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Radiologists’ diagnostic capabilities for breast mass lesions depend on their experience.
Junior radiologists may underestimate or overestimate Breast Imaging Reporting and
Data System (BI-RADS) categories of mass lesions owing to a lack of diagnostic
experience. The computer-aided diagnosis (CAD) method assists in improving
diagnostic performance by providing a breast mass classification reference to
radiologists. This study aims to evaluate the impact of a CAD method based on
perceptive features learned from quantitative BI-RADS descriptions on breast mass
diagnosis performance. We conducted a retrospective multi-reader multi-case (MRMC)
study to assess the perceptive feature-based CAD method. A total of 416 digital
mammograms of patients with breast masses were obtained from 2014 through 2017,
including 231 benign and 185 malignant masses, from which we randomly selected 214
cases (109 benign, 105 malignant) to train the CADmodel for perceptive feature extraction
and classification. The remaining 202 cases were enrolled as the test set for evaluation, of
which 51 patients (29 benign and 22 malignant) participated in the MRMC study. In the
MRMC study, we categorized six radiologists into three groups: junior, middle-senior, and
senior. They diagnosed 51 patients with and without support from the CADmodel. The BI-
RADS category, benign or malignant diagnosis, malignancy probability, and diagnosis
time during the two evaluation sessions were recorded. In the MRMC evaluation, the
average area under the curve (AUC) of the six radiologists with CAD support was slightly
higher than that without support (0.896 vs. 0.850, p = 0.0209). Both average sensitivity
and specificity increased (p = 0.0253). Under CAD assistance, junior and middle-senior
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radiologists adjusted the assessment categories of more BI-RADS 4 cases. The diagnosis
time with and without CAD support was comparable for five radiologists. The CAD model
improved the radiologists’ diagnostic performance for breast masses without prolonging
the diagnosis time and assisted in a better BI-RADS assessment, especially for
junior radiologists.
Keywords: computer-aided diagnosis, digital mammographic, convolutional neural network, mass lesion,
diagnosis performance
1 INTRODUCTION

Full-field digital mammography (FFDM) is considered an effective
method for breast cancer screening (1, 2). In developed and
developing countries, FFDM has become the first option for
routine medical screening examinations (3); however, the growing
number of women coming forward for screening examinations has
resulted in an increasing workload for radiologists. The overall
diagnosis time for each patient has exhibited an upward trend,
indicating that the radiologists’work efficiency has decreased (4). Lu
et al. (5) reported a decline in work efficiency accompanied by the
increasing workload of radiologists based on China’s huge
population. Karssemeijer et al. (4) illustrated a positive correlation
between the increased workload of radiologists and the demand for
breast screening.

Owing to a lack of training, inexperienced radiologists have
participated in screening prematurely, resulting in diagnostic
inaccuracy and insensitivity of breast cancer, with a resulting
increased risk of misdiagnosis and missed diagnosis (6–8). As
most breast composition in Chinese women are dense breasts, it
further increases the difficulty for inexperienced junior radiologists
to recognize the characteristics of breast cancer, especially the
margins and shape as the main signs (9–11). Friedewald et al.
(12) illustrated that radiologists, especially inexperienced junior
radiologists, exhibited a decreased diagnostic sensitivity in dense
breasts. Broeders et al. (13) believed that junior radiologists were
inexperienced in the characteristics of breast cancer, which led to
inaccuracy in Breast Imaging Reporting and Data System (BI-
RADS) category evaluation and affected the prognosis of patients.

Computer-aided diagnosis (CAD) systems have been introduced
as auxiliary methods to improve radiologists’ diagnostic efficiency.
Feature extraction is an important step in breast mass classification.
Conventional CAD methods extract several handcrafted features
from the region of interest (ROI) to form the feature vector for each
mass, which comprises three types of features: intensity, shape, and
texture (14). In addition, deep learning technology has recently been
used in feature design. Deep learning models learn the latent
features directly from the ground truth so that more
representative features can be designed (15–17). For example, Jiao
et al. (18) used a convolutional neural network (CNN) pretrained
on ImageNet as a feature extractor for breast mass in breast cancer
ammography; CAD, computer-aided
S, Breast Imaging Reporting and Data
ral oblique; ReLU, rectified linear unit;
, probability of malignancy; CNN,
nder the curve.
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diagnosis. Kooi et al. (19). combined deep features and conventional
handcrafted features to distinguish true masses from normal breast
mammary tissue. Their results showed that the combined feature set
performed best in the classification stage.

Handcrafted features are designed based on human
experience; however, they are not task-specific and may not be
effective in medical imaging analysis. A deep learning model
learns features by optimizing weights according to the task
objective, but this procedure lacks human experience as a
clinical reference. To combine radiologists’ clinical experience
and deep learning methods to design appropriate features for
mass diagnosis, our study proposed a training scheme that
considered BI-RADS descriptions. We extracted the features as
perceptive features and established a CAD model. Then, we
conducted an observer study to evaluate the effectiveness of this
model in assisting radiologists in diagnosis.

Our study aimed to verify if a CADmethod based on perceptive
features learned from quantitative BI-RADS descriptions can help
radiologists improve diagnostic performance for mass lesions in
mammography, especially junior radiologists.
2 MATERIALS AND METHODS

To ensure that a deep learning-based model obtains sufficient
quantitative ability, we used the BI-RADS characteristic
description of masses to train a CNN as a perceptive feature
extractor. To realize this goal, description quantification, feature
extractor training, and classifier training were required in this study.
We conducted an observer study to verify the clinical significance of
this model. The detailed steps are as follows.

2.1 Dataset and Mammogram Collection
We retrospectively retrieved samples between April 2014 and
October 2017 from Nanfang Hospital of Southern Medical
University, Guangzhou, Guangdong, China. This retrospective
study was approved by the institutional review board (IRB)-
approved protocol (code number NFEC-2018-037), and informed
consent was waived. Breast masses are one of the most common
indications for breast cancer. They are more sensitive and easier to
detect or diagnose than calcification, architectural distortion, or
asymmetry. Because radiologists of differing seniority have varying
universality for the diagnosis and detection of mass lesions, they are
more suitable as targets for testing whether CAD models help
radiologists improve their diagnostic performance.

This study aimed to establish a CAD model for benign and
malignant masses, and each case collected in this study had
December 2021 | Volume 11 | Article 773389
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only one mass in the unilateral breast. The pathological results
of each mass were used as the gold standard. To avoid
confusion regarding the assignment of BI-RADS categories,
we excluded cases with calcification, architectural distortion,
or asymmetries in this study. We considered only mass lesions
to enable radiologists to better focus on BI-RADS categories
and the reliability of CAD model results, so as to evaluate the
support of CAD models for junior radiologists.

The contralateral breast was negative and confirmed as BI-
RADS category 1 or 2. In addition, all collected cases had
bilateral craniocaudal (CC) and mediolateral oblique (MLO)
images, clinical medical history, radiology reports, and
operative and pathological findings. We also excluded
patients with implants, lesions not fully visible, or large
lesions occupying almost the entire breast in CC and/or
MLO mammograms.
Frontiers in Oncology | www.frontiersin.org 3
>In total, 416 cases were obtained, all of which underwent
biopsy. Of these, we randomly selected 214 cases (benign 50.9%
and malignant 49.1%) as training sets, used to train the feature
extractor, and established a mass lesion classification model. The
remaining 202 cases (benign 60.4% and malignant 39.6%) were
used as independent test sets to evaluate the model, of which 51
cases (benign 56.9% and malignant 43.1%) were randomly
selected for the observer study. All the participants were
anonymized and represented by a new ID. The specific
number of benign and malignant masses is shown in Figure 1.

The characteristics of the population and distribution of breast
density are shown in Table 1. Digital mammography was
performed using the Selenia Dimensions System (Hologic,
Bedford, MA, USA). The size of each image was 3,328 × 2,560
with a pixel spacing of 0.06 mm. Detailed information regarding
these 416 cases is provided in Appendix A.
FIGURE 1 | The distribution of the benign and malignant cases obtained in this study. In order to ensure that the study power was better than 0.8, according the
reference method, for a ratio of benign and malignant cases of 1.0 in the study and six readers, an evaluation data set of at least 51 cases was needed to be
randomly selected.
TABLE 1 | Characteristics about the age, breast composition, and biopsy results of the population for this study.

Variable Training set (n = 214) Test set (n = 202) 51 Cases in observer evaluation

Patient age (years)
Mean 45.64 45.51 46.53
Median 45 45 47
Range 23–73 23–78 27–65
Interquartile range 40–50 40–50 40–51
p-value compared with training set – 0.8910 0.5441
BI-RADS breast composition*
a 6 5 3
b 23 25 9
c 169 155 35
d 16 17 4
p-value compared with training set – 0.9268 0.3404
December
*BI-RADS breast composition is defined in the fifth ACR BI-RADS; it includes four categories. “a”: almost entirely fatty; “b”: scattered areas of fibroglandular density; “c”: heterogeneously
dense; “d”: extremely dense.
BI-RADS, Breast Imaging Reporting and Data System.
2021 | Volume 11 | Article 773389
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2.2 Region of Interest Selection
An experienced radiologist (X. Liao, with 15 years’ experience in
digital mammography) marked the ROI areas of all masses using
a three-monitor Hologic diagnostic workstation (SecurViewDx,
Hologic, MA, USA) on the standard FFDM (both CC and MLO
views). Three radiologists (G. G. Qin, L. Zhang, and W. G. Chen,
with 15 years of experience each) reviewed the ROI to ensure its
suitability. In case of any disagreements regarding the location or
shape of a certain mass among these three radiologists, they
determined the final ROI area (marked by these radiologists)
through majority-voting and discussion until a consensus
was reached.

2.3 Mass Classification Model
2.3.1 Quantification of the BI-RADS Description
Our CAD model was intended to extract perceptive features and
reflect semantic characteristics, such as a human’s visual perception
and diagnosis experience. This experience is reflected in radiology
reports. Several descriptions, including shape, margins, and density,
are defined in the BI-RADS lexicon for mass, which are the main
factors for radiologists in diagnosing breast cancer.

Different descriptions have different probabilities for malignant
masses. For example, irregular shapes or indistinct margins are
correlated with suspicious findings, and oval or circumscribed
margins are correlated with benign findings. In perceptive feature
design, these descriptions are used as the ground truth to train a
regression network. We intend the perceptive features to comprise
the feature vector in the last fully connected layer.

However, the training procedure requires a quantitative ground
truth instead of text descriptions; therefore, it was necessary to
quantify these descriptions. To correlate the quantification to the
classification task, we quantified the descriptions as a malignancy
probability. Descriptions of malignant, uncertain, and benign
findings were quantified as 1, 0.5, and 0, respectively. Details of
the quantification are provided in Table 2. For example, if a case has
such descriptions in its radiology report: “An irregular mass with
obscured andmicrolobulatedmargins and high density is present,” a
five-dimensional vector can be quantified as [1, 0.5, 1, 0, 1]
according to these descriptions. The five entries represent the
quantification for shape, margin sharpness, microlobulated
margins, spiculated margins, and density, respectively. Another
example is shown in Figure 2.
Frontiers in Oncology | www.frontiersin.org 4
2.3.2 Stage 1: Feature Extractor
The backbone of the feature extractor is a classical CNN VGG16
(20). It is used to classify the class of objects in natural images
and plays an important role in CAD. In this study, we made a
slight modification to VGG16 to meet our needs.

A two-channel patch with a size of 288 × 288 centered at a mass
was used as the input for the network. One channel is an original
FFDM, and the other is a binary mask that represents the ROI. The
remaining convolution layers, activation functions, and pooling
layers are the same as those in the original VGG16 network.
Then, three fully connected layers with rectified linear unit
(ReLU) activation functions and dropout operations were used to
convert this feature map into a feature vector. Finally, the network
outputs a five-dimension vector, which represents the predicted
quantitative descriptions of the input mass. The specific architecture
of this feature extractor is illustrated in Figure 3.

The mean square error was used as a loss function. The weights
of each layer were initialized randomly according to a standard
normal distribution and updated using an Adam optimizer during
the training process. Both CC- andMLO-view masses were fed into
the same feature extractor. In the training process, the masses of the
same patient in the CC-view and MLO-view FFDM shared the
same quantitative BI-RADS descriptions.

Since this network is trained using the quantitative BI-RADS
descriptions as ground truth, its weights can implicitly represent these
descriptions, which are the perception of radiologists when writing
the report. Therefore, after the VGG16 network was trained, we
discarded its output layer so that the remaining network would
output a 128-dimension feature vector and we call these features
“perceptive features.” Then, the weights of the remaining network are
frozen, and the network is used as the feature extractor in the
next stage.

2.3.3 Stage 2: Benign and Malignant Classification
These features were then used to train a classifier that can
distinguish between benign and malignant masses. Stepwise
regression feature selection and linear discriminant analysis
(LDA) classifiers were employed to achieve this goal.

In the training of stepwise regression and LDA, we did not
differentiate between masses from CC-view and MLO-view
images; that is, a lesion-wise classification model was
considered. In the test process, the malignancy probability
TABLE 2 | Specific quantification for different descriptions summarized from radiology reports of all cases in our study.

Descriptions Radiologists’ assessment Quantification

Shape Oval or round 0
Irregular 1

Margin sharpness Circumscribed 0
Obscured 0.5
Indistinct 1

Microlobulated margins No 0
Yes 1

Spiculated margins No 0
Yes 1

Density Low or fat-containing 0
Equal 0.5
High 1
December 2021 | Volume 11
 | Article 773389
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output by the model from the CC-view and MLO-view images of
the same case were averaged for case-wise evaluation.

2.3.4 Model Selection and Test
Ten-fold cross-validation was used. The 214 training cases
were randomly divided into 10 folds. In each training time,
nine folds were used as the training set, and one fold was used
Frontiers in Oncology | www.frontiersin.org 5
as the validation set. The feature extractor was trained until
the loss of both sets plateaued. After 10 repetitions, all folds
were used as the validation set once, and 10 trained models
were obtained.

During the test process, the 10 trained models were used on
the 202 independent test cases, and 10 predicted scores were
output for each case.
FIGURE 3 | The architecture of this feature extractor. The input is a two-channel tensor, which consists of an original mammography patch and its corresponding
mask of region of interest (ROI). The extractor is a modified VGG16 neural network, which consists of 13 convolution layers and three fully connected layers. The last
fully connected layer has 128 neurons, which are used as perceptive features in this study. ReLU, rectified linear unit; Conv, convolution.
FIGURE 2 | An example of quantification for a malignant mass in mediolateral oblique (MLO)-view full-field digital mammography (FFDM). Five text descriptions
assessed by a radiologist as shown in the red box are quantified as corresponding numbers. A five-dimension vector is generated, which is used as the ground truth
to train the perceptive feature extractor.
December 2021 | Volume 11 | Article 773389
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Model fusion always obtains a better model whose
performance exceeds that of each individual. To fuse these 10
trained models, the averaged probability of malignancy (POM)
among the 10 models was calculated for each case, which was
used in the multi-reader multi-case (MRMC) evaluation.

2.4 Observer Evaluation
2.4.1 Multi-Reader Multi-Case Evaluation
We assessed the diagnostic performance both with and without
the aid of our model to demonstrate the utility of our model in a
real-world setting. Unaided and aided performance was
evaluated in a total of 51 cases across two separate sessions
with a time interval of more than 15 days.

To avoid individual diagnosis differences at different times for
the same radiologist in the same cases, multiple radiologists were
involved in this observer study. Six radiologists participated in
the study. Two of them were junior radiologists with 2 years of
experience (reader 1: CF and reader 2: MM), two of them were
middle-seniority radiologists with 4 years of experience (reader
3: ZX and reader 4: SW), and the remaining two radiologists were
senior with 6 years of experience (reader 5: JW and reader 6: HZ).

In the first session, each radiologist observed the FFDM of the
cases without the model's outputs (unaided evaluation) . Only
the original images of each mass with ROI in both the CC-view
and MLO-view FFDM were provided. In the second session, we
also provided the POM calculated by the model during the
diagnosis (aided evaluation). All cases were interpreted using a
three-monitor Hologic diagnostic workstation (SecurViewDx,
Hologic, MA, USA) . In both sessions, the observers recorded
the BI-RADS category, benign or malignant classification, POM
(ranging from 0% to 100%), and time consumption (in s) for
statistical analysis. Detailed results are recorded in a table
presented in Appendix B.

Before these two sessions, the six radiologists learned the
evaluation criteria and announcements. We used 20 example
cases to train the radiologists to perform this process. The
radiologists were not informed about history taking, results
from other examinations, and palpation.

2.5 Statistical Analysis
The p-value for the age difference between the training set and
the test set was calculated by unpaired t-test, and the p-value for
breast density was calculated by chi-square test.

In the MRMC study, we calculated the area under the receiver
operating characteristic (ROC) curve according to the POM
assessed by radiologists for each session. ROC curves were
obtained by ranking all POMs evaluated by a certain
radiologist in a certain case set in ascending order. The true
positive rate (TPR) and false positive rate (FPR) were calculated
at the probability threshold of each ranked POM. Taking all of
the TPRs as coordinates on the y-axis and all of the FPRs as
coordinates on the x-axis, the ROC curve was plotted on this case
set for this radiologist.

To analyze the significance between two evaluation sessions,
Wald or z-test was used to yield a p-value with the null
hypothesis that these two sessions had the same areas under
the curve (AUCs). To compare the sensitivity and specificity
between the two sessions, the assessment results for benign and
Frontiers in Oncology | www.frontiersin.org 6
malignant masses were compared with the biopsy-proven
ground truth. A binary-version MRMC analysis was
implemented to yield a p-value. The average diagnosis time of
each case was calculated for each radiologist in each session, and
the paired t-test was used to yield the p-value for the difference
between the two sessions.

The “iMRMC,” “ROCR,” and “pROC” packages in R
language were used to conduct the statistical analyses in
this study.
3 RESULTS

3.1 Parameter Selection
The learning rate of the Adam optimizer was initialized to
0.0001. We set two decay times with decay gamma of 0.1 at
epoch 30 and 60, respectively.

During the training process, we obtained the loss curve of
each training and validation set in a 10-fold cross-validation. The
validation loss reached the lowest value and plateaued when the
training reached the 70th epoch. We also found that the loss
curves were similar to those in the other nine cross-validation
times. As a result, we fixed the weights of the feature extractor at
the 70th epoch of the VGG16 network.

In the analysis, we implemented stepwise regression and an
LDA classifier using MATLAB 2018a with default parameters.

3.2 Cross-Validation and Independent Test
In the cross-validation, the vertical average AUC value of the
validation sets was 0.95, while the maximum value was 0.99, and
the minimum value was 0.86. The vertical average ROC curve of
10-fold validation is shown in the Supplementary Material.

In the 202 independent test cases, the AUC value was 0.91.

3.3 Receiver Operating Characteristic
Performance
In the MRMC study, readers’ average AUCs increased from
0.850 to 0.896 (p = 0.0209). With support from our model, we
found that five of the six radiologists’ AUC scores (reader 1:
0.078, reader 2: 0.109, reader 3: 0.033, reader 4: 0.038, and reader
5: 0.038) increased by an average of 0.059, especially junior
radiologists (reader 1 increased 0.078 and reader 2 increased
0.109), but one radiologist’s AUC decreased (one of the senior
radiologists, reader 6: -0.022). Detailed specific AUC changes are
shown in Table 3. The ROC curves in Figure 4 show that the
junior group’s ROCs have an upward trend more highly and
steadily, but those in middle-seniority and senior group show no
appreciable change.

3.4 Benign and Malignant Evaluation
The sensitivity and specificity of the radiologists in the two sessions
are shown in Table 4. The sensitivities of all radiologists with model
support were higher or equal to those without model support
(junior group, increased on average 0.160; middle-seniority group,
increased on average 0.046; and senior group, increased on average
0.041). We found that the junior group’s sensitivity increased
significantly (reader 1 increased by 0.137 and reader 2 increased
by 0.182); however, the sensitivity of the middle-aged and senior
December 2021 | Volume 11 | Article 773389
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groups remained stable (Table 4). The specificities of five of the six
radiologists were higher than or equal to those without model
support (junior group unchanged, middle-seniority group increased
on average 0.087, senior group decreased on average 0.035),
particularly reader 3: 0.104 and reader 4: 0.069. The specificity of
Frontiers in Oncology | www.frontiersin.org 7
reader 5 decreased by 0.104. PPV and NPV were only slightly
increased after aiding by the CAD model (PPV average increased
0.045, NPV average 0.058).

Binary MRMC analysis showed that the performance
improvement was significant (p = 0.0253).
TABLE 3 | The comparisons for specific AUCs for six readers and their averaged AUC in multi-reader multi-case observer study.

Reader AUC unaided AUC with model reference Difference p-value

1 0.842 0.920 0.078
2 0.783 0.892 0.109
3 0.889 0.922 0.033
4 0.852 0.890 0.038
5 0.866 0.904 0.038
6 0.869 0.847 -0.022
Diagonal average 0.850 0.896 0.046 0.0209
Dece
mber 2021 | Volume 11 | Article
AUC, area under the curve.
A B

C

FIGURE 4 | Receiver operating characteristic (ROC) curves for six readers in three groups during diagnosis with and without computer-aided diagnosis (CAD) model
support. (A) Junior group of readers 1 and 2. (B) Middle-seniority group of readers 3 and 4. (C) Senior group of readers 5 and 6. We can observe that ROCs show
an upward trend more highly and steadily in junior group, but in middle-seniority and senior groups, ROCs are not obviously changed, which has decreased with
support in reader 6.
773389
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3.5 BI-RADS Evaluation
In MRMC evaluation, all readers adjusted the BI-RADS category
of partial cases with model support, which focused on BI-RADS
2–4. The BI-RADS 4 category was the most confused and most-
adjusted (total changed 87 cases, included 52 increased cases and
35 decreased cases). After model support, more follow-up cases
were adjusted for malignancy or need to be focused and recalled
for further biopsy. The detailed changes in the BI-RADS are
shown in Table 5, and more detailed information about the BI-
RADS evaluation is provided in Appendix C.
Frontiers in Oncology | www.frontiersin.org 8
3.6 Diagnosis Time
Each radiologist recorded the diagnosis time using timer
software with the number of seconds. The average diagnosis
times per case for radiologists in these two sessions are shown in
Table 6. Five of the six radiologists had comparable diagnostic
efficiency. Reader 6’s diagnosis time significantly decreased from
56.96 to 43.96 (almost reduced by 22.8%) after involving the
CAD support (p = 0.01). Two senior experienced radiologists
showed a larger decrease in diagnosis time than the other
radiologists. We can observe that the diagnosis time may
TABLE 5 | Counts of BI-RADS changes for each reader under supporting by CAD model.

Junior group Middle-seniority group Senior group Total

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6

Changes Increase 14 11 11 17 22 5 80
Decrease 4 15 13 5 4 7 48
Total 18 26 24 22 26 12 128

Compare the revised results with the biopsies Closer 10 15 13 8 14 7 67
Not real matching 8 11 11 14 12 5 56

Changed cases’ breast composition a 1 0 1 0 1 0 3
b 2 7 5 2 6 1 23
c 12 18 16 17 17 10 90
d 3 1 2 3 2 1 12
December 20
21 | Volume 11 | Article 7
BI-RADS, Breast Imaging Reporting and Data System.
TABLE 4 | The difference in sensitivity, specificity, PPV, and NPV in different experience groups with and without model reference.

Sensitivity Reader Unaided Aided Difference
Group

Junior 1 0.545 0.682 0.137
2 0.682 0.864 0.182

Middle-seniority 3 0.773 0.773 0
4 0.773 0.864 0.091

Senior 5 0.819 0.901 0.082
6 0.773 0.773 0

Specificity
Group Reader Unaided Aided Difference
Junior 1 0.931 0.931 0

2 0.621 0.621 0
Middle-seniority 3 0.793 0.897 0.104

4 0.862 0.931 0.069
Senior 5 0.793 0.689 -0.104

6 0.863 0.897 0.034
Positive predictive value (PPV)
Group Reader Unaided Aided Difference
Junior 1 0.857 0.882 0.025

2 0.577 0.633 0.056
Middle-seniority 3 0.739 0.850 0.111

4 0.810 0.905 0.095
Senior 5 0.750 0.689 -0.061

6 0.809 0.850 0.041
Negative predictive value (NPV)
Group Reader Unaided Aided Difference
Junior 1 0.729 0.794 0.065

2 0.720 0.857 0.137
Middle-seniority 3 0.821 0.838 0.017

4 0.833 0.900 0.067
Senior 5 0.851 0.909 0.058

6 0.833 0.838 0.005
73389
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increase slightly in readers 1–3 and decrease in readers 4–6. This
might be because the senior group analyzes the signs of the mass
lesion more confidently under the support of the CAD model.
Figure 5 shows the reading time comparison for all readers.
4 DISCUSSION AND CONCLUSIONS

In this study, we proposed a deep learning-based perceptive
feature extractor for breast mass lesion classification. To evaluate
this CAD model, we conducted an observer study to verify
whether this CAD model could help radiologists, especially in
the junior group. The results showed that this CAD model
assisted radiologists in improving diagnostic accuracy and
confidence without excessively increasing diagnostic time.

This perceptive feature extractor used quantitative BI-RADS
descriptions instead of biopsy-proven results to optimize the
weights. This brought benefits to the CAD model, and a total of
128 features were extracted. First, we obtained BI-RADS
descriptions from radiologists. When optimizing, human visual
perception and clinical experience were integrated into the
weights. This provided us with more ideas for interpreting the
Frontiers in Oncology | www.frontiersin.org 9
learned features of CNN. Second, compared to using a CNN
directly to establish a CAD model, the feature extractor was first
trained and then a classifier was used to complete the diagnosis,
which was more consistent with the process of clinical diagnosis.

As summarized in Table 7, we compared the diagnostic
performance achieved by our model with those of other
recently published classic CAD models and deep learning
models (21–27). In these studies, researchers used different
classifiers for mass classification. A notable exception is the
study by Yan et al. (27), who combined dual-view
mammogram matching and CMCNet VGG16, similar to the
quantification of the BI-RADS description combined with
classical CNN VGG16 in our study.

In the observer study, the AUC scores showed that the
radiologists had a higher and better diagnostic performance
with CAD model support, which is similar to earlier reported
studies (28); however, these studies did not mention the
relationship between the radiologist’s experience and the CAD
model effects. In our study, readers were divided into junior,
middle-seniority, and senior groups according to their
experience. The AUC changes in these groups showed that
junior radiologists have the largest improvement with the help
of the CAD model, which means that the model could provide a
TABLE 6 | The mean diagnosis time for radiologists in multi-reader multi-case study.

Reader Mean time w/o
support(s)

Mean time with model
support (s)

Difference p-
value

With model increased
time cases

With model decreased
time cases

With model remained the
same time cases

1 55.27 55.51 0.24 0.955 22 29 0
2 80.59 81.18 0.59 0.912 12 38 1
3 63.90 64.24 0.34 0.928 22 27 2
4 45.10 42.59 -2.51 0.378 9 39 3
5 42.35 37.35 -5 0.089 14 36 1
6 56.96 43.96 -13 0.001 19 32 0
December 20
A B

FIGURE 5 | Diagnosis time comparison. (A) The time comparison of all readers. (B) The time comparison for reader 6, who was the only one who showed an
obvious difference between the two sessions. The graph shows differences in diagnosis time per case for all readers. Each red point indicated diagnosis time for a
certain case with or without model support. There is no significant change when the point falls on the diagonal. Point above the diagonal indicates diagnosis time
increased with model support. Point below the diagonal means the time decreased with model support.
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more important reference for junior radiologists. It has potential
to play a role in junior radiologists’ training.

Furthermore, the diagnostic sensitivities of all radiologists
increased when the model was involved, which was similar to
that reported by Boumaraf et al. (26). Under CAD model aiding,
radiologists not only obtained more information about the
likelihood of malignancy but also reduced the breast density
effect. This help was significant for junior radiologists during the
diagnosis of suspicious malignant cases, which made more cases
assessed for malignancy and increased sensitivity. However, for
those who are experienced radiologists, such assistance may not
make much difference, so the sensitivity (for middle-seniority
and senior groups) remained the same, if not slightly higher than
that without the model. Meanwhile, support by the CAD model
meant that the radiologists could obtain more details from the
mass’s shape and sharpness, which decreased the confusion in
BI-RADS 4 or other suspicious cases, especially within the
middle-seniority group. This means that the CAD model could
be a supplement to clinical inexperience, just as we observed with
the change in sensitivity and specificity in the study. Except for
reader 5, where the extra information from the CAD model was
unhelpful, instead adding more confusion, which decreased
specificity (29–31). Although PPV and NPV were only slightly
increased after aiding by the CAD model, the increase was
insufficient to prove the clinical screening significance of the
CAD model; however, we still believe that the CAD model could
help radiologists in terms of interpretability and clinical confidence.

In addition, the radiologists adjusted the evaluation of the BI-
RADS category after the CAD model was involved. BI-RADS 4
categories are the most confusing type, which makes radiologists
take a lot of time in the classification and recognition of signs as
diagnostic evidence (24). We observed that the radiologists in
this study adjusted many BI-RADS 4 cases in the second session
(among 128 changed cases, 87 of them were BI-RADS 4 cases).
On the other hand, in this adjustment, the ratios of cases whose
BI-RADS diagnosis was closer to that of biopsy are 56.55%,
45.20%, and 56.05% for junior, middle-seniority, and senior
groups, respectively. The POM score offered by the model
helped the radiologist make a better decision in those difficult
cases or complex cases, providing more evidence for biopsies.
Therefore, radiologists pay more attention to the most suspicious
characteristics of mass lesions (32).

Considering the workload of radiologists in daily work, we
hope that using a CADmodel will not increase the diagnosis time
for each patient. Therefore, we proposed a quantification of the
Frontiers in Oncology | www.frontiersin.org 10
BI-RADS description method to establish the CADmodel, which
would be more interpretable for radiologists. The model
outputting the POM for the mass lesion’s likelihood of
malignancy would reduce the difficulties in understanding and
could be a better auxiliary means for the diagnostic process,
spending less time in making a comprehensive judgment, and
thus would not increase the workload. This means that a
quantification of the BI-RADS description method would be
more suitable for the subjective consciousness of junior
radiologists, giving them more confidence in the CAD model
result, possibly decreasing the diagnostic burden (33).

Our study has some limitations. First, our model is not an
end-to-end CAD system. To verify the CAD model’s correlation
associated with radiologists’ experience, we focused only on
mass, which is an uncomprehensive system for all the signs in
breast lesions. Second, compared with other similar studies,
where an average of 16.4 radiologists participated in the reader
study (34–38), the number of readers in MRMC was relatively
small in our study. Moreover, this study did not set two replicate
experiments to verify the agreements for the same radiologist in
different reading times. Third, this was a single-center study.
Different regions have different population distributions. We did
not explore if this CAD model could be applied to other
populations outside our institution, which might not have
sufficient universality.

In future work, more solutions will be proposed to address
these limitations shown above. First, we will explore the
automatic detection and segmentation models for breast mass.
Although there are many CAD models about mass detection and
segmentation, they are not fully appropriate for the cases with
dense breast. Thus, our model will focus on the cases with dense
breast, which are common in China. Combining the detection,
segmentation, and our classification model proposed in this
study, an end-to-end CAD model can be established for
China’s poplution. Second, more radiologists will participate in
our reader study. The more readers who participate, the more
solid the conclusion will be. Third, a multicenter study should be
considered in the future. Domain adaptation technology will be
used to reduce the gap of data distribution between data centers.

In general, the perceptive feature-based CAD model improved
the radiologists’ diagnostic performance for breast masses without
improving the diagnostic time and assisted junior radiologists with
better assignment in BI-RADS 4 categories. This illustrates that the
model has potential to train junior radiologists and help them
improve the diagnosis accuracy for breast mass.
TABLE 7 | Diagnostic performance of previous models in classification of masses.

Year First author Model Traning cases AUC

2015 Ertosun and Rubin (21) VGG -Net 16 2,250 0.82
2015 Surendiran et al. (22) A univariate ANOVA discriminant analysis 300 0.93
2016 Sun et al. (23) 4 Convolutional ANN and 1 fully connected layer 840 0.70
2017 Becker et al. (24) ViDi Red 286 0.81
2020 Agarwal et al. (25) Faster-RCNN 800 0.90
2020 Boumaraf et al. (26) BPN 500 0.94
2021 Yan et al. (27) CMCNet VGG16 586 0.94
2021 Ours Classical CNN VGG16 based on perceptive features 214 0.91
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