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Abstract: Nipah virus (NiV) is a recently emerged paramyxovirus that causes severe encephalitis and
respiratory diseases in humans. Despite the severe pathogenicity of this virus and its pandemic poten-
tial, not even a single type of molecular therapeutics has been approved for human use. Considering
the role of NiV attachment glycoprotein G (NiV-G), fusion glycoprotein (NiV-F), and nucleoprotein
(NiV-N) in virus replication and spread, these are the most attractive targets for anti-NiV drug dis-
covery. Therefore, to prospect for potential multitarget chemical/phytochemical inhibitor(s) against
NiV, a sequential molecular docking and molecular-dynamics-based approach was implemented by
simultaneously targeting NiV-G, NiV-F, and NiV-N. Information on potential NiV inhibitors was
compiled from the literature, and their 3D structures were drawn manually, while the information and
3D structures of phytochemicals were retrieved from the established structural databases. Molecules
were docked against NiV-G (PDB ID:2VSM), NiV-F (PDB ID:5EVM), and NiV-N (PDB ID:4CO6) and
then prioritized based on (1) strong protein-binding affinity, (2) interactions with critically important
binding-site residues, (3) ADME and pharmacokinetic properties, and (4) structural stability within
the binding site. The molecules that bind to all the three viral proteins (NiV-G ∩ NiV-F ∩ NiV-N)
were considered multitarget inhibitors. This study identified phytochemical molecules RASE0125
(17-O-Acetyl-nortetraphyllicine) and CARS0358 (NA) as distinct multitarget inhibitors of all three
viral proteins, and chemical molecule ND_nw_193 (RSV604) as an inhibitor of NiV-G and NiV-N. We
expect the identified compounds to be potential candidates for in vitro and in vivo antiviral studies,
followed by clinical treatment of NiV.

Keywords: Nipah virus; molecular docking; small-molecule inhibitors; molecular dynamics; drug
repurposing; multitarget inhibitor

1. Introduction

Nipah virus (NiV), a virus of the genus Henipavirus within the Paramyxoviridae
family, was initially isolated in 1999 during an outbreak in Malaysia [1]. Since then, there
have been sporadic reports of NiV outbreaks in various other Asian countries such as
Singapore, the Philippines, Bangladesh, and India, the most recent of which is in the South
Indian state of Kerala [2]. NiV is potentially pandemic, highly pathogenic, and capable of
infecting most mammalian species. From 1998 to 2015, more than 600 cases of NiV human
infections were reported, with a fatality rate of 38% in Malaysia and 43–100% in India and
Bangladesh [2].

NiV is classified as a biosafety level 4 (BSL4) pathogen due to its high case fatality
rate following human infection and due to the lack of effective therapeutics or vaccines
for infection treatment [3]. There have been some efforts to manage NiV by searching
for small-molecule therapeutics [4,5]. For example, favipiravir has demonstrated efficacy
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against a broad spectrum of RNA viruses such as Paramyxoviridae, Filoviridae, Arenaviri-
dae, and Bunyavirales; however, a recent in vitro study also demonstrated favipiravir to
be inhibiting NiV and Hendra virus (HeV) virus replication and transcription at micro-
molar concentrations [6]. R1479 (4′-azidocytidine), a drug previously identified to inhibit
flaviviruses, is also found to inhibit henipaviruses, including other paramyxoviruses, with
high potency [7]. Small molecules that activate IRF3 and modulate RIG-I-like receptors
pathways have also been investigated as potential strategies for targeting NiV infection [8].
However, despite these efforts for developing small-molecule inhibitors, no approved
drugs are available yet for efficient use in humans. Though Ribavirin is not a proven
treatment for NiV, it is particularly being used in a state of emergency to treat acute NiV
encephalitis as a first-line treatment strategy [9]; however, it offers various side effects such
as nausea, vomiting, and convulsions during NiV treatment [10]. Additionally, driven
by the unwanted pharmacokinetics and numerous side effects of synthetic compounds,
there is also a specific interest in using compounds of natural origin (phytochemicals) to
overcome the side effects. Therefore, taken altogether, there is a strong need to discover
novel small-molecule chemical inhibitors or phytochemicals against NiV with potential
therapeutic value and fewer or no side effects in humans.

Contrary to conventional drug discovery approaches that rely on targeting a single
protein, the next paradigm in drug discovery is to search for multitarget drugs. Viral entry
into the host begins with relatively nonspecific interactions between the virus and attach-
ment factors on the cell surface. The henipaviruses encode two envelope glycoproteins,
including G and F glycoproteins. These virus attachment glycoproteins are essential for the
recognition of host-cell-surface receptors ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3), which
mediate cellular attachment, fusion, and virus entry [11]. NiV glycoprotein G (NiV-G) has a
globular head domain formed of a six-bladed beta-sheet propeller, connected via a flexible
stalk domain to a transmembrane anchor. The binding of G glycoprotein to its ephrin
receptors leads to conformational changes in glycoprotein, followed by subsequent con-
formational changes in F glycoprotein (NiV-F) that lead to the establishment of a physical
link between viral and cellular membranes by stripping of the fusion peptide. Concluding
the fusion process, nucleocapsid enters the host cell cytoplasm, resulting in the onset of
viral replication [12]. The NiV RNA genome is encapsidated by the nucleoprotein (NiV-N)
that protects the viral genome from degradation and also acts as a template for mRNA
transcription [13]. Considering the role of each of the three viral proteins (i.e., NiV-G, NiV-F,
and NiV-N) in virus replication and spread, they are, therefore, of particular interest in
anti-Nipah drug discovery.

Multitarget drug discovery has raised considerable interest in the last decade [14–17].
Most drugs aim at a single biological molecule, widely known as the “one target, one
drug” strategy, whereas a multitarget drug has the potential to modulate the effect of
multiple targets. Multitarget drugs have even been approved for clinical use [18], and
many complex diseases, including neurodegenerative diseases, cardiovascular diseases,
and cancers, are often treated with multidrug therapy or a “cocktail” of drugs [19]. Many
computational approaches have been developed to address polypharmacology-guided
drug discovery [16,20]; these approaches, including virtual screening, molecular docking,
and molecular dynamics, have been widely implemented in modern drug discovery and are
capable of screening new compounds with multitarget characteristics. For example, docking
simulations have identified a series of novel multitarget compounds (e.g., donepezil–
indolyl hybrid, donepezil–pyridyl hybrid, donepezil hybrid, etc.) for the treatment of
neurodegenerative diseases [15]. In another study, Zhou et al. (2017) [21] implemented
a computational drug design method that aided the synthesis and characterization of a
novel multikinase inhibitor molecule. Yousuf et al. (2017) [22] proposed novel multitarget
inhibitors for breast cancer treatment by using a virtual screening/molecular docking-based
approach. Using multitargeted molecular docking Singh and Bast (2015) [23] also identified
various potential natural compounds as inhibitors of tyrosine kinase receptors involved in
the development of several types of cancers. Computational approaches for multitarget
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drug discovery in pathogens have also been reported [24–26]. Several studies have been
reported in the literature addressing various computational methods (e.g., virtual screening,
molecular docking, molecular modeling, machine learning, quantitative structure–activity
relationship, in silico ADME, pharmacophore, etc.) targeting multiple targets [27].

Our group has already developed various therapeutic/antiviral resources [28,29] and
methods to predict antiviral peptides [30,31], small molecules [32,33], and siRNAs [34]. Our
group has developed a resource of multitargeted putative therapeutics and epitopes for NiV
drug discovery as well [35]. Additionally, several small-molecule inhibitors were identified
by our group using QSAR [36] and molecular docking-based studies [37]. In our previous
study [37], we have identified small-molecule FDA-approved drugs as potential inhibitors
of NiV-G using an ensemble of molecular docking and analysis of the chemical–protein in-
teraction network. Computational screening of small-molecule inhibitors/drugs is a useful
approach for rapid screening of therapeutic molecules from a large chemical space; this
motivated us to shortlist potential leads to meet the urgent demand for repurposing drugs
for the treatment of NiV. In this study, to extend the scope of already developed methods
and approaches against NiV, an integrative structure-based approach was implemented to
identify potential multitarget small-molecule chemical/phytochemical inhibitor(s) against
NiV-G, NiV-F, and NiV-N—the three most important NiV proteins targets. The workflow
for the proposed integrated approach for multitarget molecule screening is presented in
Figure 1.
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2. Materials and Methods
2.1. Data Compilation and Small-Molecule Library Preparation

An extensive literature search in PubMed (pubmed.ncbi.nlm.nih.gov/) database was
performed to extract the structural information on known NiV inhibitors using the fol-
lowing integrated text query: (((Nipah) AND drug*)) OR ((Nipah) AND inhibit*). Then,
3D chemical structures of small-molecule NiV inhibitors were prepared and edited using
MarvinSketch v5.10.0 software (https://chemaxon.com/). To probe for NiV inhibitors
that might be associated with adverse side effects, ADME and pharmacokinetic analyses
were performed using the SwissADME webserver (http://swissadme.ch/) (accessed on
18 October 2021).

Data on different aspects of phytochemicals, including their 3D structures, were
obtained from three well-established databases: (1) SerpentinaDB [38], for a structured
compilation of Indian snakeroot (Rauvolfia serpentina) plant-derived molecules (n = 142);
(2) Phytochemica [39], for a structured compilation of molecules from the plants Atropa
belladonna, Catharanthus roseus, Heliotropium indicum, Picrorhiza kurroa, and Podophyllum
hexandrum (n = 868); (3) Phytochemical and Drug Target DataBase (PDTDB, n = 221) [40];

pubmed.ncbi.nlm.nih.gov/
https://chemaxon.com/
http://swissadme.ch/
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these databases contain a vast amount of information on phytochemicals having therapeutic
potential against various diseases. All obtained chemical structures were structurally
optimized via energy minimization (500 steps of steepest descent) with Merck Molecular
Force Field (MMFF94) while implementing OpenBabel v 2.4.0 software [41].

2.2. Chemical Variability Analysis of Compiled Molecules

The R-ChemmineR package [42] was used to cluster the literature-compiled NiV
inhibitors into their discrete similarity groups (on the basis of the Tanimoto similarity
measure/index), using fingerprints generated from the descriptor vectors. A maximum
common substructure search was also performed to identify the potential representative
scaffolds in the inhibitors using the flexible common substructure (FMCS) algorithm [43].

2.3. Retrieval and Assessment of Viral Protein Structures

The 3D structures of Nipah glycoprotein (NiV-G), fusion protein (NiV-F), and nucleo-
protein (NiV-N) were obtained from the RCSB Protein Data Bank (PDB) (https://www.rcsb.
org/) (accessed on 10 October 2021) having identifiers 2VSM (1.8 Å) [11], 5EVM (3.3 Å) [44],
and 4CO6 (2.5 Å) [45], respectively. The 3D structures of proteins were assessed in Chimera
v 1.16 (http://cgl.ucsf.edu/chimera/), and any missing residue(s) was/were fixed, and op-
timized. The structure of NiV-N (4CO6) is a NiV nucleoprotein–phosphoprotein complex,
and therefore, the phosphoprotein chains were removed from the complex. Nucleoprotein
structure also comprised many modified residues (e.g., MSE/AMSE/BMSE), which were
modified to Gly, the simplest amino acid, in Pymol v 2.3.0 (https://pymol.org/2/) soft-
ware. The modified protein structure was structurally optimized via energy minimization
(1000 steps of steepest descent) in Chimera.

2.4. Assessment of Ligand-Binding Pockets

The data on ligand-binding sites in all three viral proteins were obtained from the
published literature. The binding-site residues of protein NiV-G (Gln559, Glu579, Tyr581,
Ile588) were obtained from Kalbhor et al. (2021) [46], while binding-site residues of NiV-F
(His29, Tyr30, Val39, Lys40, Asn380, Tyr432, Leu433) and NiV-N (Lys34, Arg36, Phe38,
Val58, Ala65, Ser67, Glu124, Leu128, Ile131) were obtained from Sen et al. (2019) [47]. To
assess the conformational/structural differences among the ligand-binding pockets in the
viral protein structures, their respective pocket volume sizes were assessed using Pocket
Volume Measurer (POVME) [48] and Pymol software.

2.5. Molecular Docking

For molecular docking, the cleaned and energy-minimized structures (called recep-
tors henceforth) were considered (see Section 2.3). The three-step docking comprises
the following preparations: (1) receptor preparation—using Autodock Tools 4.2.6 soft-
ware [49], polar hydrogen atoms were added, and the protonation states were assigned by
including appropriate Gasteiger charges to the respective protein models (NiV-G, 8.9803;
NiV-F, 2.986; NiV-N,0.9779). All other receptor preparation options were kept at default;
(2) ligand preparation—charges were added to small molecules (chemical inhibitors and
phytochemicals), and all bonds of ligands were set to be rotatable except N–C bonds;
(3) molecular docking—all ligands were docked into the respective ligand-binding sites
using the QuickVina v 2.0 [50] software, a docking tool that accelerates AutoDock Vina
software [51] by implementing an already benchmarked (on CCDC/ASTEX dataset) molec-
ular docking approach [37]. The small molecules that bind to all the three viral pro-
teins (NiV-G ∩ NiV-F ∩ NiV-N) were considered multitarget inhibitors. Intermolecular
interactions among receptors and ligands were analyzed with LigPlot+ v 2.2 software
(https://www.ebi.ac.uk/thornton-srv/software/LigPlus/), and 3D images were rendered
with Pymol.

As a positive control, molecular docking studies were also performed among viral
proteins and the drug remdesivir (GS-5734) [52]. The 2D structure of remdesivir (DB14761)

https://www.rcsb.org/
https://www.rcsb.org/
http://cgl.ucsf.edu/chimera/
https://pymol.org/2/
https://www.ebi.ac.uk/thornton-srv/software/LigPlus/


Microorganisms 2022, 10, 1181 5 of 16

was obtained from the DrugBank database (https://www.drugbank.com/) (accessed on
18 April 2022), which was 3D optimized (using the obminimize module), with 500 steps of
conjugate gradient and steepest descent methods. Remdesivir was then docked into the
respective binding sites of all three viral proteins using the implemented docking pipeline.

2.6. Computing ADME and Pharmacokinetics Properties of Small Molecules

ADME and pharmacokinetics properties of docking-based prioritized molecules were
computed using ADMETlab 2.0 webserver [53]. ADMETlab computes a total of 88 molecu-
lar property descriptors based on molecule’s physicochemical properties (n = 17), medicinal
chemistry (n = 13), and ADMET properties [A (n = 7), D (n = 4), M (n = 10), E (n = 2),
T (n = 35)]. To prioritize these molecules for next step, the respective z-scores for each
molecule were computed based on ADME descriptors. Briefly, the most relevant property
value values xi (x1, . . . , xn) were first transformed into a data matrix of binary variables
(0 or 1). During data transformation, the values within the standard limits were trans-
formed into binary variable 1, else 0. All xi values were then transformed into a normalized
score zi for each molecule, which was computed as z = (X–µ)/σ, where X is the value being
analyzed, µ is the mean, and σ is the standard deviation. In addition, z-scores for molecules
were computed in R v 3.6.3 (https://www.r-project.org/) statistical environment.

2.7. Assessing Gene Expression Induction by Molecules

Based on the positive z-scores, the following molecules were selected: ND_nw_193
(RSV604), CARS0358 (NA), and RASE0125 (17-O-Acetyl-nortetraphyllicine). The potential
up- and downregulated human protein targets of these molecules were predicted based on
their predicted pharmacological activity (Pa (activity probability) > 0.6) using the DIGEP-
Pred server [54]. DIGEP-Pred uses the prediction of activity spectra for substances (PASS)
algorithm to estimate various kinds of biological activities (including the interaction of
small molecules with gene/proteins) by querying the 2D structure with those of well-
known biologically active substances (i.e., activity = f (structure)). PASS prediction results
are represented by the list of activities with probabilities “to be active” Pa and “to be
inactive” Pi. The background data (i.e., drug-induced changes in gene expression) for
DIGEP-Pred was taken from the Comparative Toxicogenomics Database (CTD) [55], which
provides per se general drug-induced changes in gene expression [56], and such changes in
gene expression represent the intrinsic properties of a drug molecule.

2.8. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were performed to ascertain the structural
binding stability of 3 potential multitarget NiV inhibitors—RASE0125, ND_nw_193, and
CARS0358—with respective viral protein structures (i.e., NiV-G-ND_nw_193 complex,
NiV-G-CARS0358 complex, and NiV-G-RASE0125 complex; NiV-F-ND_nw_193 complex,
NiV-F-CARS0358 complex, and NiV-F-RASE0125 complex; NiV-N-ND_nw_193 complex,
NiV-N-CARS0358 complex, and NiV-N-RASE0125 complex). As respective controls, MD
simulations were also performed for free protein structures (apo-NiV-G; apo-NiV-N; apo-
NiV-N). In total, 12 MD simulations were performed. Groningen Machine for Chemical Sim-
ulation (GROMACS) v 2020.1 software [57] was used for simulations utilizing CHARMM36
force field v 2019 [58] at 300 K. The topology parameters for inhibitor were produced in the
CGenFF server (http://cgenff.umaryland.edu/) (accessed on 11 April 2022) and complexed
into the protein topologies to make protein–inhibitor complexes. Systems were solvated
using the simple point charge water model (spc216) in cubic boxes and counter ions (Na+

or Cl−) were added to neutralize the systems. Solvated systems were then minimized
with 1000 steps using the steepest descent method, followed by the equilibration run
(NVT + NPT), for 100 picoseconds. After equilibration, a 5 ns production simulation (MD
run) was performed for all the 12 established systems (i.e., 9 complexes and 3 free proteins).
The trajectories were analyzed by assessing C-α root-mean-square deviations (RMSDs)

https://www.drugbank.com/
https://www.r-project.org/
http://cgenff.umaryland.edu/
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and root-mean-square fluctuation (RMSF) using “gmx rmsd” and “gmx rmsf” modules,
respectively. The trajectories were plotted gnuplot-x11 program (http://gnuplot.info/).

2.9. Principal Component Analysis and Gibbs Free Energy Calculation

To explore the conformational changes docked molecules—RASE0125, ND_nw_193,
CARS0358—brought into the viral protein structures, principal component analysis (PCA)
was carried out utilizing the essential dynamics approach. Using the GROMACS “gmx
anaeig” and “gmx covar” modules, the covariance matrix was calculated (considering the
protein backbone atoms), followed by the diagonalization to calculate the eigenvectors
and eigenvalues. Principal component analysis (PCA) was calculated from the trajectory,
and the first two components (PC1 and PC2) were used for the plotting. The Gibbs free
energy landscapes (FELs) were developed using the “g_sham” module to capture the
lowest energy stable state. The first two principal components were used to calculate
the FEL based on the equation ∆G(PC1, PC2) = −KBTlnP(PC1, PC2). PC1 and PC2 are
reaction coordinates, KB symbolizes the Boltzmann constant, and P (PC1, PC2) illustrates
the probability distribution of the system over the first two principal components.

3. Results and Discussion
3.1. Compiling Small-Molecule Inhibitors of NiV

An extensive literature search was performed to obtain information on small-molecule
NiV inhibitors or drug molecules. The PubMed database was queried by combining
suitable keywords and Boolean operators to first obtain relevant articles. Next, these
articles were manually curated to archive molecules’ data and their additional details,
including chemical name, IUPAC name, 2D structure, references, etc. Finally, information
on a total of 206 NiV inhibitors was compiled (Table S1).

To assess the diversity and unique molecular scaffolds that were highly prevalent in
compiled NiV inhibitors, these were clustered into their discrete groups on the basis of
the Tanimoto similarity measure [59], one of the most widely used similarity measures
for comparing chemical structures in cheminformatics. Clustering results were visualized
by inspecting the multidimensional scaling (MDS) plot that indicated 206 inhibitors to be
broadly grouped into four distinct clusters: Cluster 1 (n = 57), Cluster 2 (n = 35), Cluster 3
(n = 16), and Cluster 4 (n = 7). The molecules in each of the clusters comprised compounds
with similar structural patterns (Figure 2), while the rest of the 91 molecules were present
as independent entries.

ADME and Pharmacokinetic Properties of Small Molecules

To probe for NiV inhibitors that might be associated with adverse side effects, ADME
and pharmacokinetic properties of literature-compiled small-molecule inhibitors were
computed using the SwissADME webserver (Table S2). SwissADME uses comparative
information derived from poorly and highly absorbed drugs to predict passive intestinal
absorption and brain penetration, as a function of lipophilicity and apparent polarity
(described by WLOGP and TPSA, respectively). For all compiled inhibitors, the predictions
were displayed as a bi-plot, also called the BOILED-Egg plot [60] (Figure 2). A total of
160 molecules (~78%) fall inside the whole bi-plot, where white and yellow ellipses indicate
molecules having a high probability of good intestinal absorption and blood–brain barrier
(BBB) crossing, respectively. A total of 46 molecules (~22%) were predicted as not absorbed
by the GI and BBB non-permeant, which are located in the grey area of the plot; these
molecules were explicitly excluded from our analyses, as they are likely associated with
side effects. The ellipsoidal regions defining the intestine and brain permeation were
drawn as initially reported. The selected molecules were also analyzed for drug-relevant
properties on the basis of “Lipinski’s rule of five”, which indicated a total of 149 (72%) to
have drug-like properties.

http://gnuplot.info/
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3.2. Compiling Information on Small-Molecule Phytochemicals

Phytochemicals are plant-derived small-molecule inhibitors, which are rich sources
of diverse scaffolds that could serve as a basis for rational drug design. Many plants
have shown effective antiviral and immune-boosting potentials against viruses including
SARS-CoV, Zika, Ebola, Nipah, and other highly pathogenic viruses [61]. Therefore, we
also prospected for potential phytochemical molecules against NiV proteins. Information
on different features of phytochemicals, including their 3D structures, was obtained from
three well-established small-molecule databases—namely, SerpentinaDB (n = 142), Phyto-
chemica (n = 868), and Phytochemical and Drug Target DataBase (PDTDB, n = 221); these
databases contain extensive information on phytochemicals having therapeutic potential
against various diseases. The molecules in these databases already have information on
pharmacokinetic properties and, therefore, were not computed in our analyses.

3.3. Volumetric Analyses of Ligand-Binding Protein Pockets

The data on ligand-binding sites in all three viral proteins were obtained from the
published literature. The binding-site residues of protein NiV-G (Gln559, Glu579, Tyr581,
Ile588) were obtained from Kalbhor et al. (2021) [46]. The residues Ile588 and Tyr581 partic-
ipate in hydrophobic interactions and contribute to the binding pocket that accommodates
Phe120 of human EFNB2; hence, they are considered critical for inhibiting interactions
by which NiV attach to EFN receptors [62]. The binding-site residues of NiV-F (His29,
Tyr30, Val39, Lys40, Asn380, Tyr432, and Leu433) and NiV-N (Lys34, Arg36, Phe38, Val58,
Ala65, Ser67, Glu124, Leu128, and Ile131) were obtained from Sen et al. (2019) [47]. Pocket
volumes of NiV-F, NiV-G, and Niv-N were 69 Å3, 23 Å3, and 60 Å3, respectively; this
indicated availability of similar conformational space for ligands in NiV-F and Niv-N but a
smaller space for NiV-G.

3.4. Molecular Docking

Docking studies were carried out in order to find optimal conformations of all lig-
ands into the respective binding pockets of NiV-G, NiV-F, and NiV-N. As a post-docking
filter, molecules with the best binding affinity (≤−7.0 Kcal/mol) were considered, which
predicted 300, 827, 685 molecules to be docking inside NiV-N, NiV-G, and NiV-F, respec-
tively. The molecules were then shortlisted based on their interaction with the binding-site
residues. Of 300 molecules in NiV-N, 227 molecules bind to ligand-binding sites (Lys34,
Arg36, Phe38, Val58, Ala65, Ser67, Glu124, Leu128, and Ile131), whereas of 827 molecules in
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NiV-G, 620 molecules bind to the ligand-binding sites (Gln559, Glu579, Tyr581, and Ile588).
Similarly, of 685 molecules in NiV-F, 681 molecules bind to ligand-binding sites (His29,
Tyr30, Val39, Lys40, Asn380, Tyr432, Leu433).

To gain an understanding of differences in the number of docked small-molecule
inhibitors, volumetric differences among ligand-binding pockets of proteins were analyzed.
The difference in binding of a comparatively larger number of small molecules in NiV-F and
NiV-N could be attributed to a comparatively wide open and large pocket, compared with
NiV-G. The results are also contrary to the pocket volumes of viral proteins (Niv-G, 23 Å3;
NiV-F, 69 Å3; Niv-N, 60 Å3). The inhibitor molecules that bind to all three viral proteins
(NiV-G ∩ NiV-F ∩ NiV-N) were considered. Overall, based on binding energy threshold
(≤−7.0 Kcal/mol), interactions with ligand-binding-site residues, a total of 156 molecules
are selected as common inhibitors of NiV-G, NiV-F, and NiV-N. Since 156 was a large
number for further analyses, the binding-energy threshold was raised to −7.8 Kcal/mol,
which predicted a comparatively smaller number of lists as common inhibitors of three
viral proteins. Based on the readjusted threshold, a total of eight molecules were selected,
of which two were chemical inhibitors, and six were phytochemicals. The binding affinities
of eight molecules within the ligand-binding pocket are provided in Table 1, and the
information on intermolecular interactions, including hydrogen bonding and hydrophobic
interactions, is provided in Table S3. Chemical details of molecules, including IUPAC and
SMILES, are provided in Table S4.

Table 1. Binding affinity (BA, Kcal/mol) values of 8 selected molecules against viral protein targets.

Mol. ID Mol./Drug Name Mol. Type BA (NiV-F) BA (NiV-G) BA (NiV-N)

ND_nw_193 RSV604 Chemical −8.6 −8.8 −9.0

ND_nw_93 AC1MH6FW Chemical −8.2 −8.3 −8.8

CARS0358 NA Phytochemical −7.9 −8.0 −8.4

CARS0394 NA Phytochemical −7.8 −7.8 −8.9

CARS0456 24-Olefinic sterol Phytochemical −7.8 −8.2 −8.0

pdtdblig00047 Naringin Phytochemical −8 −7.9 −8.4

RASE0125 17-O-Acetyl-nortetraphyllicine Phytochemical −7.8 −7.8 −8.6

As a positive control, molecular docking studies were also performed with the drug
remdesivir (GS-5734). Remdesivir is a nucleotide prodrug that has broad antiviral activity
against viruses from different families and therapeutic efficacy in nonhuman primate
models of lethal Nipah virus infection [63] and is, therefore, likely effective against Nipah
virus infection in humans [53]. Remdesivir was also found to interact with all three
viral proteins but with comparatively low binding affinity. Remdesivir binds to NiV-G
with a binding affinity of −7.5 Kcal/mol, and it binds to NiV-F (−6.6 Kcal/mol) and
Niv-N (−5.6 Kcal/mol) with comparatively poor affinity, which is attributed to weak
intermolecular interactions among remdesivir and proteins.

3.5. Computing ADME Properties for Molecule Prioritization

ADME and pharmacokinetic properties of docking-based prioritized molecules were
computed using the ADMETlab webserver. The pharmacokinetic properties were trans-
formed into z-scores and considered for further molecule prioritization (Table S5). A
positive z-score indicates molecules that have more drug-like properties, and therefore,
molecules were ranked and prioritized based on positive z-scores; this threshold short-
listed a total of three molecules: ND_nw_193 (RSV604), CARS0358 (NA), and RASE0125
(17-O-acetyl-nortetraphyllicine) (Figure 3). Information on ADME-based z-score is pro-
vided in Table 2. The docked conformations of the three molecules into their respective
ligand-binding sites are provided in Figure 4.
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Table 2. ADME-based z-scores for each molecule. Bolds are the top-ranked molecules selected for
molecular dynamics simulations.

Mol. ID Mol./Drug Name Mol. Type

RASE0125 17-O-Acetyl-nortetraphyllicine 1.55

ND_nw_193 RSV604 1.05

CARS0358 NA 0.79

CARS0456 24-Olefinic sterol −1.27

pdtdblig00040 Procyanidin B2 −0.73

CARS0394 NA −0.73

ND_nw_93 AC1MH6FW −0.48

pdtdblig00047 Naringin −0.22

Microorganisms 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

As a positive control, molecular docking studies were also performed with the drug 
remdesivir (GS-5734). Remdesivir is a nucleotide prodrug that has broad antiviral activity 
against viruses from different families and therapeutic efficacy in nonhuman primate 
models of lethal Nipah virus infection [63] and is, therefore, likely effective against Nipah 
virus infection in humans [53]. Remdesivir was also found to interact with all three viral 
proteins but with comparatively low binding affinity. Remdesivir binds to NiV-G with a 
binding affinity of −7.5 Kcal/mol, and it binds to NiV-F (−6.6 Kcal/mol) and Niv-N (−5.6 
Kcal/mol) with comparatively poor affinity, which is attributed to weak intermolecular 
interactions among remdesivir and proteins. 

3.5. Computing ADME Properties for Molecule Prioritization 
ADME and pharmacokinetic properties of docking-based prioritized molecules were 

computed using the ADMETlab webserver. The pharmacokinetic properties were trans-
formed into z-scores and considered for further molecule prioritization (Table S5). A pos-
itive z-score indicates molecules that have more drug-like properties, and therefore, mol-
ecules were ranked and prioritized based on positive z-scores; this threshold shortlisted a 
total of three molecules: ND_nw_193 (RSV604), CARS0358 (NA), and RASE0125 (17-O-
acetyl-nortetraphyllicine) (Figure 3). Information on ADME-based z-score is provided in 
Table 2. The docked conformations of the three molecules into their respective ligand-
binding sites are provided in Figure 4. 

 
Figure 3. Two-dimensional (2D) images of molecules CARS0358 (a), RASE0125 (b), and 
ND_nw_193 (c). 

 
Figure 4. Molecule CARS0358 (blue), RASE0125 (pink), and ND_nw_193 (bisque) docked inside the 
respective ligand-binding sites (red colored) of NiV-F (a), NiV-G (b), and NiV-N (c). 

  

Figure 4. Molecule CARS0358 (blue), RASE0125 (pink), and ND_nw_193 (bisque) docked inside the
respective ligand-binding sites (red colored) of NiV-F (a), NiV-G (b), and NiV-N (c).

3.6. Assessment of Gene Expression Induction by Small Molecules

Drug molecules interact with many off-targets that could lead to various side ef-
fects [64]. In fact, interactions between drug molecules and their targets/off-targets can
often induce changes in expression profiles of many genes/proteins [65] that can either
result in activation, repression, or dysregulation of downstream signaling pathways [66].
Therefore, to prioritize the molecules further, only those molecules were considered that
could lead to dysregulation of expression profiles of a comparatively smaller number
of human proteins. The potential up- and downregulated human protein targets of
molecules—RASE0125, ND_nw_193, CARS0358—were predicted based on their predicted



Microorganisms 2022, 10, 1181 10 of 16

pharmacological activity (Pa (activity probability) > 0.6) using the DIGEP-Pred. It was
observed that molecule RASE0125 could upregulate gene expression of proteins KRT18
(Pa = 0.670) and RAC1 (Pa = 0.621), while it downregulated CHEK1 (Pa = 0.655). Similarly,
ND_nw_193 could only upregulate gene expression of ATG5 (Pa = 0.670). CARS0358 was
not found to be regulating the expression profiles of any of the proteins. Overall, these
three small-molecule inhibitors could induce the expression profiles of only a fewer number
of proteins that could ultimately avoid dysregulation of critically important signaling
pathways, thus reducing the risk of drug-induced severe side effects.

3.7. Molecular Dynamics Simulations

MD simulation presents an approach for the structural refinement of docked com-
plexes [67]. In order to refine and examine the stability of the three selected molecules
(RASE0125, ND_nw_193, and CARS0358), MD simulations of corresponding protein–ligand
complexes, as well as free proteins, were performed for 5 ns. Since remdesivir, the pos-
itive control, was not able to well bind to all of the three viral protein targets, we did
not perform its MD simulations. The stability of complexes was assessed by computing
two main structural parameters: Cα-RMSD and -RMSF. RMSD is a standard measure of
computing structural distance between coordinates and measures the average distance
between a group of atoms. As a control, Cα RMSD values of all free proteins were also
computed. Complexes of molecules RASE0125 and CARS0358 were found to be stable
in all the three viral protein structures and plateaued to average RMSDs of ~0.12 nm,
~0.35 nm, and ~0.12 nm in NiV-G, NiV-F, and NiV-N protein structures (Figure 5). It was
interesting to observe that the docked complexes were more stable than the free proteins.
Apart from protein complexes, the RMSDs of bound molecules were also computed dur-
ing the simulations, and both the molecules were found to be quite stable. The complex
derived from molecule ND_nw_193 was stable in NiV-G and NiV-N and plateaued to an
average RMSD similar to that of RASE0125 and CARS0358. Apart from whole-molecule
RMSDs, RMSDs of bound molecules alone were also computed, which also presented
stable conformations (Figure 5). RMSF, a measure of the displacement of atom(s) relative
to the reference structure, is another measure of structure assessment that captures local
changes in protein structures. As a control, Cα RMSF values of all free proteins were also
computed. Cα RMSF values indicated that the molecules RASE0125 and CARS0358 did
not cause much fluctuations in the amino acids in NiV-G and NiV-N, indicating these to be
not disturbed during ligand binding (Figure 5). Molecule ND_nw_193 also did not cause
fluctuations in NiV-G and NiV-N, but the overall flexibility of the NiV-F protein structure
increased upon ligand binding; these results are also in concordance with the results of
RMSDs. Importantly, none of the critical binding-site residues showed large flexibility. The
high peaks in the RMSF plots indicate fluctuations in loop regions that are comparatively
higher than those in the structured regions due to their inherent structural flexibility.

3.8. Details of Selected Multitarget Molecules

Overall, the molecules RASE0125 and CARS0358 were well capable of binding to
NiV-G, NiV-F, and NiV-N proteins, whereas ND_nw_193 could only bind well to NiV-G
and NiV-N. Both RASE0125 (17-O-Acetyl-nortetraphyllicine) and CARS0358 are indole
alkaloids (phytochemicals), derived from plant Rauvolfia serpentina and Catharanthus roseus,
respectively. Indole alkaloid derivatives are known to inhibit dengue and Zika virus
infection by modulating the virus replication complex [68]. Therefore, we also speculate
that indole alkaloids RASE0125 and CARS0358 might possess the same mode of action on
NiV. Literature search confirmed that these molecules have never been considered even
for antiviral drug discovery. Contrarily, ND_nw_193 (CHEMBL223402) is a chemical drug
RSV604, which is a known inhibitor of human respiratory syncytial virus (RSV) [69].

RASE0125 and CARS0358 established many hydrophobic contacts and H-bonds with
binding-site residues with all three viral protein targets. In NiV-G, RASE0125 established
three hydrophobic contacts with Gln559, whereas CARS0358 established six hydrophobic
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contacts with Gln559, and ND_nw_193 established five hydrophobic contacts with Gln559.
It is interesting to note that Gln559 is the common amino acid residue in NiV-G that binds
to all three molecules. In NiV-N, RASE0125, CARS0358, and ND_nw_193 established 27,
40, and 34 hydrophobic contacts with binding-site residues (Table S3), having residues
Ile31, Val58, Leu128, Phe38, and Arg36 in common. In NiV-F, RASE0125 and CARS0358
established 28 and 22 hydrophobic contacts with binding-site residues (Table S3), having
residues Tyr30, His29, Lys40, Val39, Tyr432, and Leu433 in common. The common binding-
site residues could also be of prime interest to virologists for anti-NiV drug discovery.
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3.9. Principal Component Analysis and Gibbs Free Energy Calculation

To explore the conformational changes docked molecules (RASE0125, ND_nw_193,
and CARS0358) brought into the viral protein structures, PCA was carried out utilizing the
essential dynamics approach. The high fluctuations in residues of proteins are captured
through PCA [70], while variation in GFE values is computed to assess protein stabil-
ity [71,72]. Proteins regulate their functions via entering into different conformations. The
overall conformational change is governed by the collective movements of the atoms in
a protein and this internal motion can be measured using PCA analysis. Therefore, to
study the collective motion of three selected molecules before and after binding with viral
protein targets occupied in the conformational subspace during the simulation, PC1 and
PC2 were computed. FELs deliver a precise portrayal of a protein’s most stable conforma-
tional ensembles, which are certainly important for the study of conformational changes
underlying protein−ligand interactions. The FEL plots were constructed and analyzed
using the first two PCs (eigenvectors). The corresponding free energy contour map with a
deeper blue color indicates lower energy (global minima) and energetically favored protein
conformations, and yellow spots reflect unfavorable conformations [73]. As an example,
we extracted the conformations of docked complexes CARS0358-NiV-G/NiV-F/NiV-N at
different time points and superimposed the respective ligand conformations (Figure 6). In
all of the complexes, minor differences in ligand conformations were observed at each time
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point corresponding to changes in energy basins during the course of the simulation. The
FELs of free proteins and CARS0358-bound proteins (final conformations) are provided in
Figure 6. The FELs of RASE0125 and ND_nw_193 complexes with respective viral proteins
are provided in Figure S1. In all of the FEL plots, free and molecule-bound complexes
had different patterns for the free energies, and protein structures were still able to attain
comparable energetically and structurally stable conformations. FEL analyses suggested
that the presence of small molecules affected the size and the position of the sampled
energy basin to achieve stable equilibriums.
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4. Conclusions

In this study, a sequential molecular docking and molecular dynamics-based approach
was implemented to prospect for potential multitarget chemical/phytochemical inhibitor(s)
against NiV by simultaneously targeting NiV-G, NiV-F, and NiV-N. The study identified
phytochemical molecules RASE0125 (17-O-acetyl-nortetraphyllicine) and CARS0358 (NA),
which are indole alkaloids, as distinct multitarget inhibitors of all three viral proteins,
while chemical molecule ND_nw_193 (RSV604) was revealed to be an inhibitor of NiV-G
and NiV-N.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10061181/s1, Table S1: Information on NiV inhibitors
compiled from the literature, Table S2: ADME and pharmacokinetic properties of NiV inhibitors,
Table S3: Intermolecular interactions among docking-based prioritized molecules and viral proteins,
Table S4: Information on docking-based prioritized molecules, Table S5: The pharmacokinetic proper-
ties and transformed z-scores of docking-based prioritized molecules, Figure S1: Two-dimensional
(2D) graphs of the Gibbs free energy landscape for NiV-F (a), NiV-G (b), and NiV-N (c) (apo- and
docked complexes).
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