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Abstract: Genome editing technology has become one of the hottest research areas in recent years.
Among diverse genome editing tools, the Clustered Regularly Interspaced Short Palindromic Repeats/
CRISPR-associated proteins system (CRISPR/Cas system) has exhibited the obvious advantages of
specificity, simplicity, and flexibility over any previous genome editing system. In addition, the emer-
gence of Cas9 mutants, such as dCas9 (dead Cas9), which lost its endonuclease activity but maintains
DNA recognition activity with the guide RNA, provides powerful genetic manipulation tools. In
particular, combining the dCas9 protein and transcriptional activator to achieve specific regulation
of gene expression has made important contributions to biotechnology in medical research as well
as agriculture. CRISPR/dCas9 activation (CRISPRa) can increase the transcription of endogenous
genes. Overexpression of foreign genes by traditional transgenic technology in plant cells is the
routine method to verify gene function by elevating genes transcription. One of the main limitations
of the overexpression is the vector capacity constraint that makes it difficult to express multiple genes
using the typical Ti plasmid vectors from Agrobacterium. The CRISPRa system can overcome these
limitations of the traditional gene overexpression method and achieve multiple gene activation by
simply designating several guide RNAs in one vector. This review summarizes the latest progress
based on the development of CRISPRa systems, including SunTag, dCas9-VPR, dCas9-TV, scRNA,
SAM, and CRISPR-Act and their applications in plants. Furthermore, limitations, challenges of
current CRISPRa systems and future prospective applications are also discussed.

Keywords: CRISPRa; CRISPR/Cas; dCas9; genome editing; transcription activation

1. Introduction

Gene expression involves multiple processes, including transcription of DNA into
messenger RNA (mRNA), splicing of mRNA, translation, and post-translation modification.
Accurate regulation of DNA transcription into mRNA is the first step to control the complex
process of gene expression. Directional regulation of gene expression will contribute to our
understanding of cell physiology, and it is essential for advances in biotechnology.

For the regulation of endogenous gene expression, manipulating transcription factors
(TFs) to target the specific target gene promoters to activate/inhibit gene transcription is
the classical strategy and a successful one [1]. For example, in mammals, simultaneous
up-regulation of four transcription factors reversed differential cells to pluripotent stem
cells. However, it is difficult to regulate multiple genes’ transcription due to the specificity
of TFs binding sites at DNA [2]. Researchers circumvented these limitations by designing
a TFs binding site for promoters to regulate target genes transcription [3]. However,
naturally occurring TFs have extensive DNA binding activity, which limits the specificity
and efficiency of this method.
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Transcription factors can only bind to fixed sites and lack flexibility. Site-specific nucle-
ases (SSNs) such as TALEN and CRISPR/Cas9 have emerged as multipurpose tools which
can greatly enhance molecular biologists’ capability such as knock out, base edit, knock in,
knock up and knock down the target gene [4–7]. These SSN systems emerged as genome
editing tools, and introduce DNA double-strand breaks (DSBs) anywhere in a particular
genome [8–10]. In known DNA binding modules, inactivation of Cas9 (dead Cas9, dCas9)
fused to transcriptional activators or repressor [9,11] can effectively regulate multiple genes’
transcription under the guidance of different gRNAs [12]. Overexpression of foreign genes
by traditional transgenic technology in plant cells is the routine method to verify gene
function and shape gene regulation. However, there are still some limitations for the wide
application of this strategy. One of the main limitations is the vector capacity constraint
that makes it difficult to express multiple genes using the typical Ti plasmid vectors from
Agrobacterium. The cumbersome of stacking gene cloning protocol is another obstacle
that limits its application. The recent advancements in CRISPR-based gene activation have
offered powerful and specific induction of gene expression that overcome the limitations of
traditional gene overexpression methods. Multi genes activation can be effectively realized
through the CRISPRa system which provides more possibilities for the application of plant
genetic improvement in the future.

In this paper, we summarized the emergence and development of transcriptional
activation system based on CRISPR/dCas9 and its application in plant research. To provide
a reference for plant researchers to compare the differences of different activation systems
and to regulate the activation efficiency of endogenous genes in plants in the future.
In addition, the potential applications, existing problems, and challenges for these new
technologies were also discussed.

2. Composition of the CRISPR/Cas-Derived Activation System
2.1. CRISPR/Cas System

The CRISPR/Cas system was first investigated in 1987: scientists discovered a kind of
unique DNA sequences from Escherichia coli genome, which are near the iap gene sequence
and were called Clustered Regularly Interspaced Palindromic Repeats (CRISPR). However,
its biological significance was unclear at that time [13]. Subsequent studies showed that
CRISPR/Cas is a complex adaptive defense mechanism in prokaryotes against invading
viruses or plasmid DNA [14]. Researchers found that about 40% bacteria and about 90%
archaea are present in this powerful defense system [15]. Cas proteins involved in this
defense mechanism have also been identified [16].

According to the repeat sequence identity of CRISPR and their Cas protein sequence
homology, CRISPR/Cas system was classified into two classes and six types (as shown in
Figure 1) [17–19]. Class I CRISPR/Cas systems require large effector protein complexes,
which are classified into Type I, Type III, and Type IV. Class II CRISPR/Cas systems are
classified into Type II, Type V, and Type VI, requiring only an RNA-directed endocytase to
cut invading genetic components. The simplicity and efficiency of Class II system make it
work as widely used genome editing tool. Type II CRISPR/Cas systems have been used in
a variety of organisms, including microbes [20], fungi [21], animals [22], and plants [23].
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Figure 1. Characteristics of different types of CRISPR/Cas systems. CRISPR/Cas systems are classi-
fied as types I to VI. Type I systems are characterized based on the occurrence of signature protein 
Cas3, a protein which contains both DNase and helicase domains used to degrade the target. Type 
II CRISPR/Cas systems use Cas1, Cas2, Cas9, and a fourth protein (Csn2 or Cas4), whereas the type 
III CRISPR/Cas systems comprise the Cas10 with an indistinct role. The type II CRISPR/Cas system 
originates from S. pyogenes and comprises three components: the CRISPR RNA (crRNA), trans-
activating crRNA (tracrRNA), and a Cas9 protein. The type V CRISPR/Cas system (Cas12) is an 
RNA-guided system which is analogous to CRISPR/Cas9 but exhibits some unique characteristics. 
This CRISPR system relies on a T-rich sequence at the 5′-end of the protospacer sequence (5′-TTTN-
3′ or 5′-TTTV-3′; V = A, C, or G, in some cases), as opposed to the G-rich, NGG sequence for Cas9. 
The type VI system (Cas13) is effector protein for RNA cutting, which is used as RNA-guided ribo-
nuclease, the nonspecific, trans-acting RNase activity of which is activated by base pairing of the 
crRNA guide to an ssRNA target. The Cas7, Cas5.SS*, Cas8(LS), Cas10 and CSf1(LS) have been drew 
with different colors, but they all belong to interference part of class I. 

2.2. Cas9 and dCas9 
Cas9 is a specific DNA endonuclease that existed in bacteria species such as Strepto-

coccus sepsis, Staphylococcus aureus, and Streptococcus thermophilus. It is a multifunctional 
protein with two ribozyme domains HNH and RuvC. First, Cas9 forms a ribosome protein 
complex with two small non-coding RNAs, CRISPR RNAs (crRNAs) and trans activated 
crRNAs (tracrRNAs). Then the RNA complex will find and identify a suitable Protospacer 
Adjacent Motif (PAM), such as the 5‘-NGG-3’ sequence of the target sequence [24]. Finally, 
Cas9 with RNA complex search and match the crRNA target sequence, and then the HNH 
ribozyme domain will cut the target chain, while the RuvC domain will cut the reverse 
chain subsequently [25–27]. 

Qi et al. (2013) mutated two conserved endonuclease domains of Cas9 in 
CRISPR/Cas9 system. The aspartic acid at position 10 of RuvC domain was mutated to 
alanine (D10A) and histidine at position 840 of HNH domain was mutated to alanine 
(H840A), so that Cas9 protein lost endonuclease activity and became dead Cas9 (dCas9), 
which cannot cut DNA but still can bind to specific target DNA sequences with the guide 
RNA [28]. Therefore, dCas9 binds to the promoter transcription start site (TSS) region and 
disrupts RNA polymerase or transcription factor binding to the promoter, resulting in 
inhibition of gene expression without altering the genome. This gene transcription regu-
lation strategy was defined as CRISPR interference (CRISPRi) [29]. The inhibition intensity 
of CRISPRi system can reach 1000-fold mostly in prokaryotes [30]. CRISPR interference is 

Figure 1. Characteristics of different types of CRISPR/Cas systems. CRISPR/Cas systems are classified
as types I to VI. Type I systems are characterized based on the occurrence of signature protein Cas3, a
protein which contains both DNase and helicase domains used to degrade the target. Type II CRISPR/Cas
systems use Cas1, Cas2, Cas9, and a fourth protein (Csn2 or Cas4), whereas the type III CRISPR/Cas
systems comprise the Cas10 with an indistinct role. The type II CRISPR/Cas system originates from S.
pyogenes and comprises three components: the CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA),
and a Cas9 protein. The type V CRISPR/Cas system (Cas12) is an RNA-guided system which is analogous
to CRISPR/Cas9 but exhibits some unique characteristics. This CRISPR system relies on a T-rich sequence
at the 5′-end of the protospacer sequence (5′-TTTN-3′ or 5′-TTTV-3′; V = A, C, or G, in some cases), as
opposed to the G-rich, NGG sequence for Cas9. The type VI system (Cas13) is effector protein for RNA
cutting, which is used as RNA-guided ribonuclease, the nonspecific, trans-acting RNase activity of which
is activated by base pairing of the crRNA guide to an ssRNA target. The Cas7, Cas5,SS*, Cas8(LS), Cas10
and CSf1(LS) have been drew with different colors, but they all belong to interference part of class I.

2.2. Cas9 and dCas9

Cas9 is a specific DNA endonuclease that existed in bacteria species such as Strepto-
coccus sepsis, Staphylococcus aureus, and Streptococcus thermophilus. It is a multifunctional
protein with two ribozyme domains HNH and RuvC. First, Cas9 forms a ribosome protein
complex with two small non-coding RNAs, CRISPR RNAs (crRNAs) and trans activated
crRNAs (tracrRNAs). Then the RNA complex will find and identify a suitable Protospacer
Adjacent Motif (PAM), such as the 5‘-NGG-3’ sequence of the target sequence [24]. Finally,
Cas9 with RNA complex search and match the crRNA target sequence, and then the HNH
ribozyme domain will cut the target chain, while the RuvC domain will cut the reverse
chain subsequently [25–27].

Qi et al. (2013) mutated two conserved endonuclease domains of Cas9 in CRISPR/Cas9
system. The aspartic acid at position 10 of RuvC domain was mutated to alanine (D10A)
and histidine at position 840 of HNH domain was mutated to alanine (H840A), so that Cas9
protein lost endonuclease activity and became dead Cas9 (dCas9), which cannot cut DNA
but still can bind to specific target DNA sequences with the guide RNA [28]. Therefore,
dCas9 binds to the upstream region of the promoter transcription start site (TSS) region
and disrupts RNA polymerase or transcription factor binding to the promoter, resulting
in inhibition of gene expression without altering the genome. This gene transcription
regulation strategy was defined as CRISPR interference (CRISPRi) [29]. The inhibition
intensity of CRISPRi system can reach 1000-fold mostly in prokaryotes [30]. CRISPR
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interference is also widely used in plants such as Nicotiana tabacum, Zea mays, and Arabidopsis
thaliana (as shown in Table 1) [31–36]. CRISPR interference can be used as an alternative
tool for RNAi. Conversely, CRISPR/Cas-derived transcriptional activation (CRISPRa) also
can be achieved by dCas9. Bikard et al. (2013) fused the dCas9 protein withω subgroups
(rpoZ) in E. coli, and this dCas9-ω complex increased the reporter gene transcriptional level
up to 2.8-fold [37]. The models of CRISPR mediated transcriptional regulation are shown
in Figure 2.

Table 1. Applications of CRISPR interference in plants.

Repressor Plant Species Target Gene Highest Repression
Level (%) References

dCas9 N. benthamiana
PDS 20 (Piatek et al., 2015)

pNOS::LUC reporter 80 (Vazquez-Vilar et al.,
2016)

dCas9-SRDX

N. benthamiana
PDS 33 (Piatek et al., 2015)

pNOS::LUC reporter 50 (Vazquez-Vilar et al.,
2016)

Z. mays ChlH 75
(Irene et al., 2020)

Z. mays PDS 60

dCas9-BRD N. benthamiana pNOS::LUC reporter 60 (Vazquez-Vilar et al.,
2016)

dCas9-3× SRDX A. thaliana
CSTF64 60

(Lowder et al., 2015)miR159a 80

miR159b 70

dLbCpf1-SRDX A. thaliana miR159b 90 (Tang et al., 2017)
dAsCpf1-SRDX A. thaliana miR159b 90

Figure 2. The diagram of CRISPR/dCas9-mediated transcriptional regulation. The dCas9 fused
with transcriptional inhibitors or activators can provide additional inhibition (CRISPRi) or activation
(CRISPRa) functions.

2.3. Guide RNA (gRNA)

Guide RNA (gRNA) of CRISPR/Cas9 system is a specific RNA sequence composed of
two elements: crRNA and tracrRNA. The gRNA recognizes the target DNA and directs
Cas9 protein to produce double-strand breaks (DSB) in target DNA [10]. Any comple-
mentary gene or nucleotide of sgRNA sequences can be targeted by CRISPR systems.
Furthermore, Cas9 and dCas9 can use multiple gRNAs effectively to expand the flexibility
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and multiplicity of CRISPR/Cas system by editing several different target genes simulta-
neously [38]. The selection of different regulatory elements and the change in regulatory
efficiency can be achieved through the modification of scaffolds [39].

2.4. Transcriptional Regulators

Transcription regulatory factors are essentially chimeric proteins, and their DNA binding
domains are connected with the functional domains that control the transcription mechanism by
promoting the recruitment of key cofactors to regulate transcription [35]. In the CRISPR/dCas9
meditated transcription regulation system, transcriptional regulation of target genes is achieved
by fusing transcription regulators with dCas9. Transcriptional Repression Domains (TRD) include
transcription repressors such as the Krüppel-Associated Box (KRAB) domain. Its function is to
suppress transcription by collecting co-inhibitors KRAB-Associated Protein 1 (KAP-1), which
leads to the formation of heterochromatin complexes that ultimately lead to gene silencing [40].
The transcriptional repressor SRDX originate from Ethylene-responsive element binding factor-
associated Amphiphilic Repression (EAR) transcriptional repressor domain, which are effective
plant transcriptional repressors [41].

On the other hand, transcriptional activators such as herpes simplex Virus Protein 16 (VP16)
Transcriptional Activator Domain (TAD) or tetrameric repeat VP64 [42] could elevate the target
genes’ transcription. Plant also has its own specific transcription regulators such as Ethylene
Responsive Factor/Ethylene-Responsive Element Binding Proteins (ERF/EREBP). They can
maintain high activity even in the presence of activating elements (such as VP16). This domain has
been used as a tool for transcriptional inhibition in some studies [40]. Ethylene response factors
in the ERF/EREBP family play a leading role in the response to biological and abiotic stress [43].
These transcriptional regulators bind to the APETALA2(AP2) DNA domain and various unnamed
motifs [44–46]. These sequences are EDLL short sequences consisting of conserved glutamate (E),
aspartic acid (D), and leucine (L). Several studies showed that the EDLL motif is a powerful tool
for endogenous gene transcriptional activation [47,48]. Transcriptional activation domains and
their detail description are summarized in Table 2.

Table 2. Applications of the CRISPR-activation system in plants.

Activator Plant Species Target Gene Fold Change
(Highest Level) References

dCas9-EDLL N. benthamiana
NbPDS 3.5 (Piatek et al., 2015)

pNOS::LUC reporter 2.2 (Vazquez-vilar et al., 2016)

dCas9-TAL N. benthamiana AtPDS 4 (Piatek et al., 2015)

dCas9-VP64

A.thaliana
AtPAP1 7

(Lowder et al., 2015)miR319 7.5

AtFIS2 400

N. benthamiana pNOS::LUC reporter 2.3 (Vazquez-vilar et al., 2016)

A.thaliana
AtWRKY30 2.1

(Li et al., 2017)

AtRLP23 0.9

AtCDG1 4.3

Oryza sativa

OsGW7 2.7

OsER1 0.3

Os03g01240 2.1

(Lowder et al., 2018)Os04g39780 1.1

Os11g35410 2.2

Z. mays PDS 2.5
(Irene et al., 2020)

TrxH 2.0

dCas9-VP64 + MS2-p65-HSF1
(SAM) A.thaliana

AtAVP1 5
(Park et al., 2017)

AtPAP1 7

dCas9-4×EE-2×VP64 A.thaliana pWRKY30::LUC reporter 12.6 (Li et al., 2017)
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Table 2. Cont.

Activator Plant Species Target Gene Fold Change
(Highest Level) References

dCas9-6×TAL-2×VP64
(dCas9-TV)

A.thaliana
AtWRKY30 138.8

(Li et al., 2017)

AtRLP23 32.3

AtCDG1 92.2

O. sativa
OsGW7 78.8

OsER1 62

dCpf1-TV A.thaliana pWRKY30::LUC reporter 4.7 (Li et al., 2017)

dCas9-VP64-EDLL
A.thaliana

AtPAP1 4
(Lowder et al., 2018)

AtFIS2 3

O. sativa OsCGA1 5 (Lee et al., 2021)

dCas9-VP64 + MS2-EDLL A.thaliana
AtPAP1 30 (Lowder et al., 2018)
AtFIS2 30

dCas9-VP64 + MS2-VP64
(CRISPR-Act2.0)

A.thaliana

AtPAP1 45

(Lowder et al., 2018)

AtFIS2 1500

AtULC1 40

miR319 6

O. sativa
Os03g01240 3

Os04g39780 4

Os11g35410 2.8

dCas9-2×GCN4 + scFv-
sfGFP-VP64

(SunTag)

A.thaliana

AtFWA 140

(Papikian et al., 2019)
AtEVD 4000

AtAP3 350

AtCLV3 130

dCasEV2.1
(EDLL-MS2:VPR/gRNA2.1)

N. benthamiana

NbAN2 4000 (Selma et al., 2019)
NbDFR 10000

NbPAL 400

(Selma et al., 2022)

NbC4H 4

Nb4CL 15

NbCHS 18000

NbCHI 45

NbF3H 140

NbFLS 40

dCas9-TV

O. sativa OsER1
OsGW7

4000
200 (Xiong et al., 2021)

Gossypium hirsutum Ghpapid 41.7 (unpublished data)
Ghaepsp 16
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Table 2. Cont.

Activator Plant Species Target Gene Fold Change
(Highest Level) References

CRISPR-Act3.0
gR2.0 4xGCN4

O. sativa

OsGW7 45

(Pan et al., 2021)

OsER1 90

CRISPR-Act3.0
gR2.0 10xGCN4

OsGW7 70

OsER1 95

CRISPR-Act3.0
gR8xMS2 4xGCN4

OsGW7 45

OsER1 40

CRISPR-Act3.0
gR8xMS210xGCN4

OsGW7 15

OsER1 10

CRISPR-Act3.0
VP64 4xGCN4

OsER1

30

CRISPR-Act3.0
VP64 10xGCN4 90

CRISPR-Act3.0
2xTAD 4xGCN4 140

CRISPR-Act3.0
2xTAD 10xGCN4 250

CRISPR-Act3.0
2xTAD–VP64 4xGCN4 120

CRISPR-Act3.0
2xTAD–VP64 10xGCN4 50

CRISPR-Act3.0
TV 4xGCN4 35

CRISPR-Act3.0
TV 10xGCN4 25

CRISPR-Act3.0
VPR 4xGCN4 30

CRISPR-Act3.0
VPR 10xGCN4 45

M-Act3.0
(Multiple sgRNAs)

OsDXS 9

OsPDS 6

OsPSY 17

OsCRTISO 3

OsZISO 23

OsZDS 3.5

OsCYB 11

OsCHS 30

OsCHI 2

OsF3H 130

OsDFR 20

OsLAR 70

A.thaliana

AtFT 240

AtTCL1 8

AtEVD 4000

AtAP3 350

AtCLV3 130

Lycopersicon esculentum LeSFT 240

3. Strategies for Achieving Transcriptional Activation Using the CRISPR/dCas9
System

As mentioned previously, transcriptional activators are essential for the regulation
of transcriptional activation through dCas9. Regulation of target gene activation can
be achieved by fusing transcriptional activators with dCas9, or by directing gRNA into
scaffolds to recruit transcriptional activators. A comparison of different activation systems
using these two strategies and evaluating their efficiency is summarized below:
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3.1. Fusion of Transcriptional Activation Effectors with dCas9

Studies showed that the dCas9 protein fused with the transcription factor VP64 can
recruit and stabilize the promoter complex to form dCas9-VP64 [49]. However, dCas9-
VP64 is a low-intensity activator with less than 10-fold target gene transcription [32,34,36].
Although higher levels of expression may be desirable to observe more pronounced phe-
notypes associated with the function of certain genes, these results clearly show that
Cas9-based transcription factors can activate endogenous gene expression [50]. Based on
this, the researchers attempted to string other different activators together with dCas9 and
this resulted in the following three systems:

3.1.1. dCas9-SunTag System

Researchers found that the combination of multiple transcription factors with a single
promoter significantly enhanced transcriptional activation of the downstream gene. This
principle of signal amplification through protein polymers had been applied in biological
system imaging and engineering design [51]. Based on this principle, Tanenbaum et al.
(2014) developed a novel protein scaffold, a repeating peptide array called SunTag for
transcription activation [52].

In the Super Nova Tag (SunTag) system, dCas9 is fused with tandem General Con-
trol Nonderepressible 4(GCN4) peptide repeats and each repeat connects a transcription
regulator via an anti-GCN4 antibody called Single Chain Fragment Variable (scFv). The
domain has highly affinity with relatively short nucleic acid sequences, allowing for protein
polymerization on a single RNA template. Compared to the dCas9-VP64, SunTag enables
multiple transcription factors such as Ten-Eleven Translocation (TET) and regulatory el-
ements X to be recruited in one system. Therefore, multiple genes can be synergistically
activated by different transcriptional regulators in tandem [53] as shown in Figure 3A.

3.1.2. dCas9-VPR System

In natural gene regulation system in cells, many transcription factor Activation Do-
mains (ADs) can make changes in transcription through a coordinated collection of neces-
sary activators. Chavez et al. (2015) hypothesized that transcriptional activation could be
enhanced by combining multiple Ads [54]. A series of more than 20 known transcriptional
effectors were fused to the C-terminus of dCas9 in an effort to enhance the transcriptional
activation efficiency in human HEK 293T cells. The result show that dCas9-VP64, dCas9-
p65 [55] and dCas9-Rta [56] were active. Then researchers used Cas9-VP64 as their starting
scaffold and expanded up-regulation with p65 and Rta at the C-terminal, resulting in VP64-
p65-Rta (VPR) activator complex as shown in Figure 3B. This novel activator displayed
increased transcription levels of endogenous target gene, ranging from 20-fold to 320-fold
over the original dCas9-VP64 activator [54].

3.1.3. dCas9-TV System

Currently, the CRISPRa system is continually being optimized and improved in animal
cells, whereas it is still at an early stage for plant cells. The dCas9-TV system is the first
CRISPR/dCas9 activation system applied in plant cells [57].

Li et al. (2017) modified dCas9-VP64 with VP16’s octahedron VP128 instead of VP64
and this system activated LUC with a five-fold increase; an improved performance on
the dCas9-VP64 (only a two-fold increase). TAD was then introduced as a second step to
enhance dCas9-VP128 activity, including plant-specific EDLL and modified ERF2 (ERF2m)
and TAD from the herpes simplex virus’ TALE element. Results showed that the com-
bination of VP128 with a tandem ERF2m-EDLL motif (up to four copies) activated LUC
transcription up to 12.6-fold compared to the base level, while combination of VP128 and
TALE TAD (up to six copies) increased LUC transcription up to 55-fold. The results sug-
gested that dCas9-6TAL-VP128 was a strong transcriptional activator and was called the
dCas9-TV system [39,57] as shown in Figure 3C.
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with GCN4 to recruit multiple copies of scFv, TET and other element X to activate the target gene
cooperatively; (B) dCas9-VPR system: dCas9 fused with VP64-p65-Rta to activate the target gene; (C)
dCas9-TV system: dCas9 TV activation system includes 6 TAL and 2 VP128; (D) scRNA system: An
RNA hairpin domain with RNA sequences MS2, PP7 and com recognized by MCP, PCP and com
RNA binding proteins was introduced at the end of sgRNA, and the transcription activating element
VP64 was fused into each corresponding RNA binding protein; (E) SAM system: The four bases at
the distal end of the stem loops of gRNA were modified to recognize the stem loops of MS2 to bind
p65 and HSF1; (F) CRISPR-Act2.0 system: dCas9 was fused with VP64 and the four bases at the distal
end of the stem loops of gRNA were modified to recognize the stem loops of MS2 to bind VP64; (G)
CRISPR-Act3.0 system: SunTag system with the MS2–MCP interaction would recruit more activator.

3.2. Modification of gRNA into a Scaffold and Recruitment of Transcriptional Activators

A common method for studying RNA localization is to insert multiple MS2-binding RNA
scaffolds into the target RNA molecule and then tag the RNA molecule with GFP by recruiting
MS2-GFP fusion proteins [51]. The inherently modular and programmable nature of RNA
allows it to be used to coordinate biological assembly. First of all, RNA can recognize DNA
targets via the complementary base pairing principle. Second, RNA contains a domain of RNA-
protein interactions that are useful for recruiting specific proteins. Previous studies demonstrated
that RNA scaffolds can coordinate the assembly of functional proteins [58]. Therefore, a second
common strategy for CRISPR/dCas9 derived transcriptional activation system is to use gRNA
as scaffold to recruit transcriptional activators.

3.2.1. scRNA System

Zalatan et al. (2015) constructed a scaffold RNA (scRNA) system and demonstrated
that it can effectively activate gene transcription in yeast and human cells [29]. ScRNA
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systems are inspired by natural regulatory systems in which scaffold proteins physically
assemble interacting components of cell signaling pathways. Similar scaffolding princi-
ples were applied in genomic modification, such as using Long-strand Non-Coding RNA
(lncRNA) as assembly scaffolds to recruit key epigenetic modifiers at specific genomic
sites [59,60]. In this system, the researchers fused the well-characterized viral RNA se-
quences including MS2, PP7, and Com into the 3′-end of gRNA, which are recognized by
RNA binding proteins, respectively. Then, the transcriptional activation domain VP64 was
fused to each corresponding RNA binding proteins, as shown in Figure 3D.

3.2.2. SAM System

Synergistic Activation Mediator (SAM) continues to be constructed by modifying
gRNA loops. Initially, the researchers tried to find the best anchoring position for the
activation domain in the Cas9-sgRNA complex. Previously, dCas9-based transcription
activators relied on trans activation domains fused to the N or C ends of dCas9 proteins.
For an investigation regarding alternative anchorage sites, Konermann et al. (2015) in-
vestigated the crystal structure of dCas9 and revealed that the distal gRNA loops did not
interact with dCas9 at all. Other research revealed that the gRNA loops could fuse with
protein-interacting RNA domains to promote transcription factor recruitment to dCas9 [61].
They combined VP64 with the NF-κB activation p65 [62] and reintroduced the activation
domain of Human Heat Shock Transcription Factor 1 (HSF1) for improving the efficiency of
dCas9-mediated gene activation (Figure 3E). Finalization of MS2-p65-HSF1 fusion protein
improved ASCL1 (12%) and MYOD1 (37%) transcription activation [61]. Some results
demonstrated that the SAM gene activation platform can facilitate in vivo research and
drug discovery [63].

3.2.3. CRISPR-Act 2.0 System

The CRISPR-Act 2.0 system is an improved system for multiple transcriptional activation in
plants, which is also dependent on MS2. It is capable of recruiting four VP64 proteins to gRNA
and the fifth VP64 was carried by the dCas9-VP64 complex. As shown in Figure 3F, this system
can carry a total of five activators to the target site. When compared to the original dCas9-VP64
system, CRISPR-Act 2.0 increased transcriptional activation efficiency by three to four folds [64].
Additionally, the CRISPR-Act 2.0 system enables simultaneous activation of multiple genes
in vivo. Lowder et al. (2017) assessed the efficacy of the CRISPR-Act 2.0 system in rice. They
simultaneously activated three independent endogenous genes Os11g35410, Os03g01240 and
Os04g39780 in rice protoplasm [48,64]. The results indicated that CRISPR-Act 2.0 was more
effective than the previous dCas9-VP64 systems.

3.2.4. CRISPR-Act3.0 System

Based on the CRISPR-Act 2.0 system, Pan et al. (2021) combined dCas9-VP64, gR
2.0 scaffolds, 10xGCN4 SunTag and a newly developed 2xTAD activator to build a novel
CRISPR-activating system, CRISPR-Act3.0 [65], as shown in Figure 3G. Multigene acti-
vation was achieved by assembling gRNA with multiple activators. At the same time,
the further combination with CRISPR-Cas12b and the SpCas9 variant SPRY may expand
the target range of CRISPR-activation. The primary objective of functional genomics is to
determine the causal relationship between gene expression and phenotypic characteristics.
By regulating gene expression in plants, the CRISPRa system provides a novel, efficient
method to simplify and accelerate these studies. The future holds a lot of potential for
improving CRISPR-activation efficiency, flexibility, and scalability.

4. Application and Limitation of CRISPRa System in Plants

First, the researchers used A. thaliana and N. benthamiana for transcription activation
test to evaluate the transcriptional activation activity of dcas9-VP64. The data suggested
that dCas9-VP64 had weak activation when a single sgRNA was designed in the vector.
Then, the adoption of multiple sgRNAs to target the same gene promoter resulted in higher
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level of gene activation [32,35,47,66]. Transcription activation domains from plant AP2
transcription factors as known as the EDLL motif and bacterial TALE protein have been
used to construct dCas9-based transcriptional activators in plants [64,66]. Li et al. (2017)
designed a transcriptional activation system dCas9-TV that works effectively in plants.
High-level transcriptional activation of target genes in A. thaliana and O. sativa cells was
achieved with a 201-fold and 2745-fold increase, respectively [57]. Xiong et al. (2021)
further optimized dCas9-TV system in rice to increase the transcription of OSER1 gene
up to 4000-fold [67]. Researchers also tried to link the EDLL motif with VP64, in a similar
fashion to the VPR strategy, in order to increase the efficiency of transcriptional activation
in rice [68]. Selma et al. (2022) used multipliable CRISPR activator dCasEV2.1 activated 3
and 7 genes with gene activation levels ranging from 4- to 1500-fold in N. benthamiana [69].

Similarly, transcriptional activation of endogenous target genes was also efficiently
applied in A. thaliana when SAM or SunTag were fused with the dCas9 [70,71]. When using
the same gRNA, the CRISPR-Act2.0 system significantly outperformed the dCas9-VP64
system to activate target genes in A. thaliana cells with a 1500-fold increase [64]. CRISPR-
Act3.0 recruits additional activators based on the SunTag system coupled to MS2-MCP
which increased activation efficiency of endogenous genes in rice (250-fold), Arabidopsis
(4000-fold) and tomato (240-fold), respectively [65]. It is important to note that even with
effective activation systems, such as CRISPR-Act 2.0 and dCas9-TV, some endogenous genes
are also difficult to activate effectively [64,66]. It is speculated that dCas9 and activators
must compete with endogenous transcription activators to bind the specific region of
promoters. The activation system and activation efficiency applied in plant species are
summarized in Table 2.

The current CRISPR/dCas9-based transcription system needs to be delivered in plant
by Agrobacterium, Polyethylene Glycol (PEG) or particle bombardment techniques. The
donor plants should harbor the T-DNA insertion with CRISPR/dCas9 fragment may be
regulated under the biosafety framework for GM plants since they contain transgene
element in the genome. This is maybe the major concern for wide application of the
current CRISPR/dCas9 mediated transcription activation system in plant. In addition,
with the miniaturization of Cas protein and the maturity of virus introduction technology,
it will leave the tissue culture stage and accelerate the efficiency of related research. It
is anticipated that transcriptional regulation using CRISPR will be further improved by
overcoming the technical difficulties mentioned above in the near future.

5. Concluding Remarks and Perspective of Transcription Activation System in Plants

This paper reviews the different strategies developed based on CRISPR/dcas9 ac-
tivation system in recent years. These strategies have been widely employed to study
gene transcription regulation in animal cells; however, their application in plants is still at
its early stages. In plants, this system is mainly used in the model plant species such as
Arabidopsis and rice, but not in other major crop plant species. Nevertheless, there is still
a great deal of potential for research in this field. First, the multi gene activation system
enables large-scale transcriptional regulation in plants in order to better understand gene
regulatory networks. Second, the up-regulation of multiple key genes in the metabolic
pathway can generally result in the production of valuable commercial products, and
synthetic biology is likely to make a significant breakthrough in the field of agriculture [72].
Additionally, the improvement of the protein complexes function is mainly dependent
upon the simultaneous activation of many different genes, and the multigene activation
system is helpful for studying the functional region of complex proteins [73]. Finally,
directed activation of multiple defense genes against pathogen attack is a potential strategy
to improve plant immunity without affecting traits [74]. Plants are able to recognize insect
molecules and respond accurately and defensively when insects are grazing. However,
the effectors released by insects interfere with the host plant’s defensive response. We can
use the CRISPR-activation system to avoid the destruction of plant defense mechanisms
by insect effectors and create broad-spectrum insect-resistant plant materials. Several
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novel gene editing tools such as Cas12a T-containing PAM with short guide RNA (42–44
nucleotides of crRNA), appeared to be more effective in regulating multiple genes [75].

Ongoing efforts are being made to update the transcriptional activation system based
on CRISPR/dCas9. For example, Chiarella et al. (2020) improved CRISPR/dCas9-based
transcriptional activation using Chemogenetic Epigenetic Modifiers (CEMs). By employing
endogenous chromatin activators, this system was able to activate target gene expression
without requiring exogenous transcriptional activators, leading to dose-dependent acti-
vations of target genes [76]. Gamboa et al. (2020) integrates the heat shock switch with
dCas9 complex to remotely control gene activation and inhibition with short-time heating
pulses [77]. The experimental results demonstrated that the activation intensity of the
dCas9-VP64 complex with heat as remote trigger depends on thermal pulse and can be
substantially improved in only 15 min. With this heat-activated transcriptional activation
system, CRISPR/dCas9 can activate transcription without invasive procedures. Optical
regulation can be used as another new method for inducing and regulating endogenous
genes in plants. Moreover, in an attempt to overcome the problems associated with the
compatibility of optogenetic tools with plant growth requirements, Ochoa-Fernandez et al.
(2020) developed Plant-Usable Light-Switch Elements (PULSE). A combination of blue
light sensing inhibition regulation with red light sensing activation regulation resulted in
gene expression being regulated only in the presence of red light. Combining PULSE with
CRISPR/dCas9 mediated gene activation system (dCas9-TV) demonstrated light controlled
activation of A. thaliana [78].

As opposed to ribozymes with cutting activity, which often cause uncertain genomic
modifications and result in chromosome rearrangements or deletion during multiple point
editing, dCas ribozymes offer a superior solution to these problems [79]. However, the
challenge remains in creating long sequences of multiple gRNAs strung together and deter-
mining their editing efficiency for various targets [80]. Under a multilocus CRISPR editing
system, the increased number of gRNAs leads to limited dcas9 competition between differ-
ent gRNAs, which in turn leads to variations in target gene editing efficiency [81], as well
as uncertainty in the regulation of target genes by gRNAs [82]. As mentioned previously,
CRISPR/dCas9 derived transcription activation system exhibited obvious advantages over
the traditional overexpression strategy to elevate the target genes’ transcription.

Epigenetic regulation is an important way to regulate gene expression and has certain
reversibility. The researchers used CRISPR/Cas9 to knock out epigenetic factors to deter-
mine the role of epigenetic factors in the regulation of endogenous genes in plants [83]. In
addition, researchers can combine CRISPR/dCas with different epigenetic effector domains
for specific epigenetic regulation of target sites [84]. In the future, with the improvement of
episequencing technology and the in-depth study of epigenetic regulators, CRISPR-based
epigenetic regulation research will have room for development.

Finally, with the wide application of single-cell sequencing technology in plants [85],
it will further improve the transcriptional regulation information of plants [86] and open
up new space for the application of CRISPR-activation system in plants.
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