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Abstract

Working memory (WM) is a central construct in cognitive neuroscience because it comprises 

mechanisms of active information maintenance and cognitive control that underpin most complex 

cognitive behavior. Individual variation in WM has been associated with multiple behavioral and 

health features including demographic characteristics, cognitive and physical traits and lifestyle 

choices. In this context, we used sparse canonical correlation analyses (sCCA) to determine the 

co-variation between brain imaging metrics of WM-network activation and connectivity and non-

imaging measures relating to sensorimotor processing, affective and non-affective cognition, 

mental health and personality, physical health and lifestyle choices derived from 823 healthy 

participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a 

global level, testing the overall association between the entire imaging and behavioral-health 

datasets; and a modular level, testing associations between subsets of the two datasets. The 

behavioral-health and neuroimaging datasets showed significant interdependency. Variables with 

positive correlation to the neuroimaging variate represented higher physical endurance and fluid 

intelligence as well as better function in multiple higher-order cognitive domains. Negatively 

correlated variables represented indicators of suboptimal cardiovascular and metabolic control and 

lifestyle choices such as alcohol and nicotine use. These results underscore the importance of 

accounting for behavioral-health factors in neuroimaging studies of WM and provide a 
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neuroscience-informed framework for personalized and public health interventions to promote and 

maintain the integrity of the WM network.

Introduction

Working memory (WM) is the ability to store, update and manipulate goal-relevant 

information1,2. WM operations engage multiple brain regions but they critically depend on 

the coordinated activity of a dorsal cortical network anchored in the dorsolateral prefrontal 

cortex (dlPFC), the parietal cortex (PAR) and the dorsal anterior cingulate cortex (dACC)3–5. 

Within this network, there is evidence of relative functional specialization according to 

process; the dlPFC is hypothesized to be involved in encoding, setting attentional priorities 

and manipulating information6,7, the PAR in maintaining attentional focus and storing 

information8,9 and the dACC in error detection and performance adjustment10. Regional 

activation within this network is load-dependent and responds to the demand for 

maintenance, updating and manipulation4,11–13. In addition to regional activation, the WM-

network can be characterized by its functional and effective connectivity14,15. Functional 

connectivity represents the statistical dependence of regional changes in blood-oxygen-level-

dependent (BOLD) signal16 while effective connectivity models the influence that WM-

network regions exerts over each other17.

The study of WM is central to cognitive neuroscience because it supports other higher-order 

cognitive abilities (including but not limited to general fluid intelligence, learning, problem 

solving and decision making)18, and lower-order mental operations that require cognitive 

control19. Individual variation in WM is influenced by multiple variables including age, 

level of education, personality traits20–23, lifestyle choices24 and physical health 

characteristics22,25. Additionally, WM deficits are a prominent feature of neurological26 and 

psychiatric conditions27 including psychotic, mood and anxiety disorders and 

neurodevelopmental and neurodegenerative disorders.

The inter-relationship between the function of the WM-network and its multiple behavioral 

and health correlates is of key translational importance but has not been adequately 

addressed because individual studies commonly focus on a limited number of imaging and 

behavioral variables. This represents a major drawback when making inferences about the 

nature of case-control differences in psychiatric neuroimaging as patients commonly differ 

systematically from controls on multiple behavioral variables that are not related to primary 

disease mechanisms28.

In this context, we sought to quantify brain-behavior relationships with regards to WM using 

the unique dataset of the Human Connectome Project (HCP, www.humanconnectome.org). 

Smith and colleagues29 have already demonstrated the value of this approach by defining the 

co-variation matrix between behavioral variables and resting-state connectivity measures 

derived from 461 HCP participants. They found that the strongest correlations between the 

behavioral traits and the resting-state connectome concerned higher-order cognitive 

abilities29. An obvious implication of these findings is that the correlations between brain 

connectivity and behavior are primarily driven by brain networks that support higher-order 

cognitive functions. Working memory and its corresponding core brain network represent 
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the logical first candidate because of the known association of WM with multiple higher-

order cognitive functions. In order to test this hypothesis, we used sparse canonical 

correlation analyses (sCCA) to determine the co-variation between brain imaging metrics of 

WM-network activation and connectivity and non-imaging measures relating to 

sensorimotor processing, affective and non-affective cognition, mental health and 

personality, physical health and lifestyle choices derived from 823 HCP participants. We 

refer to these two datasets as the neuroimaging and the “behavioral-health” dataset.

We chose a sparse multivariate approach because it retains brain regional specificity similar 

to that seen in region of interest analyses30 and it does not require data reduction, regardless 

of the number of subjects and variables and can be used in smaller samples (more typical in 

neuroimaging studies). We conducted sCCAs at two levels: a global level, testing the overall 

association between the entire imaging and behavioral-health datasets; and a modular level, 

testing associations between modules (i.e., subsets) of the two datasets. The purpose of the 

modular analyses was to facilitate extrapolation of our results to findings available in the 

literature where similar smaller datasets are the rule. Based on the prior evidence presented 

above, we hypothesized that imaging and behavioral-health measures will show substantial 

co-variation revealing the inter-dependent nature of the two datasets; we also hypothesized 

that correlations would be stronger between neuroimaging and higher-order cognitive 

function, supporting a key role for the WM-network activation and connectivity.

Materials and Methods

Participants

We used data from the HCP database (http://www.humanconnectome.org) derived from 823 

healthy participants (462 women) with a mean age of 29 years (range 22–37 years). All 

neuroimaging data were acquired on a Siemens Skyra 3T scanner and preprocessed 

following standard HCP protocols31. All the subjects provided informed consent32. This 

study was approved by the institutional review board of the Icahn School of Medicine at 

Mount Sinai.

HCP behavior and health measures

We used 116 variables corresponding to demographic characteristics, task performance 

during sensorimotor processing, affective and non-affective cognition, mental health and 

personality, physical health and lifestyle choices (Supplementary Table 1). For variables 

with both raw and age-adjusted scores, we selected the age-adjusted measures only. We 

excluded categorical variables (n=130) where more than 90% of the sample endorsed the 

same outcome or that were co-linear (r>0.9). For psychometric tests with multiple correlated 

outcome variables we selected those that are more commonly reported in the literature (see 

detail in Supplementary information).

WM-network activation

We analyzed fMRI data acquired while participants performed the HCP version of the 2-

back task33 using the Statistical Parametric Mapping software, version 12 (SPM12) 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/) (details in Supplementary Information). In 
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order to identify WM-related activation, contrast images of the 2-back vs 0-back condition 

were generated from individual datasets and were then entered into a random-effects group-

level one-sample t-test. Suprathreshold clusters were identified at p<0.05 with family-wise 

error correction at voxel level. As expected based on previous literature3,5, the clusters 

identified were located bilaterally in the dlPFC, PAR, dACC, the middle temporal gyrus and 

the visual cortex (VC) (Figure 1). Spherical (radius=4mm) volumes-of-interest (VOIs) were 

prescribed, centered on the group peak coordinates of each suprathreshold cluster; the radius 

was chosen to ensure that the VOIs encompassed the individual peak coordinates of all 

participants. Mean beta values were then extracted and entered in further analyses (Figure 1, 

Supplementary Table 2).

Functional connectivity of the WM-network

We computed the undirected, model-free functional connectivity of the WM-network from 

the task-based and resting-state data of each participant. In each dataset, we extracted the 

average time series of the BOLD signal from the WM-network VOIs described above. Then, 

we calculated the Fisher-Z transformed Pearson’s correlation between each pair of VOIs to 

create a resting-state and task-related functional connectivity matrix for each individual.

Effective Connectivity

We used Dynamic Causal Modeling (DCM)34, implemented in the DCM12 toolbox, to 

estimate the strength of task-specific modulation (2-back vs 0-back) in the connections 

between the regions of the WM-network. We selected the VOIs in the dlPFC, PAR, dACC 

and VC, defined as described above based on the results of the second-level analysis (see 

details in Supplementary Information). This choice was also informed by evidence from 

meta-analyses3,5,35 and previous DCM studies of this WM task17,36. The time series of the 

homologous VOIs in each hemisphere were averaged to create a 4-region layout of the WM-

network (Supplementary Figure 2A). The coupling of any two VOIs was defined in terms of 

intrinsic (task-independent) connections while the impact of the WM condition was modeled 

directly on the VC (driving input) and on the strength of coupling between each pair of VOIs 

(modulatory input). In addition, we included a non-modulated model (null-model) as a 

control. Random effects Bayesian model selection was used to compute group-level 

exceedance and posterior probabilities. Finally, to accommodate any uncertainty about the 

models, we used random effects Bayesian Model Averaging to obtain average connectivity 

estimates (weighted by their posterior model probability) across all models and all 

participants37.

Sparse Canonical Correlation Analyses

200 imaging and 116 behavioral-health variables were z-standardized and entered into 

sCCAs implemented using an in-house script30 (see Supplementary Information). We used 

the same approach for the global and the modular analyses. For each analysis, we computed 

the sparse parameters by running the sCCA with a range of candidate values (from 0.1 to 1, 

at 0.1×√p increments, where p is the number of features in that view of the data) for each 

imaging and behavioral-health dataset and then fitted the resulting models. We selected the 

optimal sparse criteria combination based on the parameters that corresponded to the values 

of the model that maximized the sCCA correlation value. We then computed the optimal 
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sCCA model and determined its significance using permutations. Accordingly, the imaging 

dataset was permuted 100,000 times before undergoing the exact same analysis as the 

original data. The p-value was defined as the number of permutations that resulted in a 

higher correlation than the original data divided by the total number of permutations. Thus 

the p-value is explicitly corrected for multiple testing as it is compared against the null 

distribution of maximal correlation values across all estimated sCCAs. For each permutation 

we tested all sparsity criteria combinations as for the original data and then extracted the 

sCCA correlation with the highest coefficient among the tested options, independently of 

whether this combination was the same as in the original data. In this way we ensured that 

we did not underestimate the chance of a permutation achieving the same or higher value 

than the original data. The threshold for statistical significance for each analysis was set at 

p<0.05. When the overall sCCA was significant, we investigated the weight of each variable 

(on both the imaging and behavioral datasets). To do so, we computed Pearson’s correlations 

between each variable and the mode of the opposing pattern (i.e., each behavioral-health 

variable to mode of the neuroimaging dataset and vice versa).

Reliability Analyses

First, we tested the effect of potential confounders (sex, intra-cranial volume, acquisition 

sequence, age) by performing the analysis with and without regressing out these confounds. 

Second, we confirmed the robustness of the results by randomly resampling half of the 

sample (n=411) 5000 times and repeating the sCCA each time. Third, we excluded 

overfitting by using the weights from each of the resampled data and applied them to the 

other half of the sample. Fourth, we tested whether alternative analyses using CCA would 

yield the same results. Fifth, to further ensure the robustness of the DCM sCCA results, we 

tested an alternative DCM model space. Sixth, we tested the specificity of our findings by 

conducting further analysis examining the association of behavioral-health variables to 

intrinsic functional connectivity. Seventh, we conducted further analyses to assess whether 

our results might be influenced by the fact that some HCP participants are related. For more 

details on all reliability analyses see Supplementary Information and Supplementary Figures 

3 and 4.

Results

The overall design of the study is shown in Supplementary Figure 1. The global analysis 

considered the co-variation of the entire imaging and the entire behavioral-health dataset. 

Modular analyses examined the co-variation between distinct subsets (i.e., modules) of 

imaging and behavioral-health data.

Behavioral-Health dataset

We used 116 variables that were considered as a single dataset in the global analysis and as 5 

distinct subsets (i.e. modules) corresponding to psychometric measures of sensorimotor 

processing, affective and non-affective cognition, to mental health and personality, and to 

physical health and lifestyle choices (Supplementary Table 1).
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WM-network activation

Conventional general linear analyses of the fMRI data identified bilateral clusters located in 

the dlPFC, dACC, PAR, VC and middle temporal gyrus corresponding to the nodes of the 2-

back WM-network (Figure 1, Supplementary Table 2). The resulting variables (n=24) 

comprised the WM activation module (details in Supplementary Information).

Functional connectivity

We computed the functional connectivity of the WM-network based on the results of the 

second-level analysis described above (and in Supplementary Information). This yielded 66 

task-related and 66 resting-state functional connectivity variables comprising the task-related 

and resting-state functional connectivity module.

Effective Connectivity

We used DCM to specify the strength of intrinsic (task-independent) and WM-modulated 

connectivity of the WM-network. The exceedance and the posterior probabilities of the 

models were computed using random effects Bayesian model selection. Bayesian model 

averaging was used to obtain average connectivity estimates across all models for each 

participant (details in Supplementary Information, Supplementary Figure 2B–C). This 

analysis generated 44 DCM measures which comprised the effective connectivity module.

Global Sparse Canonical Correlation Analysis

The global sCCA quantified the relationship between the two sets of measurements 

comprising 200 neuroimaging variables and 116 behavioral variables. This analysis showed 

that the two datasets were significantly associated (r=0.50, p=0.00002) (Figure 2A). 

Amongst the behavioral-health variables, those with the highest correlations (positive or 

negative) with the imaging variate are shown in Figure 2B (and Supplementary Table 3); 

they included psychometric measures of fluid intelligence, memory, reading/language, 

visuospatial orientation, sustained attention, mental flexibility, and emotional recognition; 

behavioral traits relating to aggression, physical characteristics relating to physical 

endurance, Body Mass Index (BMI) and Hemoglobin A1c and lifestyle choices (alcohol use 

and smoking). Variables with positive correlation to the imaging variate represented positive 

cognitive and physical attributes while negatively correlated variables represented 

suboptimal health indicators and lifestyle choices. Amongst the imaging variables, metrics 

of activation were more strongly correlated with the behavioral-health variate (Figure 2C 

and Supplementary Table 4). Positive correlations were observed with higher activation in 

the WM-network during the 2-back condition and negative correlations with higher WM-

network activation during the sensorimotor control condition; greater effective connectivity 

between the VC to the dlPFC and PAR also showed positive correlations with the 

behavioral-health variate while the opposite was the case with regards to increased effective 

connectivity between the dACC and other WM-network regions (Supplementary Table 4).

Modular Sparse Canonical Correlation Analyses

At this level, sCCAs were implemented to test the co-variation of each neuroimaging 

module to each of the behavioral modules (Figures 1 and 3; Supplementary Tables 5&6 and 
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Supplementary Dataset). The results of these analyses largely recapitulated those of the 

global sCCA. We found that the WM-task activation variate was significantly associated 

with affective and non-affective cognition, mental health and personality, physical health and 

lifestyle. The behavioral variables that were most strongly associated with the WM-task 

activation were fluid intelligence, language, memory and abstraction (non-affective 

cognition module), facial emotion recognition (affective cognition module), openness 

(mental health and personality) and physical endurance (physical health and lifestyle). The 

DCM variate was only associated with the non-affective cognition module (primarily fluid 

intelligence, language and spatial orientation). Both task and resting-state functional 

connectivity variates were primarily associated with the physical health and lifestyle 

module; positive correlations were observed with better endurance, higher hematocrit and 

sleep quality (as measure in the total score of the Pittsburgh Sleep Questionnaire) while 

higher BMI as well as high blood pressure and poor glucose control had a detrimental effect. 

The association between physical health measures was not specific to the WM-network as it 

was also observed in connection to whole-brain functional connectivity (details in 

Supplementary information).

Reliability analyses

For the global analysis, half of the sample (n=411) was randomly resampled 5000 times. 

sCCAs repeated each time resulted in a mean r-value=0.53 (standard-deviation=0.04). We 

used the weights of each sCCA permutation to the respective 5000 sets of the remaining half 

of the sample. These scores yielded a mean r-value=0.39 (standard-deviation=0.06). For the 

modular analyses, no difference above two standard deviations was found between the 

averaged resampled data and the actual data, for any of the significant models 

(Supplementary Table 7), confirming the reliability of the present results. The sCCA results 

were virtually unchanged regardless of whether we regressed out or stratified the analysis to 

account for intra-cranial volume, acquisition sequence, sex and age. We use sex to illustrate 

this; as shown in Supplementary Information (Supplementary Table 8), no differences were 

found in the global analysis between the main results and results of separate sCCAs for men 

(n=361) and women (n=462). Lastly, the results remained unchanged when we used 

alternative definitions of the DCM model space, when we computed regular CCAs instead of 

sCCAs (Supplementary Table 9) and when accounting for family structure (details for all 

these analyses in Supplementary Information).

Discussion

We used the rich dataset of the Human Connectome Project to quantify brain-behavior co-

variation relevant to working memory. We found that cognitive measures reflecting better 

general intellectual ability, visuospatial skills, language, attention and mental flexibility, 

were amongst the behavioral measures with the strongest positive correlations to imaging 

phenotypes indexing WM-network function. By contrast, variables relating to aggression, 

substance use and suboptimal cognition were amongst the behavioral measures with the 

strongest negative correlations to imaging phenotypes indexing WM-network function.
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Fluid intelligence had the strongest positive correlation with neuroimaging phenotypes of 

WM function both in the global and modular analyses. This observation significantly 

enhances our understanding of the relationship between fluid intelligence and WM, a topic 

that has been debated for nearly three decades38. We show that even when multiple other 

variables are taken into account, fluid intelligence remains strongly correlated with WM-

network functional integrity. This suggests that both cognitive constructs are supported by 

common neural mechanisms. The close link between intelligence and WM is further 

supported by a recent study that examined individual variability in functional brain 

connectivity39; the WM-network connectome had the most distinctive fingerprint at the 

individual level and was the most significant predictor of fluid intelligence39. Consistent 

with the notion that the WM-network identified via the 2-back task has a domain-general 

role18,19, we found that WM-network activation and effective connectivity were associated 

with a wide range of higher-order functions relating to executive control of attention, visual 

orientation and language (see also Supplementary Discussion).

The global and modular analyses identified several lifestyle choices and physical traits that 

showed significant covariation with WM-network imaging metrics. Amongst lifestyle 

choices, alcohol binge drinking and regular weekly smoking were negatively correlated with 

WM-network function. Alcohol-related WM dysfunction across the lifespan has been amply 

documented in prior literature40,41 and is further supported by the current study. Nicotine 

enhances attention and cognition, including WM42, in a baseline-dependent fashion such 

that individuals with lower baseline function benefit the most from nicotine use43. This 

mechanism has been proposed to explain initiation and maintenance of smoking. It is 

therefore possible that the negative correlation between weekly smoking levels and WM-

network function reflects lower baseline WM-network function in smokers. Alternatively, 

nicotine abstinence in smokers leads to reduced WM performance compared to non-

smokers44 and is associated with lower BOLD signal in the fronto-parietal WM-network 

regions45. Our results may therefore reflect some aspect of abstinence-related WM-network 

dysfunction, as access to nicotine is restricted during scanning. Better physical endurance 

was positively associated with WM-network activation and connectivity. Conversely, 

suboptimal blood pressure and glucose control and higher BMI had a negative effect on 

functional connectivity. This close dependency between physical traits and task-related brain 

activation, connectivity and resting-state connectivity is not specific to WM as it was also 

observed in connection to whole-brain resting-state connectivity as shown in our 

supplemental analyses. The same correlation pattern has also been reported in data from the 

5000 participants of the UKBiobank46 and is likely to reflect the fact that these imaging 

metrics are directly derived from changes in the hemodynamic brain responses and seem 

sensitive to cardiometabolic factors that may affect blood oxygenation. These observations 

are of potential translational value in view of recent studies47,48 showing that increased 

physical activity could improve WM-related performance and brain phenotypes. In addition, 

the role of physical traits and lifestyle choices for WM-network function bolsters arguments 

for accounting for these variables when using neuroimaging to examine clinical populations 

prior to making inferences about specific-disease related mechanisms28.

Age made a limited contribution to the results, which is likely due to the restricted age range 

of the HCP participants. There was no effect of sex on the sCCA models which is in line 
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with previous reports, that unlike other aspects of brain structure and function, the WM-

network may not be sexually dimorphic21,49.

Our study has several limitations. The 2-back task does not isolate possibly distinctive 

components of WM (e.g., goal maintenance, storage capacity, interference control). It is 

therefore possible that the multifactorial nature of the 2-back task may lead to greater 

overlap with fluid intelligence than might be the case with other paradigms that map onto 

specific WM component (e.g., oculomotor delayed response37 and Sternberg spatial memory 

tasks40 that dissociate encoding and maintenance processes). Neuroimaging techniques 

include other modalities (such as diffusion weighted imaging and magnetic resonance 

spectroscopy) and other analytic methods (such as graph theory and dynamic connectivity) 

that were not considered here. Nevertheless, our study examined those modalities and 

analytical methods that are most commonly used in neuroimaging studies of WM. Finally, 

the correlational nature of the analyses does not resolve causality, but the results are still 

important as they identify modifiable potential risk-factors for WM dysfunction.

In conclusion, we describe a brain-behavior model for WM which demonstrates a positive 

association between WM-network function with variables reflecting better cognitive abilities 

and physical well-being while the opposite was the case for indicators of suboptimal health 

and substance use. We confirm that the WM network is closely linked to general intellectual 

ability and acts as a domain-general network to support multiple higher-order cognitive 

functions. The dependency of neuroimaging phenotypes on behavioral-health measures 

suggests that such factors should be considered as potential confounds in clinical studies and 

as modifiable targets could inform personalized interventions and public health efforts for 

the promotion of mental well-being.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Suprathreshold clusters of activation in the 2-back task. Data derived from the entre sample 

(n=823); p<0.05 with familywise error (FWE) voxelwise correction and minimum k=30 

voxels.
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Figure 2. Global sparse canonical correlation analysis
A. Significant correlation between all imaging and behavioral-health variates (n=823, 

r=0.50, p-value=0.00002). B. Top behavioral-heath variables the most strongly associated 

with the imaging variate. C. Top WM-network activation variables positively associated with 

the behavioral-health variate. The size of the sphere represents the degree of correlation.
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Figure 3. Modular sparse canonical correlation analysis
The connections between the modules are sized based on the r-values. Yellow connections 

indicate significant associations at p<0.05; Orange connections indicate significant 

associations at p<0.01; Red connections indicate significant associations at p<0.001.
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