0.046). Of note, the rNGF-induced increase in

p-GSK-3β/t-GSK-3 ratio could be blocked effectively by the addition of 0.6μg/ml anti-NGF

antibody (S2 Fig).

Fig 4. Modulation of GSK3β activity by TGF-β1 and Sema3A. (A) Representative Western blot of SFM-primed

ND7/23 cells treated with different concentrations of rNGF with or without TGF- β1 or Sema3A and probed with

antibodies against phosphorylated GSK-3β (at Ser9) or total GSK-3α/β. Levels of phosphorylated (i.e. inactive) GSK-3β
(lane 2) are increased after treatment with 100ng/ml rNGF compared to 0.5 ng/ml rNGF (lane1). Both 10ng/ml TGF-

β1 and 10ng/ml Sema3A blocked this increased phosphorylation of GSK-3β. (B) Plot of the ratio of p-GSK-3β/t-GSK-

3α/β normalized to levels obtained following stimulation with 100ng/ml rNGF and under the different conditions

shown in A. Data are means ± standard deviations. (C) Representative Western blot of SFM-primed ND7/23 cells

treated with 100ng/ml rNGF alone (lane 1), or with TGF- β1 or Sema3A with and without lithium chloride (LiCl), a

blocker of GSK-3β activity (see Fig 5). Both TGF- β1 and Sema3A cause an increase in levels of phosphorylated (p)-

CRMP2 compared to total (t)-CRMP2 levels (compare lane1 with lanes 2,3). Pre-treatment with LiCl (lanes 4 and 5),

which maximally phosphorylates (i.e. inactivates) GSK-3β prior to the addition of TGF- β1 or Sema3A completely

blocks the ability of these two molecules to generate p-CRMP2. (D) Plot of the ratio of p-/t-cRMP2 measured from

blots such as those shown in C and normalized to lane 2 (10ng/ml TGF- β1 condition). Values are means ± standard

deviations.

https://doi.org/10.1371/journal.pone.0234950.g004

PLOS ONE TGF-beta1 signaling in neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0234950 November 24, 2020 8 / 19

https://doi.org/10.1371/journal.pone.0234950.g004
https://doi.org/10.1371/journal.pone.0234950


Critical to our goals, addition of 10ng/ml TGF-β1 or 10ng/ml Sema3A (Fig 4A and 4B) to

SFM -primed ND7/23 cells cultured with 100ng/ml rNGF were about equally effective at

blocking the relative increase in p-GSK-3β. In fact, when the ratio of p-GSK-3β/t-GSK-3 was

normalized to levels attained following stimulation with 100ng/ml rNGF, there was no signifi-

cant difference between the effects of TGF-β1 and Sema3A (Fig 4B, two-tailed Student’s t-test:

t4 = 0.55, p = 0.612), both causing about a 30% reduction. A one-way ANOVA comparing

these 3 groups confirmed this, revealing a main effect of treatment (F(2,4) = 28.8, p = 0.00422)

with post-hoc Tukey HSD tests showing significant differences between rNGF and rNGF

+TGF-β1 (p<0.01), as well as between rNGF and rNGF+Sema3A (p<0.01), but not between

rNGF+TGF-β1 and rNGF+Sema3A.

Our prior works showed that TGF-β1 stimulation regulates phosphorylation of CRMP2 in

ND7/23 cells [16]. Here, we replicated this result, showing that addition of 10ng/ml TGF-β1 or

10ng/ml Sema3A to SFM-primed ND7/23 cells cultured with 100ng/ml rNGF were equally

effective at increasing levels of p-CRMP2, doing so by about 1.5-fold (Fig 4C and 4D). In fact,

when the ratio of p-CRMP2/t-CRMP2 was normalized to levels attained following stimulation

with 100ng/ml rNGF, there was no significant difference between the effects of 10ng/ml of

TGF-β1 and 10ng/ml Sema3A (Fig 4D, two-tailed Student’s t-test: t4 = 0.04, p = 0.970).

Since GSK-3β is a candidate kinase thought to regulate CRMP2 phosphorylation and thus,

its activity [42], the prediction is that when TGF-β1 and Sema3A decrease p-GSK-3β in ND7/

23 cells, this should be associated with a corresponding increase in levels of p-CRMP2. Indeed,

when SFM-primed ND7/23 cells were treated with 100ng/ml rNGF, the ratio of p-GSK-3β/t-

GSK-3β increased (lane 2, Fig 4A, and 4B), levels of p-CRMP2 were relatively low (lane 1, Fig

4C and 4D). In other words, CRMP2 was in its active (non-phosphorylated) form, associated

with neurite extension (see Introduction, Figs 1 and 6). When either 10 ng/ml TGF-β1 or

10ng/ml Sema3A were added, the relative levels of p-GSK-3β decreased (Fig 4A and 4B) and

those of p-CRMP2 increased (Fig 3C and 3D). Because levels of total GSK-3 and CRMP2

remained relatively unchanged, we concluded that an inverse relationship exists between levels

of p-GSK-3β and p-CRMP2 in differentiated ND7/23 cells.

We then critically tested this hypothesis using lithium chloride (LiCl), a natural GSK-3α/β
inhibitor, which is thought to work by activating an upstream protein kinase (AKT) and block-

ing protein phosphatases—actions that ultimately saturate the phosphorylation of GSK-3α/β
on Ser 21/9 [53]. We verified that pre-treatment of ND7/23 cells with 10mM LiCl blocked the

ability of both TGF-β1 and Sema3A to convert p-GSK-3β to GSK-3β; the end result was a

maintenance of high levels of p-GSK-3β/t-GSK-3 in the cells (lanes 4 and 5, Fig 4C). Associ-

ated with this effect, LiCl completely blocked the ability of both TGF-β1 and Sema3A to

increase p-CRMP2 relative to t-CRMP2 (compare lane 2–3 with lanes 4–5, Fig 4C and 4D). A

one-way ANOVA for p-/t-CRMP2 ratios across all treatment groups in this experiment

showed a significant main effect of treatment (F(4,8) = 8.3, p = 0.006), with post-hoc Tukey

HSD tests confirming significant differences between TGF-β1, Sema3A and TGF-β1+LiCl,

Sema3A+LiCl conditions (p<0.05 in all cases). Therefore, it appears that levels of p-GSK-3β
and p-CRMP2 are inversely and causally linked in ND7/23 cells, and that manipulations

which either increase (e.g. LiCl) or decrease (e.g. TGF-β1, Sema3A) p-GSK-3β levels impact p-

CRMP2.

Relative importance of Smad3 for TGF-β1’s effect on p-CRMP2

Since Smad2/3 signaling is a canonical mediator of TGF-β1’s actions, we asked what role this

pathway may play in TGF-β1’s ability to modulate levels p-CRMP2 and p-GSK-3β in differen-

tiated ND7/23 cells. First, we noted that TGF-β1 and NGF appeared to influence different
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phosphorylation sites on Smad3 (compare lanes 1 and 2, S3 Fig). For instance, TGF-β1

appeared to modulate phosphorylation of Smad3 on Ser-204, but not on Ser-423/425. Further-

more, the Smad3 inhibitor SIS3 blocked Smad3 phosphorylation by TGF-β1 but not NGF

(compare lanes 2 and 3, S3 Fig). LiCl, which blocks GSK-3β activity, blocked phosphorylation

of Smad3 on both Ser-423/425 and Ser-204, while application of SIS3 failed to alter levels of p-

GSK-3β (lanes 1–3, Fig 5A and 5C; see also S4 Fig); however, SIS3 did prevent TGF-β1 from

raising p-CRMP levels above baseline (lanes 1–3, Fig 5A and 5B). In fact, a two-tailed t-test

revealed no significant difference in the levels of p-CRMP2/β-actin in ND7/23 cells at baseline

(i.e., cultured in 100ng/ml rNGF) and after treatment with TGF-β1+SIS3 (t4 = 1.04, p = 0.357).

Nonetheless, the GSK-3β inhibitor LiCl exerted a much stronger inhibitory effect on p-

CRMP2 than SIS3, causing levels p-CRMP2 to drop about 4-fold below baseline levels and

about 7-fold below levels induced by TGF-β1 stimulation (lane 4, Fig 5A and 5B). A one-way

ANOVA across all treatment groups shown in Fig 5 revealed a significant main effect of treat-

ment (F(3,6) = 15.55, p = 0.0031) with post-hoc Tukey’s tests confirming significant differences

in normalized p-CRMP2 levels between baseline (100ng/ml rNGF) and TGF-β1+LiCl

(p<0.05), as well as between TGF-β1 and TGF-β1+SIS3 (p<0.05) and between TGF-β1 and

TGF-β1+LiCL (p<0.01). In summary, canonical Smad2/3 signaling does appear to contribute

to TGF-β1’s anti-neuritogenic effect in ND7/23 cells, but its contribution is smaller than that

from GSK-3β.

Discussion

In the present study, we developed an optimized protocol to generate morphologically and

biochemically-differentiated sensory neurons from the ND7/23 cell line. We then used these

differentiated neurons to detail the signaling pathways mediating the inhibitory effects of

TGF-β1 on neurite outgrowth. Specifically, we uncovered that TGF-β1 works via both canoni-

cal and non-canonical signals, with the latter appearing to exert the strongest influence on

CRMP2 phosphorylation, and consequently, neurite elongation.

ND7/23 cells become neuron-like after sequential treatment with SFM and

rNGF

Because our experiments were performed in ND7/23 cells, an immortalized cell line often used

as an proxy for peripheral sensory neurons [16, 33–36], it was essential to first attain reliable

differentiation of these cells. Neuroblastoma cells express few NGF receptors and can thus

have low sensitivity to this growth factor [57, 58]. We overcame this hurdle by first “starving”

ND7/23 cells with SFM for 1 day in order to increase responsiveness to NGF [55]. As a result,

cells began to reliably express high levels of TrkA upon subsequent exposure to NGF, sustain-

ing those levels across multiple (up to 7) days in culture. These cells also extended neurites,

becoming multipolar (Stage 1), then pseudo-unipolar (Stages 2–3). Neurite extension was

associated with increased acetylated α-tubulin (necessary for stable microtubule assembly), as

well as NF-L. In addition, differentiated cells expressed neuronal markers such as GAP43

(associated with growing neurites), CGRP and substance P, which characterize major sub-pop-

ulations of sensory nerves in the cornea [20]. Thus, in contrast with other neuroblastoma cells,

which can extend neurites, but do not become polarized [59], we successfully developed cul-

ture conditions that allowed us to differentiate ND7/23 cells into mature, polarized, sensory,

peripheral neurons.

Treatment of SFM-primed cells with 50ng/ml rNGF for 1 day decreased the proportion of

Stage 1 cells and increased the proportion of Stage 3 cells by a corresponding amount; the pro-

portion of Stage 2 cells remained unaffected. This suggests that NGF caused a proportion of
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Stage 1 cells to reach Stage 2 and almost immediately transition into Stage 3, showing the

greatest level of polarization with the extension of an axon-like process. Treatment of these

cells with either TGF-β1 or Sema3A, even in the presence of 50ng/ml rNGF, prevented neurite

elongation, and thus cell polarization. As such, there was no decrease in the proportion of

Stage 1 cells, nor increase in Stage 3 cells. While we recently showed that ND7/23 cells co-cul-

tured with corneal fibroblasts are sensitive to the effects of TGF-β1 [16], the cells in our prior

publication were not SFM-primed, nor as carefully differentiated and staged as the cells in the

present study. As such, we can now confidently state that TGF-β1 exert a strong, anti-neurito-

genic effect on sensory neurons differentiated from the ND7/23 cell line.

Molecular substrates of TGF-β1 ‘s anti-neuritogenic effects in

differentiated, sensory neurons

We began our investigations by ascertaining that SFM-primed, differentiated ND7/23 cells

strongly express both TGF-βRl and TGF-βRll in their soma and neurites. This confirms a sim-

ple molecular initiator for TGF-β1 signaling in these neurons, as previously reported for pri-

mary sensory neurons [60], and in contrast with some neuroblastoma cells, whose low

responsiveness to TGF-β1 was due to low levels of its receptor(s) [61]. Our earlier observation

that the inhibitory effect of TGF-β1 on neurite outgrowth is critically mediated by its receptor

[16] is consistent with studies in embryonic hippocampal and human iPSC-derived neurons

Fig 5. SIS3 decreases phosphorylation of CRMP2 without activating GSK-3β. (A) Representative Western blot of

SFM-primed ND7/23 cells pretreated with SIS3 (lane 3) and LiCl (lane 4) with TGF- β1 and probed with antibodies

against phosphorylated CRMP2 and GSK-3β (at Ser9) or total GSK-3α/β. Note that 1μM SIS3 significantly reduced

levels of p-CRMP2 (lane 3) without affecting levels of p-GSK-3β. (B) Plot of the ratio of p-CRMP2/β-actin normalized

to levels obtained following stimulation with 10ng/ml TGF-β1 (lane 2). β-actin was used as a loading control. (C) Plot

of the ratio of p-GSK-3β/t-GSK-3α/β normalized to levels obtained following stimulation with 100ng/ml NGF (lane 1).

Total GSK-3α/β was used as a loading control. All plotted data are means ± standard deviations over 3 experiments.

https://doi.org/10.1371/journal.pone.0234950.g005

Fig 6. Schematic diagram summarizing signaling pathways that mediate TGF-β1’s inhibition of neurite

outgrowth (in red). The relative roles of GSK-3β and Smad3 in regulating CRMP2 activity are highlighted, as are the

putative loci of action of LiCl on GSK-3β and of SIS3 on Smad3 in differentiated ND7/23 cells.

https://doi.org/10.1371/journal.pone.0234950.g006
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[62], in cerebellar granule neurons [63], in experimental diabetic neuropathy and in embry-

onic DRG cells [64]. However, TGF-β1 was reported to increase neurite length in differenti-

ated retinal ganglion cells [65], suggesting that the effect of TGF-β1 on neuronal

morphogenesis may be influenced by cell type, developmental state, health or disease, experi-

mental manipulation, as well as by the local microenvironment. Nonetheless, most of the evi-

dence in both central and peripheral nervous systems suggests that TGF-β1 has largely anti-

neuritogenic effects, and this is also the case in differentiated neurons from the ND7/23 cell

line. In fact, in these cells, present results show that TGF-β1 exerted the same level of inhibition

on neurite outgrowth as Sema3A [49–51], at the same effective concentration (10ng/ml). So

how does TGF-β1 exert its anti-neuritogenic effect in cultured, sensory neurons?

We previously showed that in ND7/23 cells, TGF-β1 increases phosphorylation of CRMP2

[16], a molecule that delivers free tubulin heterodimers to the assembly-plus ends of growing

microtubules, thus promoting acetylation and neurite extension [41]. Here, we asked how

TGF-β1 increased p-CRMP2, taking our cues from primary DRG cells, where Sema3A exerts

is anti-neuritogenic effect by increasing GSK-3β activity, causing phosphorylation of CRMP2

[42, 66]. Conversely, neurotrophin-induced axonal outgrowth in hippocampal neurons occurs

via decreased GSK-3β activity, which reduces phosphorylation of CRMP2 [42]. As such, it

appears that in many neuronal types, CRMP2 is a physiological substrate of GSK-3β [67, 68]

and that GSK-3β regulates neurite outgrowth through phosphorylation of CRMP2. In ND7/23

cells, treatment with either TGF-β1 or Sema3A prevented NGF-induced increases in p-GSK-

3β levels to a similar extent. Because this caused a simultaneous increase in p-CRMP2, it sug-

gests that modulating GSK-3β activity was key to regulating neurite outgrowth of differenti-

ated ND7/23 cells (Fig 6). Our experiments are the first to show that TGF-β1 and Sema3A

have comparable anti-neuritogenic effects—via GSK-3β/pCRMP2—in differentiated ND7/23

cells. Additionally, since the effects of TGF-β1 and Sema3A were similar in magnitude and

operated via the same intracellular pathways in ND7/23 cells as in other neuronal cell types

[42, 69, 70], we posit that neuritogenesis may be regulated through a very conserved signaling

pathway that relies on a GSK-3β/CRMP-2 loop (Fig 6).

Finally, the actions of TGF-β1 in both neurons and other tissues of the body are known to

be mediated by canonical Smad2/3 signaling [11]. Although not known to be regulated by

TGF-β1, Smad1 signaling, which is key for regeneration of peripheral sensory neurons, is criti-

cally regulated by GSK-3β [71]. Thus, we also asked if TGF-β1 stimulation recruited Smads

(specifically Smad3) to mediate its anti-neuritogenic effects in ND7/23 cells, and how this was

related to its regulation of GSK-3β activity. SIS3 did indeed suppress TGF-β1-induced phos-

phorylation of Smad3 in these neurons, just as it does in fibroblasts [54]. However, here, this

action prevented TGF-β1 from increasing levels of p-CRMP2, without affecting changes in p-

GSK-3β. In contrast, LiCl, which blocks GSK-3β activity, decreased Smad3 phosphorylation at

2 different sites (impacted by TGF-β1 [72] and NGF, respectively). That GSK-3β can phos-

phorylate Smad3 at Ser-204 was previously reported [72] but its ability to also influence Smad3

phosphorylation at Ser-423/5 is newly described here. Thus, it appears that GSK-3β not only

phosphorylates CRMP2 directly, it additionally phosphorylates (and activates) Smad3 (Fig 6).

This explains why LiCl, TGF-β1 and other ways of modulating GSK-3β activity have such a

strong effect on p-CRMP2 and neurite outgrowth. However, as Smad3 is not a kinase, how its

phosphorylation causes increased levels of p-CRMP2 in differentiated ND7/23 cells, and

whether it is sufficient and necessary, remain to be determined.

In conclusion, the present study used an optimized protocol to generate morphologically

and biochemically-differentiated sensory neurons from the ND7/23 line. In these cells, we

quantified the anti-neuritogenic effects of TGF-β1, contrasting them with those of Sema3A.

We identified a key role of GSK-3β and p-CRMP2 in mediating the effects of both molecules.
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The prevalence of a GSK-3β/CRMP2 loop for regulating neurite extension across a wide range

of neuronal types and species, suggests this to be a highly-conserved signaling pathway. Ulti-

mately, it also means that areas of central and peripheral nervous system damage, which are

characterized by dramatically-increased levels of TGF-β1 relative to the healthy environment,

provide a direct, highly-effective inhibitory stimulus to prevent neurons from rapidly innervat-

ing (or re-innervating) damaged regions. In the cornea and other tissues where scars form, the

region of fibrosis is denuded of sensory nerve endings, and thus, of sensation. This may be nec-

essary initially, to avoid the largely noxious stimulation that may result from exposure to mole-

cules characteristic of the wound environment. However, one could also envisage a time when

it would be desirable to restore normal innervation, a situation that also applies to the central

nervous system where axons may need to regrow through glial scars. Thus, understanding key

signaling pathways that control neurite outgrowth in wound environments, and the seemingly

ubiquitous nature of these pathways across neuronal types, should allow us to better target

interventions so as to promote re-innervation in a wide range of injury conditions. One option

of course, is to pharmacologically block TGF-β1’s binding to its receptor using for example,

SB431542 [16]. While this works well to restore neurite outgrowth in vitro, the danger in vivo
is that blocking all of TGF-β1’s effects may inhibit beneficial functions of this growth factor in

tissue repair. One alternative is to block CRMP2 phosphorylation by modulating the activity of

GSK-3β in neurons. LiCl is well known as a neuro-active drug, and as a non-selective blocker

of GSK-3β activity [53]. In the last decade, several selective, blood-brain-barrier penetrant

GSK3 inhibitors have been described (reviewed in [73]Among them is SAR502250 (a.k.a.

UDA-680), which was recently shown to exhibit neuroprotective activity in rodent model of

Alzheimer’s disease [74] Topical application of such pharmacologics to the cornea have not yet

been attempted. Nor do we know if topical applications to the ocular surface can sufficiently

target corneal nerve terminals, of whether more sophisticated, cell specific approaches (such as

transfection with genetically-encoded materials–e.g. [75, 76] are needed to ultimately manipu-

late GSK-3β activity in damaged, corneal nerves.
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