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Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new
imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively
referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In
the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies
analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with
a brief discussion of potential areas of further radiotherapy advancement.
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1. Introduction

Recent technological advances in the field of radiation
oncology are revolutionizing the management of cancer with
ionizing radiation. Through the use of highly conformal
techniques, the ability to deliver curative doses to sub-
millimeter accuracy is unprecedented to now. In partic-
ular, intensity-modulated radiotherapy (IMRT) has had a
substantial impact on the management of head and neck
carcinoma (HNC), and its use is highly prevalent among
radiation oncologists [1]. IMRT allows for the delivery of
high doses to target volumes while simultaneously limiting
the dose to organs at risk, so that once common toxicities,
such as xerostomia, can be limited. However, for this to be
achieved, sharp gradients in dose are produced, and therefore
small changes in patient or tumor position may have
large dosimetric implications. In particular, several studies
have demonstrated that patient/tumor motion during IMRT
specifically for HNC is clinically significant [2–4].

Image-guided radiotherapy (IGRT) is a novel array
of techniques to help minimize the discrepancies due to
variations in patient/tumor position. A strict definition of
IGRT is the use of images to monitor or modify treatment
delivery. However, IGRT can also be divided into three broad
categories of image-based innovations: (1) the integration

of functional and biological imaging into the treatment
planning process to improve tumor contouring (or target
delineation), (2) the use of various imaging modalities to
adjust for tumor motion and positional uncertainty, and
finally (3) the adaptation of treatment planning based on
tumor response and changes in normal tissue anatomy [5].
The latter form of IGRT, known as adaptive radiotherapy, has
the potential benefit of avoiding unintended normal tissue
toxicity by altering the original treatment plan according
to changes that may have occurred during the course of
radiotherapy.

Treating HNC is often complex, owing to the importance
of preserving critical organ functions, such as salivation,
speech, and swallowing, that are key factors in determining
quality of life after treatment. Since radiotherapy continues
to play a central role in the definitive [6–10], adjuvant
[11, 12], and recurrent disease [13] settings of HNC, it
is likely that these innovations will continue to improve
outcomes by minimizing toxicity and maximizing organ
preservation. In addition, dose escalation with IMRT may
lead to improved local control, which may ultimately extend
survival if augmented by improvements in systemic therapies
for metastatic disease. Although many of these sophisticated
imaging and treatment modalities that employ IGRT are
still yet to be proven beneficial in randomized controlled
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trials, the theoretical benefits of improved disease-control
and normal tissue sparing are currently being demonstrated
in a variety of peer-reviewed publications, which is the focus
of the following review.

2. Improved Target Delineation

The first type of IGRT involves the incorporation of new
diagnostic imaging modalities into the initial tumor con-
touring stage of radiotherapy planning in order to more
precisely identify areas that should be treated with radiation.
Currently, most centers employ CT-based planning, where
the patient is simulated in the treatment position and then
the targeting of macroscopic and microscopic disease sites
is performed on CT-acquired images alone. Although CT-
based planning is common for HNC, recent studies have
suggested that a large degree of interobserver variability exists
in the contouring of the gross-target volume (GTV). Cooper
et al. asked eight “expert” physicians to contour the same
GTV in 20 patients with supraglottic carcinomas and found
that the overlap in contoured volumes was only 53% with
CT-alone [14]. As precise tumor localization is of grow-
ing importance with increasingly conformal radiotherapies,
attention has now shifted to novel forms of imaging that
provide additional biological and tumor information that
can be included in the planning process in order to clarify
areas of tumor burden.

A key innovation in this form of IGRT is the use of
18-F-Flurodeoxyglucose (FDG)-PET. FDG is a radiolabeled
analog of glucose that is selectively absorbed in tumor
cells more than normal tissues, and thus it is useful in
distinguishing neoplastic growth in tissues that otherwise
appear radiographically normal. As such, FDG-PET has a
well-established role in oncology and is commonly used in
tumor staging for several cancers, including HNC [15–17].
However, increased interest has now focused on the use of
FDG-PET in target delineation for radiation therapy in order
to guide the contouring of tumor margins and extended
fields. Since most tumor contouring is performed on CT-
based images, this is accomplished by using sophisticated
software to perform an accurate overlay (or registration) of
PET and CT images. In this fashion, target delineation can be
performed on the fused PET-CT image. Alternatively, some
centers are now equipped with hybrid PET-CT scanners that
are capable of acquiring both PET and CT scans during a
single session [18]. This has the added benefit of imaging the
patient while in the treatment position.

Research on FDG-PET in HNC has shown that PET-
based planning can significantly influence the size of the
gross-tumor volume (GTV) that is outlined [19–24], the size
of the nodal volume [23, 24], and assist in the detection
of nodal metastases not visualized or enlarged by CT
criteria [23, 24]. Most studies have found that PET-based
planning tends to reduce the GTV, however some studies
have shown that PET-based planning can also increase the
size of volumes contoured [5, 19]. Furthermore, new clinical
evidence from patients treated with PET-CT planning is
appearing in literature. Research has shown that PET-CT

based planning can lead to excellent local control [18, 25],
significant alterations in staging [22], and decreased normal
tissue toxicity [18]. In particular, Vernon et al. reported on 42
patients with HNC who underwent PET-CT during planning
and were followed for a median of 32 months [18]. A high
level of disease control was obtained, and acute toxicities
were relatively mild and improved with time.

Although the initial results of improved tumor localiza-
tion through PET-CT planning are optimistic, several areas
of concern exist. Guido et al. raise an issue regarding PET-
CT planning in a recent study of 38 patients who were
planned using PET-CT and CT-alone [26]. These researchers
found that although the GTV was reduced in 92% of
patients with the addition PET-CT from CT-only-based
plans, the planning target volume (which includes areas
of microscopic disease and additional margins for error)
was not significantly different between the two planning
modalities. As such, no clinical advantage would be expected
from the combined PET-CT planning. Further research on
technical issues such as this will have to be carefully addressed
in the future before widespread implementation of these
technologies. As of now, FDG-PET has a well-established role
for tumor staging, monitoring tumor response, and follow-
up of HNC patients. However, the routine use of PET-CT for
planning is not yet recommended.

FDG-PET is a commonly used radioactive tracer; how-
ever several novel tracers are being employed in HNC
imaging. Tumor hypoxia is a common occurrence in the
tumor microenvironment and has a well-known role in
the resistance of tumors to radiotherapy. Furthermore, it
is thought that many hypoxia-induced treatment failures
can be prevented in part by escalating the dose to hypoxic
subvolumes of the GTV. However, this process depends
on our ability to accurately identify hypoxic areas and
deliver a targeted radiation boost to those localities. Recent
advances in PET-based imaging combined with IGRT are
now making “hypoxia-directed radiotherapy” possible [27].
[18F]-misonidazole (FMISO) is a novel tracer that has been
shown to accurately identify hypoxic areas in head and neck
tumors [28–30]. In particular, Lee et al. have used FMISO-
PET to identify hypoxic subvolumes in 10 HNC patients and
subsequently escalated the dose to those areas with a local
boost [31]. No outcomes were reported, but the feasibility of
the technique has been established.

A recent study describes the treatment of 20 HNC
patients who received routine pre- and mid-treatment
FMISO scans in order to determine the effect of tumor
hypoxia on patient prognosis [32]. Surprisingly, these results
showed that neither the presence nor absence of tumor
hypoxia as defined by FMISO was correlated with patient
outcome. Although this may suggest that tumor hypoxia is
not correlated with patient outcomes, the authors suggest
several alternative explanations to this idea, including the
notion of tumor reoxygenation during fractionated radio-
therapy. Furthermore, a wealth of preclinical and clinical data
support the worsening prognosis associated with hypoxia
in HNC [27, 33–36]. In any case, further investigation is
necessary to ascertain whether the outcomes of HNC can be
improved by specifically targeting hypoxic zones.
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Figure 1: Example of 2D kV image used for verification of patient positioning. A 2D projection was created from the planning CT, and the
bony anatomy was contoured (solid line). This image was then overlapped with a kV image taken immediately prior to treatment delivery.
The overlay is shown before (a) and after (b) adjustments are made.

Other non-FDG tracers have also been investigated
for their role in HNC patients. In particular, 1-(11C)-
acetate PET (ACE-PET) has been shown to be a promising
tracer for HNC staging and target delineation and may
be used to complement FDG-PET [37]. The molecule, 3′-
deoxy-3′-18F-fluorothymidine (18F-FLT), is also of growing
interest to HNC management. FLT is phosphorylated by
the cytosolic enzyme thymidine kinase-1 (TK1) and is
subsequently trapped intracellularly [38]. TK1 activity is
increased during DNA synthesis, and thus 18F-FLT trapping
is a marker of proliferation. Research specifically in HNC
has shown that FLT uptake is correlated with decreased
survival [39], has good reproducibility [40] and may poten-
tially be useful in determining tumor response to radio-
therapy [41]. Finally, similar to FMISO, Cu(II)-diacetyl-
bis(N(4)-methylthiosemicarbazone) (Cu-ATSM) is a marker
of hypoxia but through an entirely different mechanism [27].
This tracer has also been evaluated in HNC and was shown
to provide another feasible approach for hypoxia-directed
radiotherapy [42]. However, further research is necessary
before the routine implementation of this or other novel PET
tracers into daily clinical use.

3. Improved Treatment Delivery

The second type of IGRT involves the use of modern imaging
modalities to assist in daily patient positioning. Most
radiotherapy protocols involve several weeks of sequential
daily treatment, and each day the patient needs to be
repositioned into the exact position obtained during the
initial planning CT. However, often small positioning errors
occur, which introduces the possibility for considerable inter-
fraction motion. In addition, if the patient is not properly
immobilized during a radiotherapy session, there is also the
potential for intrafraction motion. As six potential degrees of
freedom are prone to changing between and during fractions,
accurate positioning is an exceedingly complex challenge.

Over the years, several unique methods have been devised
to address and minimize interfraction and intrafraction

motion. Traditionally in HNC, thermoplastic masks com-
posed of a mesh-like grating are placed over a patient’s face
and secured to the treatment couch in order to immobilize
the patient’s head during CT-simulation and treatment. The
masks have markings on them that allow the radiation
therapists to then re-position the patient prior to each
fraction with the aid of optical arrays. Various types of masks
[3, 43–47] and bite blocks [48] have been employed for HNC
patients. However, due to the flexibility of the head and neck
region, these immobilization techniques have a potential for
considerable setup variability [45, 49–51].

Another common way to verify patient positioning
is through the use of two-dimensional (2D) portal film
imaging (see Figure 1). This is done using devices attached
to the treatment machine that are capable of taking two-
dimensional megavoltage (MV) [48, 52, 53] or kilovoltage
(kV) [54] radiographs. Typically, this is performed at the
beginning of each week of radiotherapy; however newer
schemes have been devised for daily kV imaging that are
more sensitive to day-to-day interfractional changes [55].
Although these 2D-radiographs are adequate for detecting
large positioning errors, they are problematic for a number of
reasons. First, they tend to have poor image quality, making it
difficult to identify set up inaccuracies [56–58]. Second, they
can only visualize bony structures, so changes in soft tissue
are not detected using this method. Third, 2D-radiographs
are not adequate for detecting rotational movement of the
head [49, 59, 60].

As such, recent advances in three-dimensional (3D) (or
volumetric) in-room imaging have offered new solutions
to the limitations of conventional patient positioning. One
solution that has been proposed involves the use of a conven-
tional CT scanner mounted on a rail system, which is placed
in the treatment room and shares a couch with the linear
accelerator. This system is capable of taking high-quality,
three-dimensional images after patient immobilization in
order to verify setup between day-to-day treatments [51, 61,
62]. These images are of higher quality than traditional portal
images, and they provide adequate resolution for soft tissue
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identification. However, the CT-on-rails system does have
some distinct disadvantages. First, the addition of a full-size
CT gantry into the treatment room can be cumbersome.
Second, these systems are incapable of detecting intrafrac-
tional motion. Finally, this system introduces the need for
movement of the couch between the CT scanner and the
linear accelerator, which increases the time of the procedure
[63].

Cone-beam CT (CBCT) is another novel form of 3D
in-room imaging that can minimize patient positioning
inaccuracies. CBCT is a scaled-down version of a CT scanner
that is built into the treatment machine. Images taken
from a CBCT at the time of treatment can be overlaid on
the original planning CT, and specialized software can be
used to detect positioning errors with millimeter accuracy
[59]. Similar to 2D portal imaging, two types of CBCT
exist: MV and kV. CBCT with kV imaging is reported to
have better image contrast and smaller signal-to-noise ratios
than MV CBCTs [64]. CBCT imaging has been used to
correct for interfractional motion in a clinically feasible
amount of time [63]. In addition, this technology is being
studied for the detection of intrafractional motion, which
could potentially be used for improved accuracy as well
[65, 66]. Finally, CBCT-based correction has also been used
to increase treatment accuracy in the setting of IMRT, thus
allowing for larger target doses, while simultaneously sparing
healthy tissues [67, 68]. There are concerns; however, about
the additional radiation dose delivered with frequent CBCT
imaging [69, 70]. In particular, studies have estimated that
daily cone-beam CT imaging can lead to an increase of 5.3–
6.7 cGy to skin per scan [71] and a total of 300 cGy over an
entire treatment course [72]. This may correspond to a 2%–
4% increase in secondary malignancies [71]. No long term
data on the actual incidence of secondary malignancies is
currently available, and continued investigation will have to
be performed to address this question.

In the past few years, helical tomotheraphy (HT) has
become an increasingly popular technique that employs
daily volumetric imaging to visualize both patient setup
errors and tumor/organ variations [73, 74]. HT combines
a 6 MV CT with a therapeutic linear accelerator that is
mounted onto a ring gantry. During treatment, the patient
is translated through the ring while the gantry continuously
rotates, resulting in helical fan beam radiation delivery.
The radiation beam is dynamically modifed using a binary
multileaf collimator, which allows for IMRT and the creation
of highly conformal dose distributions. In addition, using the
on-board 6 MV CT scanner, daily image guidance can be
performed with the patient in the actual treatment position
[75]. Thus, direct target position verification can be achieved
prior to radiation delivery [73].

Research on HT in HNC patients has been promising.
A prospective evaluation comparing HT to 3D-conformal
radiotherapy (3D-CRT) in 60 patients with disease at various
anatomic sites found that HT was subjectively equivalent
or superior to 3D-CRT in 95% of plans [76]. Furthermore,
studies have shown that HT can achieve sharper dose
gradients, improve dose homogeneity, and provide better
sparing of the parotids than conventional IMRT [77–79]

or stereotactic radiosurgery [80]. HT with daily position
corrections using MV CT is also safe and easy to implement
into a daily clinical routine [74]. Clinical outcomes using HT
in HNC patients have also been encouraging and have shown
decreased dose, as well as toxicity, to the parotids without
compromising survival, locoregional control, and disease-
free survival in comparison to conventional and non-HT
IMRT approaches [81, 82].

Digital tomosynthesis (DTS) offers another method of
3D in-room imaging for patient setup verification. Similar
to CBCT and HT, DTS provides volumetric tomographic
imaging; however it works by reconstructing 3D slices from a
limited number of 2D cone-beam projections. These images
may be of a lower resolution; however advocates of this
technology argue that it is comparable to CBCT in terms of
imaging quality. Furthermore, since DTS constructs images
from a limited number of arcs, it may result in lower
cumulative doses, as well as reduced treatment times in
comparison to other modalities [83, 84]. These advantages
may be of added benefit to pediatric patients, where reduced
dose and decreased treatment times are a high priority.

Optical methods have also been studied for daily image-
guidance [85]. Several groups have reported on systems
utilizing in-room cameras for imaging 3D surface recon-
structions in real time [86–88]. Others have used specialized
cameras with infrared markers for determining target posi-
tion [3, 89–93]. These systems are reported to detect setup
errors with high precision, as well as little setup time. This
technology has also been used in combination with in-room
radiographic imaging with promising results [44, 94–96].
Unlike other radiographic modalities, optical modalities are
noninvasive and do not expose the patient to added radiation
dose. In addition, these techniques account for intrafraction
motion and can be done in a relatively short amount of time
[85].

In conclusion, volumetric (3D) imaging in the HNC
setting is superior to conventional 2D portal imaging in
many ways. However, the extent to which this technology
should be applied is unclear. In particular, the frequency with
which 3D imaging for setup verification should be performed
is unknown and is the subject of current debate. Some have
argued that weekly or biweekly scans are adequate [59], while
others have suggested that daily scanning is necessary [97].
Additional investigation will be necessary to clarify these
questions.

4. Adaptive IGRT

The third broad category of IGRT is called adaptive IGRT
(ART). ART is a new, and still evolving, concept with the
potential to greatly improve the delivery of radiotherapy.
The current standard of treatment planning in radiotherapy
involves obtaining an image at the start of treatment. The
plan is then generated on that image and delivered to the
patient over the course of his/her therapy. We know in head
and neck cancer; however, that over the course of the 6–7
weeks of radiotherapy, there can be significant changes in
the patient’s anatomy based on shrinkage of the primary
tumor or involved lymph nodes and loss of overall body
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weight [98–100]. Applying the original plan to the now
altered patient anatomy can lead to increasing the dose
delivered to the surrounding normal tissues, including the
parotid glands and spinal cord [101–104]. Sparing these
normal tissues is an important consideration, because post-
radiation xerostomia has a significant impact on quality of
life [105–107] and dose constraints regarding the spinal cord
and brain stem are always of concern due to potentially
devastating consequences. ART allows us to “adapt” the
treatment plan in response to the changes that occur so
that we can maximally spare these normal tissues while
maintaining complete coverage of the tumor volume.

A study by Barker et al. examined the rate of tumor
regression and the total overall tumor regression by obtain-
ing CT images during treatment 3 times per week over the
course of radiotherapy and quantifying the volumetric and
geometric changes that occurred [99]. They estimated that
the GTV decreased by a median rate of approximately 1.8%
per day. The median total GTV decrease was approximately
70% (range 10%–92%) over the course of treatment, and this
shrinkage tended to be asymmetric. The parotid volume also
decreased by a median of 28.1% and moved medially with a
median translation of 3.1 mm which correlated with patient
weight loss. Vakilha et al. demonstrated a median reduction
of parotid volume of 49.8% and a median medial translation
of the parotids of 8.1 mm over the course of treatment [108].

Medial translation of the parotid glands from tumor
regression and patient weight loss tend to bring the parotids
into higher dose regions and therefore increase the dose to
the parotids [101]. In addition, shrinkage of the parotids can
result in a much larger percentage of the parotid receiving
high doses than anticipated. O’Daniel et al. estimated that
the median dose increase to the ipsilateral parotid was 3 Gy,
and 45% of patients experienced increases between 5–7 Gy
[103]. Though these doses seem small, the parotid is a very
radiosensitive tissue and even small changes in dose can have
a large impact. Blanco et al. estimated that salivary function
decreased at a rate of 5% per 1 Gy increase in mean dose
[107]. They also noted that 70% of patients that received a
mean dose of greater than 26 Gy to both parotids experienced
grade 4 xerostomia.

In order to avoid the unintentional overdosing of the
surrounding tissues, some investigators have studied re-
planning the radiation treatments in response to changes in
patient anatomy. Kuo et al. performed a prospective trial
in which 10 patients with enlarged lymph nodes were re-
planned after delivery of 45 Gy [101]. Twenty-one Gy was
then delivered according to the new plan to complete the
radiation treatment. The patients were then analyzed to
compare the differences between the dose that was delivered
after re-planning to the dose that would have been delivered
without re-planning. Their results show that the dose to the
parotid glands was reduced by approximately 2–4 Gy by re-
planning.

Hansen et al. performed a retrospective analysis on
patients that were re-planned for weight loss or tumor
regression [102]. Comparison of the two plans showed that
not re-planning led to decreases in target coverage and
increases in dose delivered to the surrounding tissues. They

found that the dose to 95% of the planned target volume
was reduced in 92% of patients in the old plan compared to
the new plan (range, 0.2–7.4 Gy). In addition, the maximum
dose to the spinal cord was higher in the original plan
compared to the new plan in all patients (range 0.2 to
15.4 Gy). The brainstem maximum dose was also increased
in 85% of patients (range 0.6–8.1 Gy).

Though research in the field of ART is mostly prelimi-
nary, it does show promising evidence of an improvement in
the delivery of radiotherapy. Though the theoretical benefits
of ART are highly desirable, there are still many barriers
to overcome before widespread adoption will be feasible.
First, it is unclear when and how often re-planning should
be done. Would re-planning once be sufficient or would
it need to be done more frequently, such as weekly or
even daily? Alternately would it be more appropriate to
develop defined thresholds that, if met, would necessitate re-
planning? Attempts are underway to identify the optimal re-
planning schedule, but for now, this schedule must take into
account the technical difficulties and the time required to
create a new plan. Currently, occasional re-planning can be
done, but frequent re-planning would overwhelm the avail-
able resources. New technologies such as deformable image
registration and automated target delineation in conjunction
with higher computational power will be required before
widespread adoption of this new strategy can occur.

5. Future Technologies

In the future, IGRT will likely continue to expand by
incorporating newer and more sophisticated imaging modal-
ities. In this section, we briefly discuss several cutting-edge
technologies that are in the early stages of investigation
in HNC, including molecular-based CT, high-resolution
ultrasound, magnetic resonance imaging (MRI), and proton
therapy.

Molecular-based CT imaging is a promising modality
that may offer several advantages for tumor delineation.
As CT is one of the most commonly employed diagnostic
imaging modalities in hospitals today, it has widespread
availability and convenience of use. However, CT is generally
not thought of as a molecular/cellular imaging modality
owing to the lack of targeted contrast agents. A recent
report by Popovtzer et al. at the University of Michigan at
Ann Arbor has described the use of gold nanoparticles that
selectively and sensitively target tumor antigens [109]. Using
in vitro models of HNC, these researchers demonstrated
that the attenuation coefficient for molecularly targeted cells
is over 5 times greater than for normal cells. As such,
nanotechnology-based CT may improve target delineation
by providing more accurate microtumor identification dur-
ing planning. Furthermore, since CT is easily accessible to
most physicians, this technique could be rapidly introduced
if proven to be both feasible and efficacious.

Aside from CT and PET, several other imaging modalities
have also been investigated for their potential role in
radiotherapy planning for HNC. High-resolution ultrasound
was studied by Wein et al. who demonstrated a feasible
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method for incorporating ultrasound-based information of
the architecture of cervical lymph nodes into the planning
CT for target delineation [110]. MRI has also been examined
in HNC. A recent study by Gardner et al. has found
that MRI fused to the planning CT can decrease the
amount of interobserver variation in critical organ and
target volume delineation for patients who have intracranial
tumor extension, heavy dental work, or contraindication for
contrast-enhanced CT [111]. To these authors knowledge, no
clinical data has yet been reported. However, based on these
preclinical studies, MRI and high-resolution ultrasound may
contribute to improved outcomes in HNC patients.

Proton therapy is another appealing form of radiother-
apy owing to its superior dose distribution properties, which
allow smaller volumes of normal tissue to be irradiated than
is possible for any photon beam technique. Accordingly,
initial clinical experiences of proton therapy in HNC have
been encouraging and have shown reduced normal tissue
toxicity in sinonasal, nasopharyngeal, and oropharyngeal
malignancies [112]. Although long-term efficacy studies
are still immature, the preliminary data is encouraging.
Furthermore, recent interest in combining proton therapy
with modern improvements in image-guidance and dose-
localization has arisen. In particular, just as the intensity of
photon beams can be modulated in IMRT, the intensity of
proton beams can also be modified to produce intensity-
modulated proton therapy (IMPT) [113]. Although a mature
technique is still unavailable, an offline study in HNC
patients has shown that IMPT has a better ability to spare
organs at risk and is associated with a significantly reduced
risk of secondary malignancy induction in comparison to
IMRT with photon beams [114]. The feasibility of combining
proton therapy with various forms of IGRT, such as MRI-
and kV-based modalities, has also been demonstrated and
may lead to a further reduction in normal tissue toxicity
when clinical data becomes available [115, 116]. Based
on preliminary reports such as this, future proton-therapy
research is eagerly anticipated.

6. Conclusion

With the advent of highly precise conformal therapies,
such as IMRT, the accurate localization and delivery of
radiotherapy will be increasingly important in the decades
to come. Recent advances in image-guided radiotherapy
provide increased tumor localization by improving the
identification of areas of tumor burden, by minimizing the
effects of patient setup errors caused by intra-/interfraction
motion, and by allowing for adaptive replanning to changes
that occur in the tumor or patient during long courses
of radiotherapy. In doing so, these changes are leading to
improvements in the therapeutic ratio, where doses are
increased at diseased-sites and minimized at normal tissues.

Although the promise of IGRT is great, it is not without
its hurdles. Importantly, there are large financial and
educational barriers in the initial setup and implementation
of new imaging modalities. Furthermore, there is still no
existing level I evidence demonstrating the benefit of IGRT
over standard radiotherapeutic modalities. Evidence from

existing retrospective and nonrandomized studies; however,
strongly supports the beneficial role of IGRT. Further
research is currently under way, and the results are expected
to continue to validate the use of IGRT in the management
of HNC patients.
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