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Background. Oxidative stress (OS) is associated with the development of acute myeloid leukemia (AML). However, there is lack of
relevant research to confirm that OS-related genes can guide patients in risk stratification and predict their survival probability.
Method. First, we Data from three public databases, respectively. Then, we use batch univariate Cox regression and machine
learning to select important characteristic genes; next, we build the model and use receiver operating characteristic curve
(ROC) to evaluate the accuracy. Moreover, GSEAs were performed to discover the molecular mechanism and conduct
nomogram visualization. In addition, the relative importance value was used to identify the hub gene, and GSE9476 was to
validate hub gene difference expression. Finally, we use symptom mapping to predict the candidate herbs, targeting the hub
gene, and put these candidate herbs into Traditional Chinese Medicine Systems Pharmacology (TCMSP) to identify the main
small molecular ingredients and then docking hub proteins with this small molecular. Results. A total of 313 candidate
oxidative stress-related genes could affect patients’ outcomes and machine learning to select six potential genes to construct a
gene signature model to predict the overall survival (OS) of AML patients. Patients in a high group will obtain a short survival
time when compared with the low-risk group (HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). ROC results demonstrate the model
has better prediction efficiency with AUC 0.873. GSEA suggests that this gene is enriched in several important signaling
pathways. Nomogram is constructed and is robust. PLA2G4A is a hub gene of signature and associated with prognosis, and
Nobiletin could target PLA2G4A for therapy AML. Conclusion. We use two different machine learning methods to build six
oxidative stress-related gene signatures that could assist clinical decisions and identify PLA2G4A as a potential biomarker for
AML. Nobiletin, targeting PLA2G4, may provide a third pathway for therapy AML.

1. Introduction

Acute myeloid leukemia (AML) was derived from abnormal
stem cell precursors of the myeloid lineage [1]. These prolif-
erative clonal hematopoietic precursor cells damage the nor-
mal hematopoiesis and cause a series of clinical symptoms.
Although AML is a rare disease compared with other newly
diagnosed cancers, it accounts for more than 15% of acute
leukemia with more than 30% mortality [2, 3]. Currently,
molecular and cytogenetic features are recognised as key
prognostic factors for the disease diagnosis. Hematopoietic

stem cell transplantation (HSCT) remains the only way to
cure this disease, but the overall survival (OS) is still stagnant
due to severe infection and acute graft-versus-host disease
(aGVHD) after transplantation [3, 4]. More than 70% of
patients receiving conventional chemotherapy will eventu-
ally relapse or become refractory leukemia [5]. Thus, it is
of great importance to gain an understanding of the genetic
variations in this disease and explore new targets for predict-
ing prognosis and direct treatment.

Oxidative stress (OS) refers to a state of imbalance
between reactive oxygen species (ROS) and antioxidant
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Figure 1: Machine learning to identify important oxidative stress-related genes for the prognosis model. (a, b) The error rate of the random
forest model is 29.83%, and the better and poor prognosis genes are ordered by their importance. (c) Thirty-four prognosis-related genes are
important more than 0.3. (d, e) Fifteen candidate genes are extracted from the expression profile by the lasso regression model. (f) Six
potential genes were identified after the merge of the results of the above two different machine learning algorithms.
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effects in the body, which is characterized as inflammatory
infiltration of neutrophils, increased secretion of proteases,
and the production of a large number of oxidative com-
pounds [6]. ROS have been confirmed to be associated with
cellular signaling and gene expression in the normal cellular
process [7, 8]. However, once the endogenous ROS is not
adequately eliminated by the antioxidant system, the proox-
idant/antioxidant balance is lost and leads to the occurrence
of OS, which will damage the biological processes and the
DNA repair mechanisms, leading to kinds of diseases and
carcinogenesis, such as neurological disease, cardiovascular
disease, breast cancer, prostate cancer, and hematologic
malignancies [9–14]. On the other hand, ROS can undertake
an opposite role in tumor therapy by inducing cell apoptosis
[14]. Therefore, clarifying the dual role of OS in the patho-
genesis and treatment of AML and selecting the potential
beneficial population would lay the foundation for individu-
alized precision treatment.

In the present work, we use two different machine learn-
ing methods to select candidate prognosis genes in oxidative
stress-related gene sets and build a six-gene signature model
to predict the AML patients’ outcomes. In addition, we also
identify PLA2G4A as a hub gene of signature and associated
with prognosis and found that Nobiletin, a type of tradi-
tional Chinese medicine, targeting PLA2G4 may provide a
third pathway for therapy AML.

2. Methods and Materials

2.1. Data Obtaining and Prepared. Public datasets were
applied to this study: The Cancer Genome Atlas Program
(TCGA), Genotype-Tissue Expression (GTEx), and Gene
Expression Omnibus (GEO), respectively. We obtain AML
data from TCGA database, which includes RNAseq records
and clinical information of patients. Original count data
are transferred to TPM style and extract 1399 oxidative
stress-related genes, recorded by gene card database, from
the expression profile to construct a new oxidative stress-
related gene matrix for model building. Overall survival
(OS) was defined as the endpoint. RNAseq data of donor
bone marrow are from the GTEx database. GSE9476, includ-
ing 38 donors and 26 AML samples, was used to validate
hub gene differential expression between healthy hemato-
poietic cells and leukemic blasts. The 3D structure of hub
protein and small-molecule structures are sourced from
PDB and Pub Chem, respectively.

2.2. Batch Univariate Cox Regression to Identify Prognosis-
Related Genes. Too many genes will affect patients’ out-
comes; here, we use batch univariate Cox regression to iden-
tify prognosis-related genes of oxidative stress. After
analysis, genes with a p value less than 0.05 were identified
as significant factors, and this gene will be input into the
next model to perform dimensionality reduction.

2.3. Machine Learning to Select Important Characteristic
Genes. Random forest and lasso regression are performed
to identify important characteristic genes of oxidative stress.
The importance of the random forest algorithm was defined
as 0.3, and then, all of these requirement genes were put into
the lasso regression model, which model set significant crite-
rion was lambda is minimal.

2.4. Predictive Model Construct and Validation. For building
the final prediction model, we use multivariate Cox regres-
sion to analyze the significant oxidative stress-related genes;
as above standard, the p value is also set as less than 0.05.
After selecting all of these requirement genes, we build the
final model for the prediction of patient outcome, according
to the regression coefficients. Each patient will obtain one
risk score, patients will be divided into high- and low-risk
groups, according to the median value. Survival analyses
were conducted by log-rank test. Forty percent of the total
data were set as a test dataset to validate robust of the above
model. Area under ROC was used to evaluate the predictive
accuracy.

2.5. Difference Expression Genes between High-Risk and Low-
Risk Groups. To identify the differential expression genes
between the high-risk and low-risk groups, the limma pack-
age was used to conduct this procedure, and the criteria of
significant genes were set as absolute of log fold change more
than 2 and p value less than 0.05.

2.6. GSEA of Differential Expression Genes. The molecular
mechanism of differential expression genes between the
high-risk and low-risk groups is unclear; here, we use the
GSEA function, which provides by the cluster profile pack-
age, to do GO and KEGG pathway enrichment analysis. p
value less than 0.05 was identified as a significant enrich-
ment result.

2.7. Nomogram Construction and Evaluation. Nomogram is
more than eyes and provides a convenient tool for clinical
physicians to assist clinical decisions. Significant genes from
the above multivariate Cox regression results will be consid-
ered and put into the VRPM package to conduct visualiza-
tion. The area under the curve (AUC) of receiver operating
characteristic (ROC) and calibration curve were used to
evaluate the model’s robustness.

2.8. Hub Gene Selection and Validation. In the gene panel,
not all the genes play an important role in the model, so
we select the importance value of the model gene and order
it from high to low, and the biggest value of the important
gene was identified as the hub gene. Donor patients’ bone
marrow, which obtains from the GTEx database, will be

Table 1: Multivariate Cox regression for model genes.

Gene symbol Coef HR p value
95% CI

Lower Upper

AGRN -0.391 0.676 0.507 0.902 0.008

ETFB 0.827 2.289 1.051 4.985 0.037

PLA2G4A 0.236 1.266 0.965 1.661 0.088

RYR1 0.650 1.917 1.239 2.966 0.003

SIGMAR1 0.404 1.498 1.026 2.187 0.036

SOCS1 0.473 1.605 1.177 2.189 0.003
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compared with AML patients’ bone marrow to validate hub
gene difference expression. In addition, sample from
GSE9476 also repeats the above operation. Moreover, sur-
vival analysis was performed to conduct by survminer pack-
age, to compare survival probability difference between high
and low expression patients.

2.9. Screening Candidate Herbs Targeting Hub Protein. Tra-
ditional Chinese medicine has been confirmed that has the
potential ability to target tumor markers. We use a symptom
mapping (symMap Version 2.0) database to predict the can-
didate herbs, which will target the hub gene. Herbs with
FDR less than 0.05 will be selected. The top 10 requirement
herbs will be selected and also checked by the previous liter-
ature, which has been reported to have the ability of antican-
cer function for preparing docking with hub proteins.
Candidate herbs will be input into Traditional Chinese Med-
icine Systems Pharmacology (TCMSP) to identify the main
small molecular ingredients, according to oral bioavailability
(OB) more than 30 and drug-likeliness (DL) more than 0.18.

2.10. Docking Structures between Proteins and Small
Molecular Drugs. Before docking both structures, we need
prepared ligand and receptor structures. So, we download
the hub protein’s 3D structure from the protein data bank
(PDB; https://www.rcsb.org/) and obtain small molecular
drug structure form Pub Chem database (https://pubchem
.ncbi.nlm.nih.gov/), respectively. Then, an online tool will
conduct a docking program (https://cadd.labshare.cn/cb-
dock2/php/index.php).

3. Results

3.1. Prognosis Genes in Oxidative Stress-Related Gene Set of
AML. We use a batch univariate regression model to filter
no significant genes, which could not affect patients’ out-

comes, and some prognosis-related genes in the oxidative
stress-related gene set were selected. The results of the batch
univariate regression model show that a total of 313 candi-
dates’ oxidative stress-related genes could affect patients’
outcomes (Supplement Table 1).

3.2. Machine Learning to Select Candidate Model Genes.
Random forest and lasso regression models were used to
select candidate model genes. On the one hand, we put the
expression matrix to the random forest model. The results
show that the error rate of the random forest model is
29.83%, and the better and poor prognosis genes are ordered
by importance (Figures 1(a) and 1(b)). When we set variable
relative importance to more than 0.3, 34 prognosis-related
genes are selected, and the top 10 significant are shown in
Figure 1(c) (Supplement Table 2). On the other hand, the
above expression matrix is also put into the lasso
regression model, when the model selects the minimal
lambda value; 15 candidate genes are extracted from the
expression profile (Figures 1(d) and 1(e)). Then, we merge
the results of the above two different machine learning
algorithms. Six potential genes were identified to construct
a gene signature model (Figure 1(f)).

3.3. Six-Gene Signature Could Predict the OS of AML
Patients. After multivariate Cox regression model analysis,
we find six genes from machine learning methods are
included in the model (Table 1). So, in the next step, we
build a six-gene signature model to predict the OS of AML
patients, according to the coefficient of multivariate Cox
regression. After building the signature model, every patient
will obtain a risk score, which calculated by the model for-
mula, risk score = ð−0:391Þ × AGRN + ð0:827Þ × ETFB + ð
0:236Þ × PLA2G4A + ð0:650Þ × RYR1 + ð0:404Þ × SIGMAR
1 + ð0:473Þ × SOCS1. After the count, patients will be
divided into low-risk and high-risk groups, based on median
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Figure 2: Six oxidative stress-related gene signature construction and internal validation. (a) Each patient will obtain a risk score, which is
calculated by the model formula. (b) Patients in a high group will obtain a short survival time when compared with the low-risk group, and
this difference is significant (HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). (c) ROC demonstrates the model has better prediction efficiency with
AUC is 0.873. (d–f) Internal validation results also support the above conclusions, and the AUC is 0.836.
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value (Figure 2(a)). Figure 2(b) shows that patients in the
high group will obtain a short survival time when compared
with the low-risk group, and this difference is significant
(HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). We use ROC to
evaluate the prediction accuracy of the model, and the
results demonstrate the model has better prediction effi-
ciency with AUC is 0.873 (Figure 2(c)). Internal validation
results also support the above conclusions. Patients with
low-risk scores mean longer living times when compared
with high-risk score patients. In addition, the ROC of the

validation dataset also shows the model could predict
patients’ outcome accuracy with AUC equal to 0.836
(Figures 2(d)–2(f)).

3.4. Six-Gene Signature with Clinical Factors. Age and sex are
both important clinical characteristics for AML patients.
Here, we perform survival analysis to discover the difference
between clinical subgroups. In the age subgroup, we find
that in patients under 60 years old, the high-risk score means
a shorter survival time, when compared with the low-risk
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Figure 3: Signature with clinical variables. (a) In the age subgroup, patients under 60 years old, the high-risk score means shorter survival
time, when compared with the low-risk group (HR = 5:03, 95% CI: 2.33-10.87; p < 0:001). (b) This conclusion also confirmed by patients
more than 60 years old (HR = 2:18, 95% CI: 1.19-3.98; p = 0:018). (c, d) As for the sex subgroup, patients with low-risk scores always
represent a better prognosis, when compared with a high-risk score, no matter which sex they are (HR = 3:67, 95% CI: 1.97-6.85; p <
0:001 vs. HR = 4:35, 95% CI: 2.12-8.94; p < 0:001, respectively).
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group (HR = 5:03, 95% CI: 2.33-10.87; p < 0:001)
(Figure 3(a)). This conclusion also confirmed by patients
more than 60 years old (HR = 2:18, 95% CI: 1.19-3.98; p =
0:018) (Figure 3(b)). As for the sex subgroup, patients with
low-risk scores always represent have a better prognosis,
no matter which sex they are (HR = 3:67, 95% CI: 1.97-
6.85; p < 0:001 vs. HR = 4:35, 95% CI: 2.12-8.94; p < 0:001,
respectively) (Figures 3(c) and 3(d)).

3.5. Different Expression Genes and Enrichment Analysis.
Patients with different risk scores have different prognoses.
Identifying different expression genes between two groups
is good to discover the molecular mechanism in the future.
The different expression analyses demonstrate a total of 49
different expression genes between low- and high-risk
groups (Supplement Table 3). After doing GSEA, we found
that this gene is enriched in embryonic skeletal system
morphogenesis, endoplasmic reticulum lumen, and RNA
polymerase II-specific (Figure 4(a)), and the involved

pathways are cytokine-cytokine receptor interaction
pathway, NF-kappa B, PI3K-AKT, and MAPK signaling
pathway (Figures 4(b)–4(g)).

3.6. Nomogram Is a Useful Tool for Assistant Clinical
Decision. We have demonstrated that six gene signatures
could predict patients’ outcome accuracy, so we build a
nomogram, based on six gene expressions, to assist clinical
decisions. This model is shown in Figure 5(a), and according
to six gene expressions, patients will obtain six score values
and accumulate six values to become one total score and
projection onto the survival axis to obtain patients’ 1-year,
3-year, and 5-year survival probability, respectively. The
ROC of the model is 0.761, and the C index of this nomo-
gram is 0.774. Calibration curve analysis results suggest that
survival prediction results of 1-year, 3 year, and 5-year sur-
vival probability were close to the ideal line (Figure 5(b)).

3.7. PLA2G4A Is a Hub Gene of Signature and Associated
with Prognosis. We extract the relative importance of six
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model genes, and the PLA2G4A has the biggest value, so it
was confirmed as the model hub gene (Figure 6(a)); to vali-
date the potential value, we use external data set, GTEx, and
GSE9476, to observe the expression difference between
donor bone marrow and leukemic blasts from AML patients.
The result demonstrates that PLA2G4 is a high expression in
leukemic blasts and low expression in healthy hematopoietic
cells (p = 8:9e − 34 vs. p = 5:5e − 06, respectively)
(Figures 6(b) and 6(c)). Survival analysis also shows that
high expression of this gene will lead to a poor outcome
when compared with low expression patients (HR = 3:03,
95% CI: 1.97-4.67; p < 0:001) (Figure 6(d)).

3.8. Nobiletin Targeting PLA2G4A Provides a Third Pathway
for Therapy AML. A total of 41 required herbs had been pre-
dicted, and the top 10 herbs are listed in Figure 6(e) and
Supplement Table 4. Of these ten herbs, Zhiqiao has been
reported to have a potential function as an anticancer. To
identify which ingredients are important for these herbs,
we input in into the TCMSP database. The results show
that Hesperetin, Nobiletin, Naringenin, Marmin, and Beta-
sitosterol are the main components of this drug (Table 2).
During these components, Nobiletin has the best OB
(61.67%) and highest DL (0.52); it was selected as a
candidate small molecular drug to target PLA2G4A. The
docking results also demonstrate the above conclusion
(Figure 6(f)).

4. Discussion

Although advances have been achieved in the therapeutic
options which greatly improve the overall response rate,
the long-term prognosis of this disease remains dismal, espe-

cially among elder patients [15]. Besides, the complex
molecular and cytogenetic abnormalities make AML a kind
of heterogeneous disease with differential prognosis even in
the same risk group by clinical practice guidelines [16]. All
these revealed that insight into the genetic landscape of
AML would benefit more patients. The development of var-
ious sequencing technologies has provided more informa-
tion on the mechanism of pathogenesis, chemoresistance,
and more refined prognostic stratification of AML in the
past decades. Recently, Mer et al. [15] proposed a unique
subtype of NPM1-mutated AML with different biological
and therapeutical implications based on a stem cell signa-
ture. A set of mitochondrial metabolism proteins was also
identified as potential targets associated with leukemia pro-
gression by multiomics [17]. Furthermore, some gene-
based signatures have been constructed to predict the prog-
nosis of AML as in other cancers [18, 19]. All these have
brought new opportunities for the treatment of AML.

The maintenance of the quiescent state of hematopoietic
stem cells (HSCs) depends on a condition of anaerobic gly-
colysis with low ROS generation, while compelling evidence
has indicated that leukemia stem cells (LSCs), which are
considered the main part of drug resistance, are more depen-
dent on oxidative respiration with high ROS levels compa-
nied by an imbalance of oxidative and antioxidant, which
promote the progression of leukemia by activating the path-
ways involved in the cell proliferation, survival, and invasion
[20, 21]. Previous studies have proved that the redundant
ROS could be a risk factor for tumorigenesis and the drug
resistance role of ROS in varied leukemia modes [22, 23].
Interestingly, LSCs are more susceptible to external antioxi-
dants, and ROS and lipid peroxidation by-products can trig-
ger cell apoptosis, which also brings new chemotherapy
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options. These all suggest a bidirectional role of ROS in leu-
kemia [24]. Given the above complex mechanism, we aim to
construct an accurate model which can provide precise pre-
dictivity and guide stratification therapy for clinical
application.

As shown in our work, we used machine learning to
select six hub OS-related genes, which demonstrated robust
predictive ability in AML populations. Agrin (AGRN) has
been described as a multifunctional heparan sulfate proteo-
glycan, which can regulate angiogenesis and has a board-
ranging impact on the tumor microenvironment (TME) in
HCC and papillary thyroid carcinoma (PTC) [25, 26]. How-
ever, nothing has been reported on the exact function of
AGRN in AML. Electron transfer flavoprotein β subunit
(ETFB) can transfer the electrons to the electron transport
chain (ETC) and maintain the generation of ATP. Caplan
et al. [17] recently found that increased mitochondrial stress
and apoptosis in AML mouse models can be induced by
silencing ETFB, which suggests that ETFB could be a poten-
tial therapeutic target for AML. Moreover, the placental
phospholipase A24A (PLA2G4A), sigma 1 receptor (Sig1R),
and suppressors of cytokine signaling 1 (SOCS1) have been
reported in varied diseases which are involved in the stress
response biological procedure [27–29]. However, to the best
of our knowledge, abscisic acid receptor (PYR1) has been
shown as a stomatal regulation response to drought stress
in plants, and no studies regarding abscisic acid receptor
(PYR1) have been reported in human diseases or cancers
[30]. Among these six genes, PLA2G4A has the most impor-
tant in our model, which is one of the cytosolic placental
phospholipases A2 (cPLA2) family and can catalyze the
hydrolysis of membrane phospholipids to release arachi-
donic acid (AA) and lysophospholipid. It has been identified
as an index in response to oxidative stress in preeclampsia
and might be due to the oxidation of AA [27]. Higher
expression of PLA2G4A is positively correlated with the
migration and invasion of lung cancer cells and unfavorable
prognosis in breast cancers [31, 32]. Previous studies also
revealed that PLA2G4A expression could be an independent
diagnostic and prognostic marker in patients with non-M3/
NPM1 WT AML patients [33], which was also confirmed in
our study. Nevertheless, whether this differential prognosis
is caused by PLA2G4A through oxidative stress remains to
be further investigated.

To explore the specific mechanism of OS-related genes
in AML, we carried out functional annotation of DEGs
between the high and low gene expression groups. The OS-

related genes were enriched in the cytokine-cytokine recep-
tor interaction pathway, NF-kappa B signaling pathway,
JAK-STAT signaling pathway, apoptosis, PI3K-AKT signal-
ing pathway, and MAPK signaling pathway as revealed by
the GSEA results, which have been identified by previous
studies serving as an important role in the pathogenesis
and progression of AML. The PI3K/AKT pathway was
proved to play important roles in regulating cell prolifera-
tion, differentiation, apoptosis, and migration in kinds of
human diseases and cancers, such as diabetes, colorectal
cancer, and AML [34, 35]. Some scholars also reported the
PI3K/AKT pathway is associated with oxidative stress-
mediated survival of melanoma and when targeting the
PI3K/AKT and MAPK/ERK signaling pathway exerts an
anticancer effect in leukemia cells by induction of oxidative
stress and the cellular antioxidant defense mechanisms,
which suggest PI3K/AKT and MAPK/ERK signaling path-
way might involve in the leukemia cell apoptosis caused by
oxidative stress [36, 37].

However, there are some limitations to our study. First,
we did not distinguish between OS-related genes that pro-
mote leukemia proliferation and invasion with genes that
mediate leukemia cell apoptosis via chemotherapy-induced
OS. More datasets with pre/posttreatment information need
to be included to clarify this bidirectional effect of OS. Sec-
ond, our results need to be validated in a clinical trial in
the further.

5. Conclusion

Our six oxidative stress-related gene signatures could predict
AML patients’ outcome accuracy, and this model is robust.
It may become a useful tool to assist clinical decisions. In
addition, we identify PLA2G4A as a potential biomarker
for AML. Nobiletin, targeting PLA2G4, may provide a third
pathway for therapy AML.
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Table 2: Ingredients of Chinese traditional medicine Zhiqiao.

Mol ID Molecule name OB (%) DL MW A logp FASA- HL

MOL002341 Hesperetin 70.31 0.27 302.3 2.28 0.33 15.78

MOL005828 Nobiletin 61.67 0.52 402.43 3.04 0.13 16.2

MOL004328 Naringenin 59.29 0.21 272.27 2.3 0.4 16.98

MOL013381 Marmin 38.23 0.31 332.43 3.11 0.31 4.68

MOL000358 Beta-sitosterol 36.91 0.75 414.79 8.08 0.23 5.36
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