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Abstract: Several studies demonstrate the benefits of low-power light therapy on wound healing. However, the
use of LED as a therapeutic resource remains controversial. There are questions regarding the equality or not of
biological effects promoted by LED and LASER. One objective of this review was to determine the biological
effects that support the use of LED on wound healing. Another objective was to identify LED´s parameters for
the treatment of wounds. The biological effects and parameters of LED will be compared to those of LASER.
Literature was obtained from online databases such as Medline, PubMed, Science Direct and Scielo. The search
was restricted to studies published in English and Portuguese from 1992 to 2012. Sixty-eight studies in vitro and
in animals were analyzed. LED and LASER promote similar biological effects, such as decrease of inflammatory
cells, increased fibroblast proliferation, stimulation of angiogenesis, granulation tissue formation and increased
synthesis of collagen. The irradiation parameters are also similar between LED and LASER. The biological effects
are dependent on irradiation parameters, mainly wavelength and dose. This review elucidates the importance of
defining parameters for the use of light devices.
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INTRODUCTION
A wound is characterized by the interruption

on the continuity of a body tissue. It can be caused by
any type of physical, chemical and mechanical trauma
or triggered by a medical condition.1 Cutaneous
wounds are relatively common in adults and their
incidence seems to increase in parallel with the
advances in life expectancy in the population.2

The therapeutic approach to wound healing
consists of preventive measures such as health profes-
sional continuing education, family counseling and
guidelines to a proper patient nutrition. The use of
medicinal plants, administration of essential fatty
acids, calcium alginate, antiseptics and degerming
products, activated carbon, semi-permeable films,
biological collagen, cell growth factors, hydropoly-
mer, hydrogel and hydrocolloid substances, proteolyt-
ic enzymes, sulfadiazine silver, gauze dressings,
bandages for skin protection and compression are also
advocated.3 Physical treatments such as therapeutic

ultrasound and electrotherapy are cited likewise in
the literature as important adjuncts in wound man-
agement.4,5 These therapies seem to be advantageous
but they have limitations and do not always achieve
satisfactory results. 

Wounds that are difficult to heal represent a
serious public health problem. The lesions severely
affect the quality of life of individuals due to
decreased mobility and substantial loss of productivi-
ty; they can also cause emotional damage and con-
tribute to increase the burden of public expenditures
in healthcare.6

The need to care for a population with poorly
healing wounds is a growing challenge that requires
innovative strategies. An approach that stands out in
the treatment of these lesions is low-power light ther-
apy, promoted by light devices such as LASER (Light
Amplification by Stimulated Emission of Radiation)
and LED (Light Emitting Diode).
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The therapeutic benefits of LASER light in the
treatment of wounds have been reported since the
1960s and those of LED light only since the 1990s.7,8

However, many of the results described show incon-
sistency, mainly due to methodology bias or lack of
standardization in the studies. Furthermore, the use of
LED as a therapeutic resource remains controversial.
There are questions regarding the equality or not of
biological and therapeutic effects promoted by LED
and LASER resources, but also regarding the appro-
priate parameters to each of these light sources.

This study aimed to determine, through a liter-
ature review: 1 - the biological effects that support the
use of light sources such as LED in the treatment of
wounds and 2 - the light parameters (wavelength and
dose) suitable for the treatment of wounds with LED
light sources. The biological effects and light parame-
ters of LED will be compared to those of LASER in
order to verify the similarity (or not) regarding wound
treatment.

MATERIALS AND METHODS
A literature search was performed in Medline,

PubMed, SciELO and Science Direct databases. The
literature search was restricted to studies published in
English and Portuguese in the period of 1992-2012.
The keywords used were “low level laser therapy”,
“laser”, “light emitting diode”, “LED”, “photothera-
py”, “wound healing”, “fibroblast”, “collagen” and
“angyogenesis” combined with each other.

RESULTS
Sixty-eight studies were analyzed, including 48

on LASER light, 14 related to LED light and 6 for both
types of light (Tables 1 to 3). According to data pre-
sented on table 1, 16 of the 48 studies on the effects of
LASER light were in vitro and 32 were performed in
animals.9-56 The use of different wavelengths (532-1064
nm) was verified, with the most utilized spectral
range being between 632.8 and 830 nm. Doses ranging
from 0.09 to 90 J/cm2 were used, predominating the
values   from 1 to 5 J/cm2. One study did not cite the
dose value used.48 The biological effects promoted
were reduction of inflammatory cells, increased prolif-
eration of fibroblasts, stimulation of collagen synthe-
sis, angiogenesis inducement and granulation tissue
formation. It was noted in a study that the dose of 4
J/cm2 was more effective than 8 J/cm2.14 Furthermore,
doses of 10 and 16 J/cm2 promoted inhibitory
effects.20,25,29,34

Eight of the 14 studies on the effects of LED
light were in vitro studies and 6 performed in animals,
as shown in table 2.57-70 Wavelengths ranging 456-880
nm were used, with spectral range from 627 to 670 nm
predominating. Doses ranged from 0.1 to 10 J/cm2,

and 4 J/cm2 was the predominant dose. However, not
all studies reported the dose applied.64,66,67,68 Biological
effects observed were reduction of inflammatory cells,
increased fibroblast proliferation, collagen synthesis,
stimulation of angiogenesis and granulation tissue
formation, these being similar to the ones observed in
studies with LASER.

Table 3 shows six studies comparing the biolog-
ical effects of LASER and LED lights.71-76 Two of the
studies were in vitro and 4 were performed in rats. It
has been noticed that wavelengths varied from 460 to
950 nm, with the range of 630-790 nm being the most
utilized both in LASER and LED studies. Doses rang-
ing from 0.1 to 10 J/cm2 were used, with predomi-
nance of doses up to 5 J/cm2. All studies reported sim-
ilar effects between LASER and LED, such as
increased fibroblast proliferation and stimulation of
angiogenesis.

DISCUSSION
Since the introduction of photobiomodulation in

healthcare, the effectiveness and applicability of light
resources for the treatment of skin wounds have been
extensively investigated both in vitro and in vivo.
Nevertheless, the biological mechanisms that support
the actions of low intensity light in tissues are still not
clearly elucidated. While some studies report an increase
in cellular proliferation of several cell types including
fibroblasts, endothelial cells and keratinocytes, conflict-
ing results about the clinical benefits of using light on
skin wounds are found in the literature.

The way light interacts with the biological tis-
sues will depend on the characteristics and parame-
ters of light devices, mainly the wavelength and dose,
and also the optical properties of the tissue.

Regarding the characteristics of light devices,
LASER consists of a resonant optical cavity and differ-
ent types of active media such as solid, liquid or
gaseous materials, in which processes of light genera-
tion occur through the passage of an electric current.77

Potency in the range of 10-3 to 10-1 W, wavelength
from 300 to 10,600 nm, pulse frequency from 0 (contin-
uous emission) to 5,000 Hz, pulse duration and pulse
interval from 1 to 500 milliseconds, total radiation
from 10-3000 seconds, intensity between 10-2 and 100
Wcm-1 and dose from 10-2 to 102 Jcm-2 characterized
LASER as a low potency device.78

On the other hand, LED is a diode formed by
p-n junctions (p-positive, n-negative) that, when
directly polarized, causes electrons to cross the poten-
tial barrier and recombine with holes within the
device. After the spontaneous recombination of elec-
tron-hole pairs, the simultaneous emission of photons
occurs. The physical mechanism by which LED emits
light is spontaneous light emission. The light-emitting
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Study Model Wavelength (nm) Dose (J/cm2) Biological effects

632 9; 15; 30; 60; 90
Lubart et al.9 In vitro +

780 7; 18; 36; 72
Yu et al.10 Mouse 630 5 +
Almeida-Lopes et al.11 In vitro 670; 692; 780; 786 2 +
Reddy et al.12 Rat 632,8 1 +
Pereira et al.13 In vitro 904 3; 4; 5 +
Medrado et al.14 Rat 670 4; 8 +
Pugliese et al.15 Rat 670 4; 8 +
Reddy16 Rat 904 1 +
Byrnes et al.17 Rat 632.8 4; 5; 7.2 +
Nascimento et al.18 Rat 670; 685 10 +
Ribeiro et al.19 Rat 632.8 1 +
Hawkins and Abrahamse20 In vitro 632.8 0.5; 2.5; 5; 10 +
Maiya et al.21 Rat 632.8 4.8 +
Moore et al.22 In vitro 625 – 675; 810 10 +
Poon et al.23 In vitro 532 0.8 +
Carvalho et al.24 Rat 632.8 4 +
Hawkins and Abrahamse25 In vitro 632.8 2.5; 5; 16 +
Rabelo et al.26 Rat 632.8 10 +
Araújo et al.27 Mouse 632.8 1 +
Hawkins and Abrahamse28 In vitro 632.8; 830 5 +
Houreld and Abrahamse29 In vitro 632.8 5; 16 +
Mirzaei et al.30 In vitro 632.8 0.09; 1; 4 +
Rezende et al.31 Rat 830 1,3; 3 +
Viegas et al.32 Rat 685; 830 4 +
Yasukawa et al.33 Rat 632.8 2.09; 4.21 +
Houreld  and Abrahamse34 In vitro 632.8; 830 5; 16 +
Medrado et al.35 Rat 670 4 +
Meireles et al.36 Rat 660; 780 20 +
Reis et al.37 Rat 670 4 +
Gungormus and Akyol38 Rat 808 10 +
Skopin and Molitor39 In vitro 980 3.1 – 14.4 +
Carvalho et al.40 Rat 660 4 +
Chung et al.41 Mouse 660 1.9 – 2.5 +

3.7 – 5.0
7.4 – 10

Gonçalves et al.42 Rat 830 30; 60 +
Gonçalves et al.43 Rat 830 30; 60 +

904 4
Guirro et al.44 Rat 670 4; 7 +
Houreld and Abrahamse45 In vitro 632.8; 830 5 +
Lacjakova et al.46 Rat 670 5 +
Medeiros et al.47 Rat 655 12 +
Hussein et al.48 Rabbit 890 ---------- +
Silveira et al.49 Rat 660; 904 1; 3 +
Weng et al.50 In vitro 532 35 +

1064 1.2
Basso et al.51 In vitro 780 0.5; 1.5; 3; 5; 7 +
Crisan et al.52 In vitro 830; 980 5.5 +
Dawood and Salman53 Mouse 650 38.2; 57.3 +
Fahimipour et al.54 Mouse 632.8; 830 4; 7.5 +
Gonçalves et al.55 Rat 830 30; 90 +
Nunez et al.56 Rat 660 1; 4 +

TABLE 1: Biological effects of LASER light on cutaneous wounds
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Study Model Wavelength (nm) Dose (J/cm2) Biological effects

Whelan et al.57 In vitro 670; 728; 880 4; 8 +
Vinck et al.58 In vitro 570 0.1 +
Weiss et al.59 In vitro 590 0.1 +
Huang et al.60 In vitro 630 1; 2 +
Lanzafame et al.61 Mouse 670 5 +
Agnol et al.62 Rat 640 6 +
Tada et al.63 In vitro 627 1; 2; 4; 8; 10 +
Komine et al.64 In vitro 627 4 +
Meyer et al.65 Rat 515-525 --------- +

620-630
Sousa et al.66 Rat 460; 530; 700 10 +
Adamskaya et al.67 Rat 470; 629 --------- +
Lim et al.68 In vitro 635 --------- +
Cheon et al.69 Rat 470; 525; 633 --------- +
Fushimi et al.70 In vitro 456; 518; 638 0.2; 0.3; 0.6 +

TABLE 2: Biological effects of LED light on cutaneous wounds

Study Model Type of light Wavelength (nm) Dose (J/cm2) Biological effects

Vinck et al.70 In vitro LASER 830 1 +
LED 570 0.1

660 0.53
950 0.53

Corazza et al.71 Rat LASER 660 5 +
LED 635 20

Volpato et al.72 In vitro LASER 660 4; 8 +
780 5; 10

LED 637 4; 8

Nishioka et al.73 Rat LASER 660 5 +
LED 630

Sampaio et al.74 Rat LASER 660 10 +
LED 700

Sousa et al.75 Rat LASER 660; 790 10 +
LED 460; 530; 700

TABLE 3: Biological effects of LED and LASER light on cutaneous wounds

diodes convert the electrical current in a light spec-
trum, a process called electroluminescence.79 LEDs
usually operate with outputs in the range of milli-
watts and therefore are usually set up on small chips
or connected to small light bulbs.80

The variable characteristics and parameters of
light devices is one of the factors that complicate the
interpretation of research results about the effects of
low intensity light on skin wounds. As observed in
this study, there is discordance between the types of
light and parameters used in studies. This fact may
limit the decision-making process regarding the role
of light in treating wounds since photobiomodulator
effects are parameter-dependent.

Energy absorption is the primary mechanism
that allows light from LASER or LED to produce bio-
logical effects in the tissue. Light absorption is depend-
ent on wavelength and the main tissue chromophores
(hemoglobin and melanin) strongly absorb wave-
lengths shorter than 600 nm. For these reasons, there is
a therapeutic window in the optical spectral range of
red and near infrared, wherein the efficiency of light
penetration in the tissue is maximum (Figure 1).81

Fifty-nine of the 68 studies reviewed applied
LASER or LED inside the optical therapeutic window
and 9 applied them in the range of blue or green, and
even so biological effects were observed. Although
light in the blue and green wavelengths range can
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FIGURE 1: Optical therapeutic window

FIGURE 2: Arndt-Schultz Curve

Source: Schindl A, et al. 2000.

achieve significant effects in cells, the use of low
power light in animals and humans involves almost
exclusively light in red and near infrared wave-
lengths.81 Historical issues, mainly cost and availabili-
ty may be related to this fact.

As noted in Tables 1, 2 and 3 studies applied
LASER or LED with doses around 0.09 to 90 J/cm2.
The most significant biological effects were seen with
predominant dose values, i.e. up to 5 J/cm2, which are
within the Arndt-Schultz curve (Figure 2). According
to Sommer et al, very low doses do not promote bio-
logical effects, while higher doses result in inhibition
of cellular functions.82 The energetic state of the cell, i.e.
the physiological condition of the tissue in treatment is
therefore critical to determine which dose to use.

The mechanism of light action on the cellular
level that supports its biological effects is based on
photobiological reactions. A photobiological reaction
involves the absorption of a specific wavelength of
light by photoreceptor molecules.83

There is evidence that wavelengths in the spec-
tral range from red to near infrared are absorbed by
cytochrome c oxidase.83,84 In the study by Karu and
Kolyakov action spectra of monochromatic light from

580 to 860 nm were analyzed.85 The authors noted four
active spectral regions, two in the red range (peaks
from 613.5 to 623.5 nm and 667.5 to 683.7 nm) and two
infrared (peaks from 750.7 to 772, 3 nm and 812.5 to
846.0 nm). In addition, they also observed the absorp-
tion by cytochrome c oxidase in these four bands. The
authors concluded that cytochrome c oxidase could
absorb light in different spectral bands (red and near
infrared), probably in the binuclear centers CuA and
CuB (oxidized forms).

Photobiological reactions can be classified into
primary and secondary. Primary reactions derive
from the interaction between photons and the pho-
toreceptor, and they are observed in a few seconds or
minutes after the irradiation of light. On the other
hand, secondary reactions are effects that occur in
response to primary reactions, in hours or even days
after the irradiation procedure.84,86

The primary reactions of light action on pho-
toreceptors are not yet clearly established, but there
are some hypotheses. After the absorption of light in
the irradiated wavelength, cytochrome c oxidase dis-
plays an electronically excited status, from which it
alters its redox status and causes the acceleration of
electron transfer in the respiratory chain.87 Another
hypothesis is that a part of the electronically excited
status energy is converted into heat, causing a local-
ized and transient heating in photoreceptors.88 A third
assumption would be that when enabling the flow of
electrons in the respiratory chain by light irradiation,
an increase in the production of superoxide anion can
be expected.89 A fourth reaction formula assumes that
porphyrins and flavoproteins absorb photons and
generate reactive species of singlet oxygen.90 It has
also been proposed that light can reverse cytochrome
c oxidase inhibition through nitric oxide and thereby
increase the rate of respiration.91

The mechanism of secondary photobiological
reactions is determined by transduction (energy trans-
fer from one system to another) and photosignal
amplification leading to photoresponse. This means
that effects derived from primary reactions are ampli-
fied and transmitted to other parts of the cell, result-
ing in physiological effects such as alterations in cell
membrane permeability with changes in intracellular
calcium levels, increased cellular metabolism, DNA
and RNA syntheses, fibroblast proliferation, activa-
tion of T lymphocytes, macrophages and mast cells,
increased synthesis of endorphins and decreased
bradykinin.83

Secondary reactions are responsible for the con-
nection between response to light action by photore-
ceptors located inside the mitochondria and the
effects located in the nucleus or different phenomena
in other cell components. This process makes it possi-

Source: Schubert EF, et al. 2003.
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ble to apply a very small amount of light to produce
clinically significant effects on tissues.92

In short, light absorption depending on the
wavelength, causes primary reactions on the mito-
chondria. These are followed by a cascade of second-
ary reactions (photosignal transduction and amplifi-
cation) that occur in the cytoplasm, membrane and
nucleus as shown by the Karu model (Figure 3).

Nevertheless, there is a hypothesis about a
modification in the Karu model. It is believed that the
red light is absorbed by cytochrome-c oxidase inside
the mitochondria, while the infrared wavelength is
absorbed by specific cell membrane proteins directly
affecting membrane permeability; both pathways lead
to the same photobiological end response.93

Sources like LASER differ from LED ones
because of a characteristic known as coherence. This
feature is related to stimulated emission mechanisms,
with LASER light being formed by same frequency,

Source: Huang YY, et al. 2009.

Light absorption 
(primary reactions)

Photosignal transduction
(secondary reactions)

Photobiological response

Light Mitochondria

Na+, K+, Ca++: Na+ (sodium),
K+ (potassium), Ca++ (calcium)

Cytoplasm Nucleus
(DNA/RNA
synthesis)

FIGURE 3: Karu Model

direction and phase waves.94 Some authors believe
that coherence plays a role in the production of light
therapy derived benefits, and LED (not coherent)
would be less efficient than LASER (coherent) or even
unable to promote therapeutic effects.95

The reviewed studies, however, have shown
that LED light can be as effective as LASER, since both
have similar biological effects, with no significant dif-
ference between them. The cellular response to photo-
stimulation is not associated with specific properties
of LASER light, such as coherence.96 According to
Karu, the property of coherence is lost during the
interaction of light with biological tissue, not being
thus a prerequisite for the process of photostimulation
or photoinhibition.86

More clinical studies, especially with LEDs, must
be performed in order to assess the adequacy of param-
eters commonly used experimental in vitro and animal
studies to the clinical practice, since, in the relevant lit-
erature, there is a diversity in methodology, as well as
differences in wavelength, dose and types of study.

CONCLUSION
The reviewed studies show that phototherapy,

either by LASER or LED, is an effective therapeutic
modality to promote healing of skin wounds. The bio-
logical effects promoted by these therapeutic resources
are similar and are related to the decrease in inflamma-
tory cells, increased fibroblast proliferation, angiogen-
esis stimulation, formation of granulation tissue and
increased collagen synthesis. In addition to these
effects, the irradiation parameters are also similar
between LED and LASER. Importantly, the biological
effects are dependent on such parameters, especially
wavelength and dose, highlighting the importance of
determining an appropriate treatment protocol. q
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