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Abstract

Understanding how genes, drugs and neural circuits influence behavior requires the ability to 

effectively organize information about similarities and differences within complex behavioral 

datasets. Motion Sequencing (MoSeq) is an ethologically-inspired behavioral analysis method that 

identifies modular components of 3D mouse body language called “syllables.” Here we show that 

MoSeq effectively parses behavioral differences and captures similarities elicited by a panel of 

neuro- and psychoactive drugs administered to a cohort of nearly 700 mice. MoSeq identifies 

syllables that are characteristic of individual drugs; we leverage this finding to reveal specific on- 

and off-target effects of both established and candidate therapeutics in a mouse model of autism 

spectrum disorder. These results demonstrate that MoSeq can meaningfully organize large-scale 

behavioral data, illustrate the power of a fundamentally modular description of behavior, and 

suggest that behavioral syllables represent a new class of druggable target.

Introduction

Animals interact with the world through freely-expressed behaviors whose content reflects 

sensory information, prior experience and internal state. The brain composes these complex 

patterns of action by concatenating stereotyped motifs of movement into meaningful 

sequences1,2. Characterizing how naturalistic behaviors unfold over time — and how the 

content of behavior is altered by experimental manipulations or disease — offers a powerful 
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lens to better understand how genes, receptors and neural circuits collaborate to enable brain 

function.

However, two practical challenges have hindered the effective use of naturalistic behaviors 

in the lab to understand the brain3,4. The first relates to measuring behavior, which in 

unrestrained animals often includes complex changes in pose and position. Recent technical 

advances are beginning to address this challenge, including the development of deep 

learning-based platforms (like LEAP, DeepLabCut, and DeepPoseKit) that accurately track 

user-specified points in behavioral videos, depth cameras that visualize mice in 3D as they 

freely behave, and miniaturized accelerometers that capture multi-axis head or body motion 

data5–11.

The second challenge relates to understanding behavioral data. Traditionally, behavioral 

neuroscience has relied upon summary statistics that are thought to reflect underlying neural 

or psychological processes of interest. Researchers studying in anxiety, for example, often 

place mice in the open field, and then take the number of center entries as a surrogate for its 

anxiety state; similarly, the total time struggling in a vat of water is taken to reflect a 

mouse’s level of helplessness12,13. Even under highly controlled conditions, however, these 

metrics tend to be unreliable (across mice, days, and labs), and their narrow dynamic range 

obscures drug-specific behavioral effects, preventing e.g., different drugs belonging to the 

same pharmacological class from being distingished14,15.

These limitations have prompted interest in developing unsupervised, data-driven methods 

that can discover the underlying structure of behavior, and characterize how that structure is 

altered by experimental interventions such as gene mutations or drug treatments4,16,17. We 

have recently developed one such method, referred to as Motion Sequencing (MoSeq), 

whose underlying model was inspired by the ethological insight that behavior is composed 

from components that are organized into probabilistic sequences2,9,18,19. MoSeq combines 

3D imaging and unsupervised machine learning to identify a set of reused and stereotyped 

sub-second 3D behavioral motifs out of which behavior is composed within a given 

experiment (e.g., rears, turns, head-bobs, etc, referred to herein as behavioral “syllables”), as 

well as the statistics that govern how syllables transition from one to another over time (i.e., 

behavioral “grammar”). Importantly, MoSeq recognizes syllables and grammar based upon 

latent structure present in the behavioral data, and therefore automatically learns the number 

and identity of behavioral syllables within any dataset, enabling it to flexibly characterize 

new or unexpected patterns of behavior without human supervision.

While MoSeq was designed to identify repeated patterns in behavioral data, nothing in the 

MoSeq algorithm is explicitly optimized to distinguish different patterns of behavior, or to 

identify behavioral relationships. To assess whether MoSeq can usefully organize large-scale 

behavioral data, here we generate behavioral diversity in hundreds of individual mice using 

neuro- and psychopharmacology, and then quantify the ability of MoSeq (and, as a 

comparator, traditional behavioral metrics) to predict information about drug identity, dose 

and class. These experiments reveal that MoSeq can accurately predict (and therefore 

distinguish) which of 30 drug-dose pairs any one of ~700 mice received, while 

simultaneously maintaining key information about behavioral relationships; we leverage 
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these characteristics to identify the specific on- and off-target effects of both established and 

candidate therapeutics in the CNTNAP2 mouse model of autism20. Taken together, this work 

demonstrates that MoSeq can effectively encapsulate complex behavioral phenotypes in 

large-scale behavioral data, and suggests that behavioral syllables represent a new category 

of therapeutic target for future drug development.

Results

To address whether the modular time-series description of behavior afforded by MoSeq can 

capture and organize behavioral variation in large-scale data, we acutely exposed mice to a 

panel of psycho- or neuroactive pharmacological agents at multiple doses known to 

influence behavior; this drug-based strategy was designed to modulate activity across many 

neural circuits and neuromodulator systems and to thereby elicit diverse patterns of action in 

a neutral environment, the circular open field (Figs. 1a–c, n= 673 mice total, Supplementary 

Table 1).

Two distinct behavioral summaries were computed for each imaged mouse. These included a 

“scalar” summary, composed of parameters typically measured using point tracking over 

standard 2D video, including distributions of length, speed and position; and a “MoSeq” 

summary composed of how often each behavioral syllable was used (Figs. 1d–e, 2a–c, see 

Methods and Extended Data Figs. 1- 2 for details regarding construction of behavioral 

summaries). Because imaging was performed using 3D cameras, the scalar summary was 

bolstered by included the centroid height distribution, information not typically available 

with 2D cameras or beam breaks.

Visual inspection of the scalar behavioral summaries for each mouse offered intuitive insight 

into drug-induced behavioral states. For example, high-dose haloperidol caused low average 

speeds and frequent long-term pausing (apparent as a speckled pattern in mouse position), 

consistent with its known cataleptic effects21 (Figs. 2a, 2b, 2e). In contrast, methylphenidate 

drove mice to the edge of the arena and substantially increased their velocity, consistent with 

its known stimulating properties22. MoSeq-based behavioral summaries captured a variety of 

sub-second stereotyped 3D actions (e.g., darts, rears, pauses, turns) that differentiated most 

drugs and doses from control (Figs. 2d, 2e, mean duration ± SD = 425 ± 726 ms, see 

Extended Data Fig. 3 for descriptions of behavioral syllables).

MoSeq enables effective behavioral classification

Scalar and MoSeq behavioral summaries for each mouse were submitted to a linear 

classifier to quantify the ability of each behavioral summary to distinguish each drug. As 

shown in Fig. 3, MoSeq outperformed traditional summaries at identifying individual drugs 

based upon behavior (MoSeq F1 = .62 ± .04 vs scalar F1 = .40 ± .05; F1 values represent the 

harmonic mean between precision and recall, and summarize the ability of a given method 

to capture true positives while rejecting both false positives and negatives). MoSeq was 

better at discriminating 14 out of the 16 drugs tested, including the saline controls (Fig. 3b 

and Supplementary Table 2, see Methods for the use of randomized cross-validation to 

assess model reliability and statistical significance). Although absolute performance was 

reduced, MoSeq was also more effective at predicting the specific drug-dose combination 
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each mouse was administered (Extended Data Fig. 4, Supplementary Table 3). Consistent 

with these classifier-based findings, the effective dimensionality of MoSeq, which measures 

its intrinsic capacity to describe behavioral variability, was higher than that for scalar metrics 

(Extended Data Fig. 4c). These experiments demonstrate that each drug elicits a specific 

pattern of behavior in treated mice, and that — across nearly all drugs tested — MoSeq is 

more effective at capturing drug-specific behavioral effects than traditional metrics.

The data that make up each behavioral summary constrain its ability to convey information 

about behavioral variability, raising the possibility that the specific composition of each 

summary limits its performance. To address this possibility, we modified both the scalar and 

MoSeq summaries to include additional measurements that were excluded in our initial 

analysis (such as acceleration, body angle, area, ellipticity and width in the case of scalar 

summaries, and syllable transition information for MoSeq). In neither case did performance 

exceed that of syllable usage-based MoSeq alone (Extended Data Fig. 5a). In addition, 

MoSeq outperformed scalar metrics regardless of whether the scalar data were subject to 

dimensionality reduction, whether the scalar data were lumped into more or fewer bins, or 

whether alternative classifier types were used to assess performance (Extended Data Figs. 5b 

and 5c).

These observations suggest that the time-series modeling approach used by MoSeq captures 

more relevant behavioral variance than simply aggregating behavioral data into histograms 

(as done by the scalar behavioral summary). To assess the importance of time-series 

modeling per se, we fed the frame-by-frame values of the parameters that make up the scalar 

behavioral summary to MoSeq, thereby identifying “syllables” based upon scalar 

measurements instead of the 3D imaging data. This hybrid scalar/MoSeq summary exhibited 

improved performance relative to the scalar summary, and yet was still worse than 

classification performed using 3D imaging data (Fig. 3c). We also subjected the 3D pixel 

data to KMeans clustering, thereby generating a summary in which behavior is characterized 

by how often mice adopt one of many possible 3D poses; this KMeans summary, in which 

behavior was clustered without regard to time, also significantly underperformed MoSeq 

(Figure 3D). These findings demonstrate that time-series modeling can substantially improve 

the performance of even simple scalar metrics, and that the 3D pixel data describing the 

mouse’s full pose dynamics contribute information important to behavioral classification 

that is absent from scalar metrics alone.

MoSeq separates treatment groups while capturing individual variation

Why is the behavioral summary generated by MoSeq effective at discriminating between 

closely-related patterns of behavior? In principle, there are two (non-mutually exclusive) 

possible reasons. First, MoSeq might primarily act to separate treatment classes (here, mice 

treated with a given drug or drug/dose combination); if this were the case, the separation 

among the mean MoSeq behavioral summaries for each class should be large, and greater 

than that observed when using scalar behavioral summaries. Alternatively, the mean class 

separation could be similar among summary types, but MoSeq might generate summaries 

with relatively low mouse-by-mouse variability, thereby reducing the confusion between 

drugs when assessed by the classifier.
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To explore these possibilities, we quantified the cosine distance that separated MoSeq 

summaries, and compared these distances to those observed using scalar summaries. This 

analysis revealed that the mean separation between mice treated with different drugs, or 

drug-dose combinations, was greater when using MoSeq (Figs. 4a and 4b, Extended Data 

Fig. 6). Surprisingly, the cosine distances that separate individual mice within a given 

treatment class — i.e., which all received the same drug — were also greater when using 

MoSeq than when using scalar summaries (Figs. 4a and 4b). Bootstrapping analysis 

demonstrated that these greater distances were not due to noise, but rather to bona fide 
behavioral differences between individual mice belonging to the same treatment class 

(Extended Data Fig. 7). Together these results demonstrate that MoSeq supports behavioral 

classification by increasing the separation (relative to other metrics) between different 

treatment groups, while at the same time maintaining information about the behavioral 

variability of individual mice within each treatment group.

MoSeq reveals behavioral relationships in large-scale datasets

These findings indicate that MoSeq effectively distinguishes patterns of behavior imposed 

by specific drugs. However, it is not clear whether MoSeq also captures information about 

drug-related behaviors that are shared across drugs, which could be diminished if MoSeq 

simply decorrelates representations for each mouse’s behavior; indeed, the greater overlaps 

between the representations of individual mice observed in the scalar summaries (Fig. 4c) 

could enable those summaries to better represent behavioral relationships. However, 

classifier analysis revealed that MoSeq was uniformly more effective than traditional metrics 

at identifying the pharmacological class to which a given drug belongs (moSeq F1 = .65 

± .04, scalar F1 = .42 ± .06, chance F1 = .12 ± 02, Figs. 5a and 5b).

Given that the notion of pharmacological class is not rigorous — as many drugs used in 

neurological and psychiatric practice are deployed for indications that cross diagnostic 

boundaries23 — we asked whether MoSeq or scalar behavioral representations could 

identify behavioral relationships independent of constructed categories. Indeed, the pairwise 

correlation matrices describing behavioral similarities and differences revealed behavioral 

relationships between drugs across distinct pharmacological classes (Fig. 4c). To explore 

drug relationships from a classification perspective, we removed a single drug from our 

dataset, and then built a linear classifier based upon the MoSeq or scalar summaries of the 

remaining drugs to identify those agents that were most behaviorally similar to the “held-

out” drug. By iteratively holding out each drug in the set, we could identify overlaps in the 

patterns of behavior evoked by all drugs in our dataset, and then compare the overlaps 

identified by MoSeq and scalars (Fig. 5c).

When applied to MoSeq summaries, this approach identified relationships among drugs that 

belong to the same class (e.g., modafinil/methamphetamine, haloperidol/risperidone), and as 

well three prominent inter-class relationships (e.g., methylphenidate (stimulant) /bupropion 

(anti-depressant), venlafaxine (SSRIs) /citalopram (serotonin non-selective reuptake 

inhibitor) and chlorpromazine (anti-psychotic) /alprazolam (anxiolytic)). These same drug 

relationships were observed when embedding the MoSeq behavioral summaries into a two-

dimensional space using Linear Discriminant Analysis for visualization purposes (LDA, Fig. 
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5d), but were weaker or absent when held-out confusion matrices were computed using 

scalar summaries. Interestingly, data-mining revealed that two of the inter-class pairs share 

clinical indications, while the third pair (alprazolam/chlorpromazine) shares sedation as a 

side effect23 (Supplementary Table 4, see Methods). Thus, MoSeq identifies relationships 

amongst drugs that both include and transcend traditionally-defined pharmacological 

classes; these behavioral relationships may in part reflect the observed effects of drugs in the 

clinic.

To pressure-test the notion that MoSeq can simultaneously capture useful information about 

behavioral similarities and differences, we generated dose response curves for three anti-

psychotic drugs — haloperidol, clozapine and risperidone — that all elicit a reduction in 

movement, albeit through different mechanisms; haloperidol and risperidone both 

antagonize the dopamine D2 receptor (D2R) and therefore trigger catalepsy, while clozapine 

and risperidone inhibit the 5-HT2A receptor (5-HT2AR), which is thought to lead to 

sedation24,25. Clozapine is also a high-affinity histamine H1 receptor antagonist, which 

contributes to its sedative effects24,25. Consistent with each of these agents antagonizing 

different receptors with distinct affinities24,25, classifier analysis demonstrated that MoSeq 

effectively distinguished nearly all drug-dose combinations (Extended Data Fig. 8a). Each 

drug altered a specific complement of behavioral syllables, many of which were unrelated to 

locomotion — e.g, grooming, rearing (Extended Data Fig. 8b); consistent with this 

observation, MoSeq could effectively classify the three drugs independent of their 

differential effects on velocity (Fig. 5e). Embedding the dose-response data using LDA 

revealed that at high doses risperidone and haloperidol converged upon a similar pattern of 

behavior distinct from that evoked by clozapine (Fig. 5f, compare darkest blue square, green 

triangle and red star). These results demonstrate that MoSeq can differentiate between 

catalepsy (i.e., haloperidol-typical behaviors) and sedation (i.e., clozapine-typical 

behaviors), which both reduce movement and are often confused in traditional behavioral 

assays26; the fact that at high doses risperidone acts predominantly as a cataleptic rather than 

a sedative suggests that its primary behavioral effects at high doses are caused by 

antagonism of the D2R rather than the 5-HT2AR (despite the higher affinity of risperidone 

for the 5-HT2AR relative to the D2R); importantly, this inference (drawn based upon MoSeq 

analysis alone) is consistent with the previous finding that locomotion is persistently reduced 

by risperidone in 5-HT2AR knockout mice26.

MoSeq identifies subsets of behavioral syllables that encapsulate phenotypes

The ability of MoSeq to effectively distinguish drug effects while maintaining information 

about related patterns of behavior raises the question of how drug treatments alter the pattern 

of expression of behavioral syllables. Each drug appeared to significantly alter a large subset 

of syllables when considered relative to control (Fig. 6a). However, LASSO regression 

revealed that most of the information required to tell individual drugs apart from each other 

resides in a small subset of syllables (typically 5, nearly always fewer than 15, Extended 

Data Fig. 9). These small groups of drug-characteristic syllables reflected the similarities 

and differences between drugs as identified via the “held-out” classifier, including within 

drug-class relationships (e.g., modafinil/methampehtamine) as well as across-class 

relationships (e.g., citalopram/venlafaxine) (Fig. 6b, see Supplementary Figs. 1, 2 for a 
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description of similarities and differences among drug-regulated and discrimination-relevant 

syllables).

In accord with its known role as a stimulant, all of the five most discriminant 

methamphetamine-related syllables encoded different forms of forward movement; three of 

these syllables overlap with the five most discriminant syllables for modafinil, with the two 

modafinil-specific syllables encoding exploratory behaviors, including a partial rear and a 

pause-and-head-flick motif (Supplementary Fig. 3). These observations demonstrate that 

modafinil shares at least some stimulant-related activity with methamphetamine, consistent 

with modafinil and methamphetamine acting through an overlapping set of molecular 

targets27,28; however, modafinil also recruited additional investigatory behaviors, consistent 

with modafinil engaging receptors distinct from those recruited by methamphetamine. 

Similarly, citalopram-related syllables encode forward movement and grooming behaviors; a 

subset of these syllables are shared with venlafaxine, which also recruited pausing and 

rearing behaviors not differentially up-regulated by citalopram (Supplementary Fig. 4).

Behavioral syllables enable objective assessment of interactions between genes and 
candidate therapeutics

Given its ability to identify specific drug-related behavioral effects, we asked whether 

MoSeq could characterize the ability of a drug to revert behavioral phenotypes in a disease 

model. To explore this possibility, we used MoSeq to phenotype mice mutant for the 

CNTNAP2 gene, which is associated with human autism20,29,30. Consistent with prior 

results, velocity measurements revealed that the CNTNAP2 mice are hyperactive20,31 

(Supplementary Fig. 5). MoSeq identified 16 behavioral syllables whose expression is 

statistically altered with respect to wild-type mice (Fig. 7a). Visual inspection revealed that 

many of these syllables would be predicted to be associated with a “hyperactive” phenotype 

(e.g., downregulated pauses, and upregulated micromovements and running); however, many 

high-velocity syllables were not affected by the CNTNAP2 mutation (data not shown), 

demonstrating that CNTNAP2 hyperactivity does not reflect generalized arousal, but instead 

is composed of a specific array of syllabic changes (Fig. 7a).

Previous experiments have shown that the CNTNAP2 hyperactivity phenotype can be 

reverted by treatment with risperidone, which is used clinically to treat hyperactivity and 

aggression in autistic patients20. Of the 16 behavioral syllables that define the CNTNAP2 

mutant phenotype, seven were statistically normalized by risperidone treatment, seven were 

partially reverted and two remained uncorrected (Figs. 7a–c). Despite not fully reverting the 

observed mutant phenotype, risperidone also altered a large number of additional behavioral 

syllables, several of which represent high velocity behaviors like running. These results 

quantitatively demonstrate that risperidone has a specific (albeit partial) effect on the 

phenotype induced by mutation of the CNTNAP2 gene, and a much broader set of side 

effects on normal behavioral syllables.

We also wished to test the utility of MoSeq for characterizing the on- and off-target effects 

of novel or previously-untested therapeutics in the CNTNAP2 model; to identify candidates, 

we took advantage of a repurposing dataset in which possible ASD therapies were 

nominated based upon the intersection of genome-wide association data and drug-induced 
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changes in gene expression32. From this list we identified two drugs, loxapine and sulpiride, 

that have not been previously tested in CNTNAP2 mutant mice and whose mechanisms of 

action overlap with — but are distinct from — risperidone (loxapine also antagonizes both 

the D2R and 5-HTR2A, but with a lower relative inhibition ratio than risperidone33, while 

sulpiride is a pure D2R antagonist).

Like risperidone, both sulpiride and loxapine reverted the gross hyperactivity of the 

CNTNAP2 mutant mice, as assessed by velocity measurements (Supplementary Fig. 5). 

However, MoSeq revealed that loxapine was less efficacious than risperidone at correcting 

CNTNAP2-specific syllables, and further recruited more side-effect syllables. In contrast, 

sulpiride exhibited nearly identical on-target effects with risperidone, but altered fewer off-

target syllables (Figs. 7a–c); importantly, with one exception the off-target syllables induced 

by sulpiride — which specifically antagonizes the D2R — overlapped with the broader set 

induced by risperidone. These data suggest that D2R antagonism is sufficient to revert the 

CNTNAP2 phenotype, and further that the risperidone-specific off-target effects (relative to 

sulpiride) are likely due to antagonism of other receptors, such as the 5-HT2AR 

(Supplementary Figs. 5 and 6). These experiments reveal that MoSeq can identify a syllabic 

fingerprint that characterizes complex behavioral changes in a disease model; this fingerprint 

can be usefully used both to quantitatively assess the intended and inadvertent effects of 

candidate therapeutic agents, and to deconvolve relationships between drugs, receptors and 

behavior.

Discussion

Before these experiments it was not apparent whether MoSeq is more like a Northern blot — 

a bespoke approach for understanding the relative expression levels of a small number of 

target RNAs from a limited set of samples — or RNASeq, which creates a broad and general 

representation of the transcriptome that can be effectively used to infer relationships 

amongst many different cell types and experimental interventions. This work reveals that 

MoSeq can parse experimentally-induced behavioral variability within large-scale and 

diverse datasets. Despite the fact that MoSeq is highly discriminative — and therefore can 

identify the specific behavioral effects of closely-related drugs and doses — it retains 

information about behavioral relationships, allowing drug categorization independent of 

presumed mechanism of action. These features also enable MoSeq to unveil the intersecting 

effects of gene and drug manipulations, even when the mechanistic consequences of those 

interventions are incompletely understood.

Drugs act at specific complements of receptors that selectively modulate the activity of 

neural circuits, which in turn cause changes in behavior. However, efforts to link drug effects 

to molecular mechanisms and behaviorally-relevant circuits have been significantly 

complicated by the low dimensionality, poor signal-to-noise, and lack of specificity of 

traditional behavioral metrics. The discriminative capacity of MoSeq suggests that it may 

ultimately enable receptor modulation to be causally mapped onto patterns of neural circuit 

activity and behavior, thereby allowing inferences to be drawn about the role of drug 

receptors in composing and shaping behavioral space. Our proof-of-concept experiments 

provisionally linking the differential expression of particular syllables to the modulation of 
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specific receptors (made possible by phenotyping different drugs with distinct but 

overlapping receptor specificities) suggest that this sort of mapping could also enable 

accurate predictions of drug mechanism of action from behavior alone.

We speculate that MoSeq outperforms traditional behavioral representations for four 

reasons. First, MoSeq organizes information about 3D pose dynamics based upon the 

inherent structure of the behavioral data, and in a manner that respects the observation that 

mouse behavior is both continuous and discrete. Second, MoSeq does not prespecify the 

number and identity of behavioral syllables, but instead learns these features on an 

experiment-by-experiment basis. Thus, the richness of the behavioral representation scales 

with the amount of observed behavioral variability, enabling MoSeq to summarize behavior 

in a manner that is simultaneously compact and expressive9,34. Third, MoSeq defines 

individual syllables in part based upon the order in which they occur, and thus leverages the 

sequential nature of naturalistic behavior3,35–37. And finally, recent work suggests that the 

dorsolateral striatum encodes syllable identity and is required to assemble syllables into 

coherent sequences11. Thus MoSeq may be particularly effective because it describes 

behavior, at least in part, in modular terms similar to those used by the brain to create it.

We explicitly chose to measure behavior in experiments in which mice explore featureless 

environments after acute drug exposure, reasoning that this represented a ground state in 

which behavioral differences should be difficult to quantify, thereby putting MoSeq to a 

rigorous test. It is clear that different patterns of behavior would be observed if mice were 

given drugs chronically rather than acutely, or placed in richer contexts that demand goal-

oriented behaviors. For example, one might expect chronic methamphetamine (which is 

highly addictive) and chronic modafinil (which is not) to be more distinguishable than was 

observed here with acute treatment alone23; similarly, drugs that influence frontal circuits 

(like anti-psychotics) might elicit greater behavioral differences in the context of social or 

stress assays. Furthermore, the relatively brief experiments carried out here almost certainly 

fail to capture the ability of many drugs (and associated neural circuits) to reshape behavior 

over long timescales. Future work will be required to assess the utility of MoSeq in long-

term behavioral assays or in assays designed to elicit specific psychological reactions, like 

the forced swim test or three chamber social assay.

Many of the chemical templates for currently used psychotherapeutics were discovered in 

the 1950s and 60s based upon their behavioral effects38. This led to the widespread use of 

behavioral phenotypes (ranging from open field entries to spider web geometry) to screen 

for candidate therapeutics39,40; however, limited by low resolution and high variability, these 

behavior-based approaches have generally failed to yield novel pharmacology. More recent 

drug development efforts have focused on identifying risk genes and using medicinal 

chemistry to actuate or inhibit those specific targets. This alternative strategy has also not 

been entirely successful, perhaps in part because most clinically-approved neuro- and 

psychotherapeutics exhibit mixed selectivity for multiple targets23,25,38. The observation that 

MoSeq summarizes complex behavioral phenotypes induced by drug and genetic 

manipulations — which almost certainly exert their effects through many receptors and 

neural circuit mechanisms in parallel — as discrete changes in subsets of behavioral 

syllables suggests that syllables themselves could serve as druggable targets. The ability of 
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MoSeq to reveal on- and off-target effects of risperdone, sulpiride and loxapine in 

CNTNAP2 mutant mice is consistent with this possibility. Given its low cost, scalability, and 

interpretability, MoSeq may be useful as a discovery platform for characterizing the specific 

disease-relevant effects of candidate therapeutics.

Methods

Ethical Compliance

All experimental procedures were approved by the Harvard Medical School Institutional 

Animal Care and Use Committee (protocol number 04930) and were performed in 

compliance with the ethical regulations of Harvard University as well as the Guide for 

Animal Care and Use of Laboratory Animals.

Data Acquisition

Drugs were tested on n=673 6–8 week old C57/BL6 males (Jackson Laboratories). Mice 

were housed in standard animal facility conditions, at a temperature of 71 ± 3 degrees, and at 

a relative humidity of 50 ± 15 percent. Mice were introduced into the colony at five weeks of 

age, and group-housed for one week in a reverse 12 hours light/12 hours dark cycle. On the 

day of testing, mice were brought into the laboratory in a light-tight container, where they 

were habituated to the experiment room under red light for 10 minutes in disposable cages 

(Innovive) containing fresh bedding, with food and water available ad libitum. After the 

habituation period and subsequent drug injection, mice were placed in the middle of a 

circular 18” diameter open field assay (OFA) enclosure with 15”-high opaque walls (US 

Plastics), immediately after which video recording was begun. All experiments were 

performed under red light. Mice were allowed to freely explore the enclosure for the 20 

minute experimental period. At the end of the experiment the enclosure was cleaned with 

70% ethanol before reuse.

Drug treatments

Each mouse was treated with a single drug/dose combination, and used only once. Drug 

names, their concentration, the method used for dilution, the number of mice treated with 

each drug/dose combination, and supporting citations for the choice of dose are described in 

Supplementary Table 1. Drug doses were selected based upon the published literature to 

maximize the likelihood of observing a behavioral effect within the dose-response window. 

All drugs were delivered via intraperitoneal (IP) injection. All drug dilutions were prepared 

fresh on the day of experimentation, dissolved in accordance with previously published 

work, and delivered IP in a final volume of 200 μl. Drugs were generally diluted in lactated 

ringers solution (LRS), except for fluoxetine (at doses higher than 10 mg/kg), haloperidol (at 

doses higher than .25 mg/kg), and methylphenidate, which were diluted in ddH2O. In 

instances where a drug was not soluble in LRS or ddH2O, the drug was first diluted in 

Dimethyl Sulfoxide (DMSO), then further diluted in LRS. Drug-dose pairs were tested in 

pseudorandomized order, with control mice interspersed with drug treatments throughout the 

data acquisition phase of the experiment. The data acquisition phase of the experiment lasted 

for a period of 12 weeks (excluding the CNTNAP2 experiments). Data collection and 

analysis were not performed blind to the conditions of the experiments. No statistical 
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methods were used to pre-determine sample sizes, but our sample sizes are similar to those 

reported in previous publications1.

CNTNAP2 mutant mouse experiments

Male wild-type or mutant littermates from breeding pairs of heterozygous CNTNAP2 

mutants (JAX stock No. 017482) were subjected to acute drug or saline injections as 

described above. Data from mice included in the analysis (for wild-type mice, n=39 with 

saline, n=20 with .1 mg/kg risperidone, n= 4 with .5 mg/kg loxapine, n=8 with 20 mg/kg 

sulpiride; for CNTNAP mice, n=9 with saline, n=4 with risperidone, n=6 with loxapine, n = 

5 with sulpiride) were modeled separately from the remainder of the drug data (see below).

Behavioral Recording

Data acquisition was performed identically as in Wiltschko et al9, using three parallel set-

ups to maximize throughput. Mice were tracked in 3D using a Kinect for Windows v1 

(Microsoft). This camera projects structured infrared light onto the imaging field, and the 

three-dimensional position of objects in the imaging field are computed based upon parallax. 

A boom tripod (Manfrotto) was used to suspend the camera above the recording arena, 

affording a stable top-down view of the mouse. The Kinect v1 has a minimum working 

distance (in Near Mode) of 0.5 meters; by quantitating the number of missing depth pixels 

within an imaged field, we have found that the optimal sensor position data is between 0.6 

and 0.75 meters depending on ambient light conditions and assay material.

Data from the Kinect was sent to an acquisition computer (hand-assembled, 16GB RAM, 

Intel i7 CPU, 512GB SSD) via USB. A custom Matlab script was used to interface the 

Kinect via the official Microsoft .NET API that retrieves depth frames at a rate of 30 frames 

per second and saves the frames in raw binary format (16-bit unsigned integers) to disk. 

Relevant experimental metadata (mouse ID, drug ID and dose) was captured and saved in 

the same folder name into which the raw binary depth data recorded to disk. Because USB 

3.0 has sufficient bandwidth to allow streaming of the data to an external hard-drive in real-

time, hot-swappable external hard drives were used for all data storage. After the completion 

of the experiment, a region-of-interest (ROI) was specified to delineate the area where the 

mouse could feasibly explore. This polygon was saved alongside the depth data, and used to 

simplify the data extraction process by eliminating pixels outside the arena.

Data preprocessing and extraction

Raw frames recorded to external hard drives were immediately copied to the network-

attached storage (NAS) associated with the Harvard Medical School Orchestra cluster. 

Custom mouse tracking software was then run to extract the mouse’s position, orientation 

and body morphometry from the raw depth data. All extraction software was implemented in 

the Python programming language, using the MPI4Py, H5Py, joblib, pandas, OpenCV, 

Scikit-Learn, Scikit-Image, MoviePy, NumPy and SciPy libraries.

To extract and align the 3D image of the mouse from the video data, raw frames depth 

frames were first read in as rectilinear blocks of unsigned 16-bit integers, and then these bits 

were shifted right by three places, yielding distance measurements in millimeters. A 

Wiltschko et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2021 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



background image, used for background subtraction, was then calculated by taking the 

median value of the first 1000 frames of the recording. Noise in the depth image is highly-

correlated in both space and time, due to the structured-illumination technique used to 

acquire depth information. Missing data was imputed by replacing missing depth pixel 

values with the spatially nearest valid pixel, in both space and time. The raw depth images 

were resampled so that every pixel covered 2 square millimeters, using the published 

properties of the camera’s field-of-view. The resampled images were re-centered by 

subtracting them from the background image, yielding values indicating how high a given 

pixel is above the baseline background image. All negative values (portions of the image 

below the background, usually occurring because of spurious noise), were set to zero. All 

values above a maximum height (200 mm) were set to zero. Objects above the background 

that were smaller than a mouse were removed with morphological image operations, using 

the Scikit-Image “remove_small_objects” and “binary_opening” functions. After these 

cleaning operations, the largest contiguous group of non-zero values in each frame is the 

mouse’s body, which was identified with the OpenCV “findContours” function. From this 

contour polygon, the area, center-of-mass, orientation, and, using the “fitEllipse” function 

from OpenCV, the best-fit ellipse for each mouse was calculated. A square view measuring 

120 mm x 120 mm centered on the mouse was then extracted in every frame, using the 

mouse contour’s center-of-mass and orientation; the major axis of the ellipse defining the 

mouse was oriented along the horizontal axis of the square view.

Although in an ideal case this procedure would yield a square field of view in which a 

mouse was aligned horizontally along the virtual axis of its spine, in reality the best-fit 

ellipse is not necessarily oriented in the direction of the mouse’s head. To correctly identify 

the head of the mouse, a random forest classifier was generated using Scikit-Learn, and 

trained on a corpus of several thousand hand-oriented extracted mouse images. After 

acquiring a properly-oriented extracted mouse image, and associated contour and positional 

data, the resultant aligned mouse movie was written to an HDF5 file. To accelerate the 

extraction process, the extraction over overlapping time-chunks of the experiment was 

parallelized using MPI. A single mouse’s recording was extracted into a single HDF5 file, 

and for convenience, all mice were concatenated together into one central HDF5 file, 

containing the entirety of the recorded data used in this study.

Data Modeling

Once extraction of all experiments completed, the extracted data contained in a single HDF5 

file was moved to a customized Starcluster on-demand high-perfomance compute cluster, 

hosted on Amazon Web Services Elastic Compute Cluster (EC2). Many of the processing 

steps either benefit from many CPU cores, or require a very high memory budget, so much 

of the analysis was performed on an x1.32xlarge EC2 machine, with 128 virtual CPU cores, 

and 2 terabytes of onboard RAM. All cluster configuration and required code was saved on 

attached Elastic Block Store drives, and all imported data, and any further results of 

analyses, were saved on an attached Elastic File System (EFS) drive, which was chosen 

because it did not require manual reformatting when additional storage was required. Local 

scratch drives were used for intermediate results that did not need persistence.
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The extracted mouse images form a time-series that is 3600 (60 pixels * 60 pixels) 

dimensional, sampled at 30 frames per second. These data were first dimensionally reduced 

this data using principal components analysis (PCA). All extracted mouse images were 

loaded into memory, and the RandomizedPCA model from Scikit-Learn was used to learn a 

10-dimensional linear embedding of the image time-series. The principal component (PC) 

time-series was then whitened across all mice to remove covariance between PC dimensions. 

The PCs were saved onto EFS to avoid recomputing this step.

An Autoregressive Hierarchical Dirichlet Process Hidden Markov Model (AR-HMM), 

identical to the model specified in Wiltschko et al9, was fit to the whitened PCs. All of the 

data were fit in a single model, except for the CNTNAP2 data, which was modeled 

separately. Hyperparameters were validated via held-out likelihood assessment and 

qualitative inspection. Autoregressive observation distributions were initialized using 

Empirical Bayes42. Kappa, the self-transition bias that controls the average duration of 

states, was set to produce states with duration distributions whose mode matches an 

independently-specified changepoint detection model (Extended Data Fig. 3). The number 

of lags in the autoregressive distribution was selected with an automatic relevance detection 

prior and yielded the highest held-out likelihood (100 ms or 3 frames, see Wiltschko et al.9). 

As was observed in Wiltschko et al9, model output was insensitive to the hyperparameters of 

the hierarchical dirichlet process prior. State sequences were initialized randomly. After 

initialization, the AR-HMM fit was burned-in with 1000 iterations of Gibbs sampling, and 

then a maximum likelihood estimate was found with the Viterbi Expectation-Maximization 

algorithm. This model fitting procedure yielded 92 syllables capturing 95% of total frames 

in the main dataset (truncated to 90 syllables for convenience), and 67 syllables capturing 

95% of total frames for the CNTNAP2 experiment.

Data Quality Control

Data quality was assessed at several stages of the processing pipeline. First, each video 

recording was directly inspected to determine whether mouse tracking was successful. If 

there were persistent periods of the mouse’s orientation being labeled as incorrectly flipped, 

these frames were added as new training data to the random forest flip classifier, described 

above, and the extraction procedure was run again. A heatmap of the mouse’s body location 

over the course of the entire experiment was next examined to identify any sharp boundaries 

or disproportionately bright areas that might indicate tracking of non-mouse objects. If a 

non-mouse object was tracked (typically the edge of the arena), the ROI of the experiment 

was redefined, and the experiment was re-extracted. If, after applying all data quality 

correction methods listed above, the mouse’s body was not tracked and extracted properly, 

or more than 5% of total frames were dropped or unavailable, the recording was not used in 

the dataset or any further analyses.

Generating behavioral summaries

Preprocessed behavioral recordings of mice in the open field were further summarized into 

fixed-length descriptions of behavior. A variety of summaries were constructed, based upon 

the following parameters:
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Position—The center of a hand-drawn circle demarcating the edge of the OFA was 

considered the center of the arena. The 2D position of a mouse in the arena was subtracted 

from the circle center position. A histogram of these values was constructed with 90 bins 

equally spaced between 0 and 120 pixels.

Speed—Mouse speed was calculated as the absolute magnitude of the first time derivative 

of the mouse’s 2D position in the arena. A histogram of these values was constructed with 

90 bins equally spaced between 0 and 20 px/frame.

Length—An ellipse was fit using the Python bindings of OpenCV to the animal’s top-down 

body contour in each recorded video frame. The length of the mouse for each frame was 

determined to be the length of the major axis of this ellipse. A histogram of these values was 

constructed with 45 bins equally spaced between 20 and 100 pixels.

Height—The animal’s height was determined to be the maximum height of the extracted 

mouse image in each frame. A histogram of these values was constructed with 45 bins 

equally spaced between 0 and 60 millimeters.

Length and Height—The histograms of length and height were concatenated into a 

behavioral summary with 90 dimensions.

Acceleration—Mouse acceleration was calculated as the absolute magnitude of the second 

time derivative of 2D position in the arena. A histogram of these values was constructed 

with 90 bins equally spaced between 0 and 5 px/framê2.

Angle—A histogram of mouse orientation was constructed, in degrees, with 90 equally 

spaced bins between 0 and 360°.

Area—A histogram of the area of the best-fit ellipse to the top-down contour of the mouse 

was constructed, with 90 equally spaced bins between 0 and 12000 px^2.

Ellipticity—A histogram of the ratio of a given mouse’s length to its width was 

constructed, derived from the best-fit ellipse of the animal’s top-down contour, with 90 

equally spaced bins between 1 and 3.

Width—A histogram of mouse width was constructed, derived from the best-fit ellipse of 

the mouse’s top-down contour, with 90 equally spaced bins between 20 and 50 pixels.

Scalars—The length, height, speed and position summaries were concatenated together.

Scalars++—We concatenated all of the parameters measured in the scalar summary 

together with the summaries for acceleration, angle, area, ellipticity and width.

MoSeq—MoSeq summaries were composed of a histogram describing the frequency of use 

of each of the 90 most-used syllables.
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KMeans—We fit a KMeans model (using sklearn.cluster.KMeans method with kmeans++ 

initialization) on the principal components of aligned mouse images (the input to the MoSeq 

method) with varying numbers of clusters. The fingerprint was composed of the number of 

frames assigned to each cluster.

MoSeq on Scalars—We fit an AR-HMM model on scalar data (as opposed to the 

principal components of aligned mouse images), using a 4-dimensional time-series 

composed of the animal’s distance-to-center, speed, height and length. To match the 

dimensionality of MoSeq, 90 states were used. The best-fit state sequence of the time-series 

data was summarized as a histogram of state frequencies, identically to the MoSeq summary 

described above.

Summaries are displayed (but not analyzed) in the paper as the square-root of their values, to 

increase visual dynamic range.

MoSeq-based behavioral distance measurements

To measure similarity between syllables, we performed MoSeq-based behavioral distance 

measurements as described in Markowitz et al11. Briefly, we assessed the similarity between 

pose trajectories of different syllables. We simulated pose trajectories for each syllable over 

10 time steps (corresponding to 300ms) using the autoregressive coefficients described by 

the AR-HMM model fit. Then, we computed the pairwise correlation distance (1 - Pearson’s 

r) between the top 90 most used syllables to generate a distance matrix, where low distances 

(near 0) represent similar syllables and high distances (near 2) represent dissimilar syllables.

The cladogram was generated from the distance matrix using the Voor Hees hierarchical 

clustering algorithm (scipy.cluster.hierarchy.linkage).

Linear classification of behavioral summaries

Classification based upon behavioral summaries was performed using logistic regression as 

implemented in the Scikit-Learn Python package. The underlying implementation took 

advantage of the liblinear C/C++ library, using a “one-vs-rest” formulation of multi-class 

classification. An L2 weight penalty with an inverse regularization strength was also used. 

We scanned the values 0.01, 0.1, 1.0, 10.0 and 100.0 for each feature type, and presented 

results for the optimal choice per-feature. To guard against overfitting, 500-fold cross 

validation was performed, using randomly shuffled folds with 10% of the data held-out per 

fold, keeping the relative proportion of each label the same in both train and held-out sets. 

To predict drug identity alone, data from all doses of a given drug were merged, and 

individual mice were held out. To predict drug class, data from all doses of all drugs 

belonging to a class were merged. For classification of drug pharmacological class, we also 

used an additional stratification strategy, where all mice given a particular drug were placed 

in either the training or held-out set. We observed no appreciable difference in absolute or 

relative performance (data not shown). The mean and standard error of performance metrics 

on these randomly-generated held-out folds are reported.

To evaluate performance, confusion matrices, precision-recall (PR) curves, and the F1 score 

were computed.
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Each confusion matrix was a square matrix, with each side length equal to the number of 

possible target labels, and each square indexed by i,j is the proportion of time a data point 

with true label i was classified as having label j. When i==j, the classifier correctly predicted 

the label. Confusion matrices were produced with the confusion_matrix function in Scikit-

Learn. Matrices were normalized such that every row and column summed to one, to 

indicate a probability of classification or misclassification. “Held-out” confusion matrices 

were calculated by repeating the linear model training and evaluation process N times, 

where N is the number of treatment groups. For each iteration, one target class was removed 

from the training set, but added into the held-out set for each fold. This forced the classifier 

to never correctly classify the removed treatment class, and allowed analysis of the 

treatments the classifier deemed most similar to the target treatment class. This process was 

repeated for all treatments to generate the complete “held-out” confusion matrix was plotted.

Precision and recall are quantities computed from the number of true positives, tp, the 

number of false positives fp, and the number of true negatives tn. Precision and recall are 

defined as

precision = tp
tp + fp, recall = tp

tp + fn

The PR curve is a plot of the precision and recall of the model, as a decision threshold is 

varied. The curve is calculated for binary prediction problems by varying the decision 

threshold for binary predictions (e.g., classifying a mouse as having received a specific drug, 

versus not having received any other drug), and measuring the false-positive and true-

positive rates at that decision threshold for all data in the validation set.

The F1 score is the harmonic mean of precision and recall, and is a measure of binary 

classification performance:

F1 = 2 ∗ precision ∗ recall
precision + recall

The per-label class F1 values were calculated using the f1_score function in scikit-learn. 

Class-weighted averaging was used across the F1 score of all classes to report a single mean 

F1 score for a behavioral summary, and standard errors were also calculated.

Behavioral summary distance comparisons

Cosine distance matrix. Distances between two summaries u and v were directly assessed 

using the cosine distance, computed (using the SciPy Python package) as

c(u, v) = 1 − u ⋅ v
u 2 v 2

The cosine distance was used because it is bounded between 0 and 2, allowing comparisons 

between behavioral summaries with different units. Within- and between-treatment cosine 

distances were also computed. Between-treatment cosine distance was calculated as
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B(i, j) = 1
Np ∑

u ∈ Gi, v ∈ Gj, u ≠ v
c u, v

where Gi is the set of behavioral summaries given treatment i, and Np is the number (u,v) 

pairs in the sum. The within-treatment distance was calculated when i = j. The ratio of the 

within-treatment and between-treatment cosine distances is calculated as:

1
Nt

∑iB i, i

1 + 1
Nt

∑j ≠ iB i, j

Where Nt is the number of treatments.

To visually highlight the relationships between behavioral summaries, we re-ordered a 

square matrix containing all pairwise cosine distances using hierarchical clustering (Ward’s 

linkage) implemented by the SciPy Python scientific computing package.

Identifying syllables critical for classification

LASSO regression was used to identify how many syllables were on average needed to 

distinguish treatments in an all-to-all comparison. LASSO regression is an L1-regularized 

logistic regression; the regularization term was scaled from zero to a maximum value where 

no syllables were used, resulting in random predictions. We densely sampled the L1 penalty 

so that we evenly sampled the number of used syllables. For each L1 value, we recorded the 

auROC for each drug treatment, and the number of syllables with non-zero weight used in 

the classifier.

To identify which syllables were most discriminative for a particular drug treatment (either 

relative to control, or relative to all other drugs), a F univariate statistical test was used. We 

reasoned that syllables whose usage frequency in mice was statistically independent of the 

drug treatment given to mice would not be useful for linear classification. Conversely, 

syllables with high statistical dependence on the drug treatment would be useful for 

classification, and therefore characteristic of a given treatment.

Visualizing behavioral summaries with low-dimensional embeddings

To visualize the relationship between drug treatments, as measured by behavioral 

summaries, we calculated low-dimensional 2D embeddings from MoSeq behavioral 

summaries. We used the Linear Discriminant Analysis (LDA; McLachlan 2004) algorithm 

to calculate a linear 2D projection of the MoSeq summaries that maximizes linear 

separability between all drug classes. We used the scikit-learn function call with the 

following defaults: discriminant_analysis.LinearDiscriminantAnalysis(solver=‘svd’, 

n_components=2).
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Calculating effective dimensionality of behavioral summaries

To quantify the effective dimensionality of both scalar and MoSeq behavioral summaries, we 

used both principal components and a method from Fukunaga and Olsen, 197141. For the 

PCA method, we used scikit-learn’s sklearn.decomposition. PCA method to calculate the 

number of components that were required to explain 95% of variance in the behavioral 

summary data. Note that for this analysis, we apply PCA to the behavioral summaries output 

by MoSeq and the scalar analysis, not to the raw mouse depth images. For the Fukunaga and 

Olsen method, we calculated the eigenvalues of the behavioral summary array, normalized 

them so their values fall between 0 and 1, and counted the number that fall above a threshold 

of 0.01.

Stratifying and classifying drug treatments by induced movement speed

Multiple doses of clozapine, haloperidol and risperidone were given to mice, each of which 

slowed overall mouse movement speed in reference to control treatment. We stratified the 

treatments by the mean movement speed of mice given the treatment, in order to test 

whether a MoSeq fingerprint could disambiguate different drugs that each had an equal 

effect on overall locomotion. We bucketed each drug and dose into four movement speeds: 

“very slow”, “slow”, “medium” and “fast” according to a 4-component Gaussian Mixture 

Model fit on the full distribution of mean mouse movement speeds. The average movement 

speed in each group was 7 mm/s, 21 mm/sec, 42 mm/s and 76 mm/s, respectively. The “very 

slow” and “slow” speeds were combined into a single “slow” movement speed bucket. The 

threshold movement speed dividing the “slow” and “medium” speed groups was 24 mm/s, 

and the threshold dividing the “medium” and “fast” groups was 53 mm/s. For each of the 

treatments that were placed in the “slow” and “medium” groups, we trained a linear 

classifier, as described above, to predict the drug identity given to each mice, using MoSeq 

fingerprints.

Querying clinical main and side effects

FDA approved and non-FDA approved indications, as well as main side effects, were 

manually scraped for each drug from the IBM Micromedex database (http://

truvenhealth.com/Products/Micromedex).

Statistical tests

Error bars refer to either 95th percent confidence interval (CI), standard error of the mean 

(SEM), or standard deviation (SD), as indicated. For statistical tests that assumed normality, 

data distributions were assumed to be normal but this was not formally tested.

Statistical differences in the mean scalar measurements of behavior between 

methylphenidate, haloperidol and saline treatments in Fig. 2f were established using the 

two-sided Mann-Whitney U test. The mean, per mouse, for each of speed, length, height and 

distance from arena were first calculated. We then applied a two-sided Mann-Whitney U test 

to assess whether to treatments had either significantly greater or smaller values. The 

resultant p-values for the four comparisons were then adjusted using the Holm-Bonferroni 

stepdown procedure. For MoSeq summaries, which are not easily reduced into single scalar 

metrics per mouse, significance between each of the three aforementioned treatments was 
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assessed using a two-factor MANOVA. The MANOVA calculation was performed using the 

R statistical language.

F1 scores were tested for statistically significant differences using the two-sample t-test. F1 

scores were first calculated for each unique label (each drug identity irrespective of dose in 

Fig. 3, each pharmacological class in Fig. 5 and each unique drug and dose pair in Extended 

Data Fig. 6), on each held-out fold (of 500 total folds as described above). F1 scores were 

compared between summary types using the two-sample t-test, with multiple comparison 

correction using the Holm-Bonferroni step-down procedure, with significance set at p<0.05 

after correction.

Differentially used behavioral syllables in the CNTNAP2 experiment were identified using 

the Kruskal-Wallis and Dunn’s post-hoc two-sided tests with permutation. In the Kruskal-

Wallis, for each syllable, we calculated the H-statistic from the actual data (H-data) and from 

the permuted data in which group labels were randomly shuffled for all 4 groups (H-

permutation). Raw p-values were then established by calculating the ratio of permutations 

where H-permutation is larger than H-data, and these p-values were corrected by Benjemini/

Hochberg FDR across syllables. Syllables with FDR < 0.05 were identified as significant. 

For each of the syllables that passed Kruskal-Wallis test, we then performed a Dunn’s post-

hoc test by calculating the z-statistic both from the actual data (z-data) and from the 

permuted data in which group labels of corresponding 2 groups were shuffled (z-

permutation). We established the raw p-values by calculating the ratio of permutations where 

z-permutation is larger than z-data, and then corrected those p-values by Benjemini/

Hochberg FDR across all pairwise comparisons. Syllables with FDR < 0.05 were identified 

as significant.

For syllables differentially used between WT and Cntnap2 −/− mice treated with saline 

control, we considered the usage is fully reverted if a given syllable satisfied these two 

criteria. First, a given syllable is within one standard deviation (of the overall differences in 

syllable usage observed between WT and CNTNAP2 −/− mice) between WT mice treated 

with saline and Cntnap2 −/− mice treated with the drug; second, that syllable is significantly 

different between Cntnap2 −/− mice treated with saline and Cntnap2 −/− mice treated with 

the drug. A given syllable is considered as “partially reverted” if it only satisfied one of these 

criteria, and considered “not reverted” if neither of these criteria were satisfied. Syllables are 

considered “side-effects” if there is no statistical difference in their level of expression in 

WT and CNTNAP2 mice, but treatment of the CNTNAP2 mice with drug induces a 

statistically-significant change between the genotypes. Syllables in Figs. 7 and 

Supplementary Fig. 5 are sorted based upon how different their usage is in the CNTNAP2 −/

− and wild-type saline control mice (mutant - wild-type)/(mutant + wild-type).

We assessed whether the variability of syllable usage within each mouse met, exceeded or 

was less than the variability between mice given the same treatments, or across different 

treatments. To quantify within-mouse variability, we randomly sampled the syllable labels 

for 1000 frames with replacement, and constructed a MoSeq fingerprint using the labels 

associated with those frames (of the 36,000 total frames available per mouse), and measured 

the mean and standard deviation of all unique pairwise cosine distances after repeating that 
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procedure 100 times. To measure between-mouse variability (either for mice given the same 

or different treatments), we computed the mean and standard deviation of all unique 

pairwise cosine distances.

Data Availability Statement

All datasets generated and/or analyzed during the current study will be available from the 

corresponding author on reasonable request. The raw per-frame data, MoSeq per-frame 

labels, and per-mouse behavioral summary data organized as NumPy arrays are stored in a 

Python pickle file, and available for download on an open-access basis via github.com/

dattalab/moseq-drugs. Correspondence and requests for materials should be addressed to 

srdatta@hms.harvard.edu.

Code Availability Statement

All code used in this manuscript will be made available on GitHub at github.com/dattalab/

moseq-drugs.
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Extended Data

Extended Data Fig. 1. 
Depth cameras are used to capture 3D video data encapsulating mouse postural dynamics in 

the open field. These data are saved locally before being uploaded to the cloud, where the 

videos are denoised and aligned. The image of the mouse is then extracted from the larger 

image; at this step, scalar behavioral metrics (like the position of the mouse within the arena, 

or its velocity) are computed. After extraction, aligned 3D mouse images are analyzed either 

locally or in the cloud, depending upon resource demands. 3D mouse images are 
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compressed by PCA (for ease of computation), then these data are used to train an AR-

HMM (as in Wiltschko et al9). The output of this training procedure is the optimal set of 

behavioral syllables that describe the 3D pose dynamics observed within the experiment 

(each of which is described as an autoregressive process through pose space). Every frame 

of the imaging data is then labeled with behavioral syllable MoSeq considers most likely, 

thereby revealing the behavioral grammar that governs the transitions from any given 

syllable to any other syllable. Herein, each mouse is characterized by a MoSeq behavioral 

summary that includes only information about how often each behavioral syllable is 

expressed during the experiment (without consideration of the syllable transition matrix), 

whereas the scalar summary includes a wide variety of data describing the mouse’s 

behavioral comportment (including height, length, speed, position). These MoSeq and scalar 

behavioral summaries are then submitted to linear classifiers to predict the identity of the 

drug, drug and dose, or drug class to which each mouse was exposed.
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Extended Data Fig. 2. 
a. Scanning the MoSeq kappa parameter (which sets the timescale at which syllables are 

identified) reveals a value at which the modal syllable length matches the model-free block 

length identified by changepoints analysis (see Methods).

b. The mode of the syllable duration distribution established by MoSeq, given the kappa 

established in a, matches that for the model-free changepoint distribution.

c. Ninety percent of the total frames are explained by 92 behavioral syllables; for the sake of 

simplicity herein we analyze the top 90 syllables.
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Extended Data Fig. 3. 
A cladogram describing behavioral relationships among syllables was computed using 

hierarchical clustering performed on the autoregressive matrices describing all syllables (see 

Methods). Nine general behavioral categories were identified after visual inspection and 

given natural language names. Illustrations are representative of syllables in each category.
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Extended Data Fig. 4. 
a. Normalized confusion matrices as in Fig. 3a, but computed for all drug/dose 

combinations. For the shuffled control (bottom row), syllable labels were shuffled on a per-

mouse basis to compute a baseline of expected random performance. Heat map indicates 

classification successes and errors (see Methods for summary definitions).

b. Mean precision-recall curves for all drugs and doses, computed for each behavioral 

summary type.

c. The Fukunaga and Olsen method441 was used to estimate the effective dimensionality of 

both scalar and MoSeq summaries; this analysis demonstrated that that MoSeq has a higher 

effective dimensionality than scalars (34 versus 26 dimensions), using a threshold value of 

0.01 (see Methods).
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Extended Data Fig. 5. 
a. Additional information was added to the MoSeq and scalar behavioral summaries used to 

predict drug identity. For “MoSeq++,” the empirical transition matrix derived from the 

syllable label sequence was calculated, flattened, and concatenated to the syllable usage 

frequency information. For “Scalars++,” histograms of mouse acceleration, the mouse’s 

heading, the area contained by the mouse’s body contour, the ellipticity of the best-fit ellipse 

around the mouse’s contour, and the mouse’s width were added to the initial scalar 

behavioral summary.

b. The granularity of the bins used to generate scalar behavioral summaries was 

systematically varied; bin size did not affect classification performance.

c. To ensure that the higher dimensionality of the scalar summaries did not adversely affect 

performance, behavioral summaries containing scalars were also subjected to PCA to assess 

the consequences of dimensionality reduction (keeping the number of dimensions required 

to capture 95 percent of the variance; for scalars this is 33 dimensions); although 

performance was modestly improved, performance did not equal that observed for MoSeq.
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Extended Data Fig. 6. 
Average cosine distance ±1 standard deviation of mice given the same drug/dose pair (blue) 

and mice given different drug/dose pairs (red) using either scalar- (top) or MoSeq-based 

behavioral summaries (bottom). The difference observed between mice given the same drug/

dose pair and different drug/dose pairs is uniformly larger when behavior is summarized 

using MoSeq when compared to scalars.

Inset: summary of mean within- and between- class differences and their ratio for either 

scalar- and MoSeq-based analysis. MoSeq shows larger differences (two-sided paired t-test, 

p<0.05, stars indicate statistically significant differences between MoSeq and scalars).
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Extended Data Fig. 7. 
To test whether the cosine distances that separate individual mice within a treatment class 

reflect individual variability or technical noise, we subsampled the data from each individual 

mouse and then asked how these sub-samples of each individual mouse compared to each 

other; observing low variability in these sub-samples would be consistent with each 

individual mouse expressing a stable set of behavioral syllables within an experiment, and 

with the within-condition variability observed across mice reflecting differences in 

individual mouse responses to a given drug and dose. In specific, within-mouse variability of 

MoSeq was assessed by randomly picking 1000 frames (with replacement) of the 3D 

imaging data (which for each mouse was constituted of approximately 36,000 frames), 

identifying the syllable associated by MoSeq with that frame, and then using those syllable 

labels to compute overall syllable usages; this procedure is roughly equivalent to randomly 

choosing less than one third of the syllables to quantify the pattern of syllable usage within a 

mouse. We repeated this procedure 100 times, and by computing cosine distances between 

each sub-sample within-mouse variability could be assessed. The bootstrapped estimate of 

individual variability (Resampled Within Mouse) was lower than the treatment-induced 

variability (Within tTreatment), as measured by the cosine distance between all pairs of mice 

given the same treatment, and was also lower than the cosine distance between pairs of mice 

given different treatments (Between Treatment). Thus the observed within-treatment 

variability reflects stable differences in behavior expressed by individual mice.
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Extended Data Fig. 8. 
a. Similar as Fig. 3a, but classifying drug/dose identity instead of drug identity, across the 

entire risperidone, haloperidol, clozapine dose-response experiment. Many significant 

syllables that differentiated drug-treated mice from controls were, by inspection, behaviors 

like grooming or rearing that do not include significant two-dimensional velocity 

components (data not shown).

b. Syllable usages for all mice and all drug/dose combinations (top), doses which resulted in 

slow mouse movement speed (middle) or moderate movement speed (bottom). Slow and 
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medium speeds (relative to normal) were identified via a Gaussian Mixture Model (mean 

centroid speed of saline control mouse = 74 mm/sec; “medium speed” = 54 mm/sec; “slow 

speed” = 24 mm/sec; see Methods). Significant differential syllable usage for each drug 

versus control indicated with an asterisk (Kruskal-Wallis and post-hoc Dunn’s two-sided test 

with permutation, with Benjamini/Hochberg FDR with alpha = 0.05).

Extended Data Fig. 9. 
Sparsification reveals the number of syllables required to correctly distinguish each drug, as 

assessed by F1 scores emerging from linear classifiers trained on subsets of syllables (see 

Methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Motion Sequencing (MoSeq) captures 3D mouse pose dynamics after drug treatment.
a. Trial structure for mouse open field assay (OFA)-based behavioral imaging.

b. Mouse 3D pose dynamics were recorded using depth cameras placed above the arena, 

with raw frames stored locally and then processed in a cloud computing environment (see 

Methods).

c. A pre-processing pipeline identifies the mouse within the depth image, enabling analysis 

of 3D pose dynamics as well as quantification of scalar behavioral metrics (see Methods).
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d. Imaging-based distributions of an example mouse’s speed, height, length and distance to 

arena center during a 30 second example snippet.

e. The first ten principal components of the pre-processed 3D imaging data (top) were fed to 

the MoSeq algorithm to assign each frame to a particular behavioral syllable (bottom, see 

Extended Data Fig. 1). The number of times each syllable is expressed during this 30 second 

example snippet is represented as a histogram (right); for each mouse a MoSeq-based 

behavioral summary was generated using 20 minutes of data.
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Fig. 2. Generating behavioral diversity though pharmacology.
a. Each mouse (rows) was treated with the indicated drug, and the distribution of mouse 

positions normalized to the arena center position was computed. Drug class is indicated at 

left (here and throughout, Benzo = benzodiazepine, Antidep = antidepressant, Antipsy = 

antipsychotic, SNRI = serotonin non-specific reuptake inhibitor, SSRI = serotonin selective 

reuptake inhibitor; see Supplementary Table 1 for the number of mice per treatment).

b. Same as a. but for velocity.

c. Same as a. but for length and height.
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d. Same as a. but the behavioral summary is composed of how often each MoSeq-identified 

syllable (arrayed on x-axis) was used.

e. Comparisons of behavioral summaries for methylphenidate, haloperidol and saline at the 

doses indicated by the stars in the “dose” column in a. (p<0.05, square indicated significant 

differences between methylphenidate and haloperidol, triangle between haloperidol and 

saline, and star between methylphenidate and saline; two-sided Mann-Whitney U test is used 

on mean values for scalars; for MoSeq syllable differences using a two-factor MANOVA; 

faint lines represent distribution of individual mice).
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Fig. 3. MoSeq discriminates drug-induced patterns of behavior
a. Normalized classification matrices (across rows and columns, plots represent classifier 

means after 500 cross-validation folds, see Methods for details and Supplementary Table 1 

for number of mice used per treatment) summarizing the performance of a linear classifier at 

distinguishing different drugs based upon the indicated behavioral summary. Perfect 

classifier performance (in which each mouse is correctly assigned to its drug label) 

corresponds to white along the diagonal and black on the off-diagonal (i.e., a classification 

rate of 1). For the shuffled control (bottom row), drug labels were shuffled on a per-mouse 
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basis to compute a baseline of expected random performance. Heat map indicates 

classification successes and errors (see Methods for summary definitions). Drug 

abbreviations here and throughout as indicated in Fig. 2.

b. F1 values, reflecting classification accuracy, for all behavioral summaries, including a 

label-shuffled random baseline. Box plots represent the distribution across 500 cross-

validation folds, with whiskers representing 1.5 times the inter-quartile range. Shuffle 

controls as in a (p<0.01, paired two-sided t-test, Holm-Bonferroni step-down correction; 

stars indicate statistically-significant differences between MoSeq and scalars)

c. Mean precision-recall curves and F1 values for all summary types across all drug 

treatments. Shuffle controls as in a. “Scalars -> MoSeq” indicates performance observed 

when modeling scalar values rather than 3D imaging data using MoSeq.

d. Mean F1 score of an alternative behavioral summary, constructed by performing KMeans 

clustering (with cluster number indicated) on the 3D image principal components (see 

Methods). Note that the MoSeq summaries are composed of 90 syllables, which corresponds 

to the maximum number of clusters chosen for analysis here. For comparison, mean F1 

predictive performance scores are indicated for MoSeq and scalars.
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Fig. 4. MoSeq enhances the separation between treatment classes relative to scalars.
a. Average cosine distances of individual mice given the same drug (blue) compared to mice 

given different drugs (red, ±1 standard deviation indicated; see Supplementary Table 1 for 

number of mice used per treatment).

b. Mean within- and between-treatment cosine distances, and their ratio, for scalar 

summaries and MoSeq (p<0.05, stars indicate significant difference between MoSeq and 

scalars, paired two-sided t-test).

c. Average pairwise cosine distances between mice given indicated drug treatments (distance 

indicated by color bar; lines separate drug classes indicated to right of lower panel).
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Fig. 5. MoSeq reveals behavioral relationships between drug classes and can distinguish 
catalepsy from sedation.
a. Normalized classification matrices (across rows and columns, plots represent means after 

500 cross-validation folds, see Methods) summarizing classification performance of linear 

classifiers trained to predict drug class on a mouse-for-mouse basis (left). Heat map 

indicates classification successes and errors; perfect classifier performance (in which each 

mouse is correctly assigned to its class label) corresponds to white along the diagonal and 

black on the off diagonal (i.e., a classification accuracy of 1). For the shuffled control (right), 
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class labels were shuffled on a per-mouse basis to compute a baseline of expected random 

performance. See Supplementary Table 1 for number of mice used per treatment.

b. F1 scores for linear classifiers designed to predict pharmacological drug class on a mouse-

for-mouse basis. Box plots represent the distribution across 500 cross-validation folds, with 

whiskers representing 1.5 times the inter-quartile range (p < .01, stars indicate significant 

differences between MoSeq and scalars, paired two-sided t-test corrected with Holm-

Bonferroni step-down procedure, see Methods). Shuffle control performed as in a.

c. Held-out confusion matrices (across rows and columns) indicating the classification of a 

given drug when that drug was excluded from the drug classifier (and thus these matrices 

represent confusions made over 16 separate classifiers). This procedure identifies the drugs 

most confused with the query drug (given that, by design, the held-out classifier must 

identify a non-query drug as the correct label for each mouse). As correct within-drug 

classification is impossible in this representation, the diagonal is dark (plots depicts means 

after 500 cross-validation folds, see Methods for details of “held-out” classification, drug 

classes are indicated).

d. Linear discriminant analysis (LDA) plot indicating the similarity between the mean 

behavioral summaries of mice across drug treatments. Opaque circles indicate mean 

summary embeddings, and semi-transparent circles show the embedding location of each 

mouse. Colors indicate drugs from the same pharmacological class.

e. Normalized classification matrices for different drugs, where the specific doses chosen for 

each drug were grouped based upon mouse speed (mean centroid speed of saline control 

mouse = 74 mm/sec; “medium speed” = 54 mm/sec; “slow speed” = 24 mm/sec; see 

Methods for description of Gaussian Mixture Model-based method for grouping doses based 

upon speed). Perfect classification is indicated by white along the diagonal and black off 

diagonal; the high degree of predictability when stratifying different below normal speeds 

demonstrates that MoSeq can distinguish these drugs independent of their effects on gross 

movement.

f. LDA plot indicating the observed mean MoSeq-characterized pattern of syllable usages 

for the three indicated drugs (green = haloperidol, red = clozapine, blue = risperidone) at 

doses tiling very low (light) to very high (dark, see Methods). In general, all doses of each 

drug cluster together in LDA space, and separate from a control saline treatment, although at 

the highest doses risperidone and haloperidol elicit similar patterns of behavior (see darkest 

blue square and darkest green triangle).
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Fig. 6. Subsets of syllables fingerprint each drug.
a. A normalized F statistic identifies the quantitative relevance of each indicated syllable for 

discriminating a given drug treatment from a control saline treatment; ordering on left is 

based upon pharmacological class, ordering on right is based upon similarities in the F 
statistic-identified syllables. The number of significant syllables is indicated next to the drug 

treatment name on the right (Holm-Bonferroni corrected p<0.01 from the two-sided F-test). 

The control treatment F statistic is computed by comparing against all other treatments.
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b. Same as a. but computing the F statistic between a given drug treatment and all other 

treatments; the all-vs-all comparison reveals many fewer statistically-significant syllables 

than when comparing to control alone. Note that those syllables that distinguish a given drug 

from control can be distinct from those that maximially distinguish a particular drug from all 

other tested drugs.
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Fig. 7. MoSeq-based phenotypic fingerprinting reveals on- and off-target drug effects in a mouse 
model of autism spectrum disorder.
a. Usage plots for wild-type (black) and Cntnap2 −/− (red) mice injected with saline control 

(bootstrapped 95% confidence intervals indicated). Syllables sorted by the degree to which 

they are overused in the mutant (see Methods), with differentially used syllables marked by 

asterisks (for all statistical tests in this figure, Kruskal-Wallis and post-hoc Dunn’s two-sided 

test with permutation, with Benjamini/Hochberg FDR with alpha = 0.05). Example syllables 

illustrated in c are indicated as c1, c2 and c3. See Methods for number of mice per treatment 

group.

b. Usage plots for wild-type (black) and Cntnap2 −/− mice injected with risperidone (RISP; 

green), loxapine (LOX; blue) and sulpiride (SULP; purple). Symbols indicate differentially 

used syllables (circle: fully reverted mutant syllable, triangle: partially reverted mutant 

syllable, cross: not reverted mutant syllable; square: drug-induced side-effect syllable, see 

Methods for definitions of reversions and side effects).
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c. Schematic illustrations of syllables that were either not reverted (c1), partially reverted 

(c2) or fully reverted (c3) by drug treatments. Note that syllable c3 was fully reverted with 

RISP and SULP, but only partially reverted with LOX.
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