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Abstract: Activin, a member of the TGF-β superfamily, is involved in many physiological processes,
such as embryonic development and follicle development, as well as in multiple human diseases
including cancer. Genetic mutations in the activin signaling pathway have been reported in many
cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence
reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter
in the later progression and metastasis of tumors. This article reviews many aspects of activin, includ-
ing the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly
in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain
to be elucidated. Further understanding of the activin signaling pathway may identify potential
therapeutic targets for human cancers and other diseases.

Keywords: activin signaling pathway; ACVR1B (Activin A Receptor Type 1B); pancreatic cancer;
PDAC (pancreatic ductal adenocarcinoma); tumor suppression; context-dependent; TGFβ superfam-
ily; therapeutic target

1. Introduction

Activins are growth factors of the transforming growth factor-β (TGF-β) superfamily.
The TGF-β superfamily proteins are not only involved in embryonic development and
skin morphogenesis, but also hold the key to the development of many human diseases,
including cancers. Activin shares similar structures with other members of the TGF-β
superfamily proteins and has a parallel signaling pathway to transduce signals from the
extracellular compartment into the nucleus. The downstream effects of the activated TGF-β
superfamily signaling pathways lead to switching on or off the expression of the target
genes to regulate cellular responses [1].

In comparison to the TGF-β and bone morphogenesis (BMPs) pathways in the TGF-β
superfamily, activin signaling is less well understood. An aberrant activin signaling path-
way has been found to be associated with several disease conditions, including preterm
labor with delivery, osteoporosis, cancer, and cancer-related cachexia [2–6]. This review
focuses on the activin signaling pathway and its role in tumorigenesis, especially pancre-
atic cancer.

2. Activin and the Regulation of the Activin Signaling Pathway
2.1. Components of the Activin Signaling Pathway

Activin was first discovered from the purification of inhibin and was found to have
an opposing ability to inhibin in regulating the secretion of pituitary follicle-stimulating
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hormone (FSH) in the anterior pituitary [7]. Inhibins are formed from heterodimers of
inhibin α and inhibin β subunits: inhibin A (α: βA) and inhibin B (α: βB). Activin
is a dimeric protein of two inhibin β-subunits, and the dimeric structure of activin is
maintained by a single disulphide bond between the two subunits [8]. There are currently
four known inhibin β subunits (βA, βB, βC, and βE), which can form five types of activin
proteins, activin A (βA: βA), B (βB: βB), C (βC: βC), E (βE: βE), and AB (βA: βB), through
homo- or hetero-dimerization [9]. A-E β-subunits are expressed in different tissues and
organisms [10–12]. The biological activities of activins are mediated by heteromeric receptor
complexes consisting of two different types of receptors: type I and type II. Activin binds
to one of the two type II receptors ACVR2A (Activin A Receptor Type 2A) or ACVR2B
(Activin A Receptor Type 2B), which prompts the recruitment of a type I receptor, such
as ACVR1B (Activin A Receptor Type 1B, also known as activin-like kinase 4, ALK4).
Subsequently, the activated ACVR1B/ALK4 receptor recruits and phosphorylates SMAD2
(SMAD Family Member 2) and SMAD3 (SMAD Family Member 3), which then bind to the
coregulatory SMAD4 (SMAD Family Member 4), and the complexes translocate into the
nucleus where they regulate gene transcriptions [13,14] (Table 1).

Table 1. Components and modulators of the activin signaling pathway.

Pathway Components Signaling Mediators Antagonists

Ligands Activin A Inhibins A and B
Activin B Follistatin
Activin C FLRG
Activin E

Activin AB
Type II receptors ACVR2A Cripto

ACVR2B BAMBI
Betaglycan

Type I receptors ACVR1 InhBP
ACVR1B
ACVR1C

R-Smad SMAD2
SMAD3

Co-Smad SMAD4

2.2. Regulation of the Activin Signaling Pathway

Three type I receptors (ACVR1, ACVR1B, and ACVR1C) have been identified for
activin signaling: ACVR1 (Activin A Receptor Type 1, also known as ALK2) primarily
participates in the BMP signaling pathway [15]; ACVR1B/ALK4 is the major type I receptor
for the activin signaling pathway; while ACVR1C (Activin A Receptor Type 1C, also known
as ALK7) mainly takes part in the nodal signaling pathway [16]. When activated by ligands,
activin type II receptors recruit type I receptors and phosphorylate the GS-box on the cyto-
plasmic domain of the activin type I receptors. The phosphorylated GS-box, in succession,
unblocks and releases the kinase activity of the activin type I receptor kinase domain [17,18].
The open active cleft of the activin type I receptor kinase domain can then phosphorylate
receptor-regulated SMAD (R-SMAD) by its kinase activity. Distinct R-SMADs are recruited
in different TGF-β family signaling pathways: SMAD2 and SMAD3 are involved in the
TGF-β and activin signaling pathways, while SMAD1, SMAD5, and SMAD8 mediate BMP
signaling. Once the signaling pathway is activated, dephosphorylation of these signaling
transducers is a key mechanism to regulate signaling transduction. Protein phosphatase
PPM1A, which was identified to negatively regulate the activin signaling pathway, can
dephosphorylate phospho-SMAD2 and enable SMAD2 to relocate back to the cytoplasm
and terminate signal transduction [19].

Activin bioactivity can be further regulated by various extracellular antagonists such
as inhibins, follistatin, follistatin-related gene (FLRG) [20] and by membrane co-receptors
such as Cripto or BAMBI [21,22]. Whereas structurally-related inhibin antagonizes the
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action of activin by competing against activin for the activin type II receptors, follistatin
and FLRG directly bind to activin with high affinity, thereby preventing activin from
binding to its membrane receptors [23–26]. The β-subunit of inhibin can bind to activin
type II receptors such as activin, but the α-subunit of inhibin is unable to bind and recruit
ACVR1B [27–29]. However, a cellular membrane co-receptor betaglycan, which has high
affinity for inhibin [30], can enhance the ability of inhibin to antagonize activin activity
by forming the complex of inhibin, betaglycan and activin type II receptors [31]. Another
inhibin co-receptor, inhibin-binding protein or InhBP, has been shown to be associated with
ACVR1B/ALK4 but not activin type II receptors. The complexes of inhibin and InhBP can
disrupt the binding of ACVR1B to activin type II receptors (Chapman and Woodruff, 2001).
These inhibin co-receptors regulate ligand binding and the formation of activin receptor
complexes. Follistatin and FLRG modulate activin signaling transduction by two major
mechanisms. First, follistatin can compete with activin receptors through direct binding to
activin in circulation or at the cell membrane and block the formation of ligand and receptor
complexes [32]. Similarly, FLRG can also antagonize activin by binding to activin type II
receptors [33]. Alternatively, the membrane-bound follistatin-288 can internalize activin
by endocytosis and lead to the lysosomal degradation of activin [34,35]. Thus, activin
signaling can be regulated at the levels of ligand binding, receptor complex formation, or
the activation of downstream mediators (Table 1 and Figure 1).
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Figure 1. The activin/TGFβ signaling network in pancreatic cancer. The canonical signaling axis of
the TGF-β superfamily members is Smad4-dependent, while the non-canonical signaling is Smad4-
independent. ACVR1B/ALK4 is the major type I receptor for the activin signaling pathway, while
TGFRB1/ALK5 and ACVR1/ALK2 are the major type I receptors for TGFβ and BMP signaling,
respectively. In the canonical activin signaling, the pathway is activated by the binding of activins to
one of the two type II receptors, ACVR2A or ACVR2B, which then recruit a type 1 receptor, such as
ACVR1B/ALK4. The activated ACVR1B/ALK4 receptor subsequently recruits and phosphorylates
SMAD2 and SMAD3, which then bind to the coregulatory SMAD4, and the complex translocates
into the nucleus where it regulates gene transcriptions. Activin bioactivity can be modulated by
antagonists, such as Follistatin, FLRG (follistatin-related gene), InhBP (inhibin-binding protein), etc.
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3. Functions of Activin Signaling
3.1. Embryogenesis and Hair Follicle Development

During mammalian development, activin has critical roles in the development of face,
whiskers, hair follicles, heart, and digestive tract, which all involve epithelial–mesenchymal
interactions [36]. Conventional activin βA-subunit-deficient mice have no whiskers or
incisors and have defects in mandible, secondary palate, molars, and eyelids. These
knockout mice died within 24 h of birth [2]. Activin-βB-deficient mice were viable but
with defects in eyelid formation; female mice harbored additional flaws in ovary formation.
The compounded phenotypes of mice with double deletion of both βA- and βB-subunits
revealed that these two subunits have distinct functions in development [2]. Mutation in
one of the activin type II receptors led to similar developmental defects as those observed
in activin-βA-deficient mice [37]. Fetuses that lacked both activin type II receptors died in
utero. Mutants with deficiency in activin βA, activin type II receptors, or Smad2 shared
similar tooth malformation [38]. All of these data have unequivocally demonstrated the
importance of the activin signaling pathway in mammalian development.

Activin and follistatin serve as regulators of hair follicles in utero and beyond [36].
In hair follicle development, activin-βA produced by mesenchymal cells can modulate
epithelial cells of hair follicles by binding to activin receptors and inhibiting the develop-
ment of hair follicles. In contrast, follistatin produced by epithelial cells can bind to activin
and counteract the inhibitory effects of activin on hair follicles [39]. Dominant-negative
Acvr1b transgenic mice exhibited delays in the early stage of hair follicle development [40].
Conditional deletion of Acvr1b in mouse skin facilitated by K14-Cre resulted in hair loss
through failure in hair cycle reentry after morphogenesis [41]. The phenotypes of activin-
βA-deficient mice and dominant-negative Acvr1b transgenic mice reveal that activin is
required for vibrissae follicle development but is not essential for pelage hair follicle
development [37,40]. Intriguingly, overexpression of activin-βA in mice led to similar
phenotypes as those observed in the dominant-negative Acvr1b transgenic mice, which
exhibited hair follicle recycling delay during catagen [39,40]. Moreover, the overexpres-
sion of activin-βA can lead to down-regulation of Bmp2 and up-regulation of the Bmp2
inhibitor [39], which are also important in hair follicle recycling [42].

In addition to its importance in hair follicle development and recycling, animal studies
using genetically engineered mice also revealed the importance of activin signaling in
skin morphogenesis. Follistatin knockout pups developed shiny and taut skin due to
hyperactive keratinocytes [43], suggesting that a high concentration of activin has an
effect on keratinocytes [36]. However, overexpression of follistatin or dominant-negative
Acvr1b transgenic mice display phenotypically normal proliferation and differentiation
of keratinocytes [40,44]. The low activin in keratinocytes of adult skin has no significant
effect in proliferation and differentiation, which might be compensated for by TGF-β, while
embryonic and newborn skin would be more susceptible to dysregulated expression of
activin. Activin secreted by dermis fibroblasts tends to inhibit proliferation of keratinocytes,
but follistatin produced by keratinocytes can counterblock this suppression by binding to
activin. These interactions between activin and follistatin play a key role in wound healing;
hence, mice with overexpression of follistatin have problems with delayed scar formation,
closure of wounds, and small scar areas, but mice with overexpression of activin-βA have
faster wound repair capability [44].

Activin also controls cellular growth and developmental differentiation of many other
cell types [45,46]. For instance, activin βB knockout mice developed defective ductal glands
and lobuloalveolar buds [47], suggesting that activin is a critical regulator in mammary
gland development [48]. Activin βA deficient mice died before mammary gland develop-
ment due to palate malformations [2]. Dysregulation in activin signaling can also result
in abnormalities in female reproduction capabilities [49,50]. Activin receptor signaling is
required for the majority of myelin generation in development and following injury, and
dysregulated activin receptor signaling contributes to diseases of myelin disorders [51].
Activin signaling has multifaceted activities throughout mammalian development.
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3.2. Cell Proliferation, Cell Cycle Arrest, and Apoptosis

Similar to the TGF-β signaling pathway, activation of the activin signaling axis is
anti-proliferative in certain cell types [52]. Activin, by stimulating the expressions of p21
and p27 CDK inhibitors, is anti-proliferative and induces G1 phase cell cycle arrest, which
are mediated with the involvement of pRb, cyclins, CDKs, and/or p53 as reported pre-
viously [45,53–59]. Activin can also induce programmed cell death, namely apoptosis,
as an alternative means to restrain cell growth. Activin treatment was found to increase
apoptosis of LNCaP cells by up-regulating p53 and down-regulating anti-apoptotic protein
Bcl-2 [60]. In hematopoietic cells, activin-mediated apoptosis was dependent on SMAD-
induced expression of inositol phosphatase SHIP (Src homology 2 domain-containing
inositol phosphatase). Activin/SMAD-induced SHIP expression resulted in altered phos-
pholipid metabolism, the inhibition of Akt/PKB phosphorylation, and cell death [61].
Activin-mediated arrest of cell proliferation and cell cycle through non-SMAD signal-
ing pathways, such as the PI3K/AKT and MARK/p38/JNK pathways, have also been
reported [59,62].

3.3. Tumor Suppression

Canonical activin signaling shares the same SMAD mediators with TGF-β, which is a
well-known inhibitor of epithelial cell proliferation. These SMAD mediators are also known
to regulate tumorigenesis in many aspects such as cell proliferation, cell cycle, and apopto-
sis. Therefore, perhaps it not a surprise that activin is deemed antitumorigenic and can
inhibit proliferation and stimulate apoptosis in cancer cells as described above [52,58–61].
Consistent with this notion, inactivating genetic mutations of various components within
the activin signaling pathway have been reported in cancers, presumably as a common
mechanism for tumor cells to escape activin-mediated growth inhibition. Somatic biallelic
inactivation of ACVR1B has been reported in pancreatic cancer [63,64]. Two 8-bp polyade-
nine tracts of the ACVR2 gene are frequent targets of inactivating frameshift mutations in
gastrointestinal tumors with microsatellite instability (MSI) [65–67]. In addition, biallelic in-
activation of ACVR2 in non-MSI cancer cells has also been reported for prostate cancer [67].
The truncated ACVR2 protein resulting from the frameshift mutation has been demon-
strated to have significant functional deficiency on activin signaling transduction [67].
Restoration of ACVR2 expression in MSI+ colorectal cancers with ACVR2 mutation ex-
hibited growth inhibition but increased cell migration [68]. This biological evidence in
support of the genetic studies, further cemented the tumor-suppressive role of activin
signaling in tumorigenesis. Mutational inactivation of downstream mediators of the activin
signaling axis that overlap with TGF-β, such as the SMAD2/3/4 [69–74], has been well-
documented in many cancer types, providing further genetic support that activin/TGF-β
signaling axes are tumor-suppressive and are selectively inactivated genetically during
tumor clonal evolution.

Epigenetic dysregulation of the activin signaling pathway has also been described and
is more prevalent among human cancers than are the genetic events. Downregulated ex-
pressions of activin type II receptors ACVR1B, and SMAD4 were observed in ER-negative
breast cancer cell lines [75]. Activin inhibitors, both follistatin and FLRG, were overex-
pressed in carcinoma compared to that of adjacent normal tissues in breast cancer and
hepatocellular carcinoma [76–78]. Follistatin was identified as one of the bone metastasis
signature genes in breast cancer [79]. Silencing of FLRG by siRNA inhibited the cell growth
of human breast tumors [33].

Biologically, activin-induced growth suppression and cell death were shown to be de-
pendent on p21 in colon cancer [80]. It has also been demonstrated that activin could exert
its tumor suppression via the inhibition of telomerase activity and the expression of the
hTERT gene in human breast cancer and cervical cancer cell lines [81]. Telomerase activity
is one of the key mechanisms that are often hijacked by tumor cells to gain immortality.
Because concomitant increase of SMAD3 activation and decrease of the hTERT promoter
activity were observed, it was postulated that activin-induced repression of the hTERT
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gene was mediated by SMAD3-dependent regulation of the hTERT promoter activity in
this context [81].

Alternative mechanisms may also be involved in activin-induced tumor-suppression.
For instance, activin can increase the expression of a neural cell adhesion molecule (NCAM),
and NCAM was found to attenuate tumor cell invasiveness in human breast cancer cell
lines [82,83]. However, a direct link between activin and NCAM remains to be established.
Angiogenesis is another feature of tumorigenesis that may also be regulated by activin
signaling. Angiogenesis is not only important for supplying nutrients to tumor cells, but
also a means by which tumor cells can metastasize. Treating neuroblastoma xenografts
with activin A led to reduced tumor growth and decreased vascularity of the xenografted
tumors. It was proposed that activin inhibited the growth of vascular endothelial cells
by reducing the expression of vascular endothelial growth factor receptor-2, which is an
important receptor for angiogenesis [84,85].

Given the paramount genetic and biological evidence, it is unequivocal that the activin
signaling pathway possesses tumor-suppressive functions in cancer development and
progression. However, similar to TGF-β signaling, which is well-known for its dual role in
tumor promotion and suppression [1], activin signaling can be exploited by cancer cells for
their growth advantage paradoxically, despite its evident role in tumor suppression.

3.4. Tumor Progression and Metastasis

Overexpression of activin A was detected in the majority of the patients with granulosa
cell tumors [86] and almost all of the ovarian mucinous carcinomas except epithelial
tumors [87], esophageal [88], and colorectal carcinomas [89,90]. Expressions of activins
and components of its signal transduction were also detected in normal and cancer breast
tissues [91,92]. The deregulation of activin signaling correlated strongly with increasing
breast cancer grade [93,94]. Higher levels of activin were also detected in the sera of patients
with breast cancer compared to that of the normal controls [95]. Elevated activins were also
detected in breast cancer patients with metastasis or in their tumor tissues [96–98]. These
data indicate that activin signaling may also function as an oncogene in human cancers.

Functional studies showed that activin could increase tumor growth in mammary
carcinoma cells, but inhibited angiogenesis in comparison to follistatin-expressed cells [57].
Exogenous overexpression of activin in human esophageal carcinoma cell lines induced
increased tumor proliferation and progressive phenotypes [99]. Consistent to this, activin
was reported to enhance esophageal tumor malignancy via the upregulation of N-cadherin
and MMP7 (matrix metalloproteinases 7) [99–101]. In hepatocellular carcinoma, activin was
found to stimulate the expression of VEGF in a Sp1-dependent manner [102]. Mice with
both inhibin α- and ActRIIA-deficiency developed tumors without the cancer cachexia,
which had been previously reported in inhibin α-deficient mice [103].

The mechanisms by which activin signaling enhances the later stage of cancer pro-
gression are not yet conclusive. Activin signaling is capable of directly modulating the
cancer cells and their malignancy. It is reported that breast cancer cells become resistant
to activin inhibition as they gradually lose estrogen receptor expression and become less
differentiated [75]. This growing resistance to activin may be due to the inherent increased
malignancy of ER-negative breast cancer cells compared with that of ER-positive cells, or
because activin and estrogen can antagonize each other’s biological activities in human
breast cancer cells [104]. In the breast cancer cell lines, the conversion from non-invasive
epithelial-like CD44+CD24+ cells to invasive mesenchymal CD44+CD24− progeny was also
found to be activin/nodal-dependent [105]. The epithelial-mesenchymal transition (EMT)
is widely recognized as a molecular mechanism involved in the migration and metastasis
of cancer cells. TGF-β is the canonical inducer of EMT in human cancers through the
downregulation of cell adhesive molecule E-cadherin and upregulation of matrix metal-
loproteinases (MMPs). Activins were observed to induce EMT and invasion in ovarian
cancer and colon cancer [106,107]. In primary colon cancer, activin induced EMT via PI3K
activation in a Smad4-independent manner [107].
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Moreover, activin may influence the metastatic process indirectly by altering the tumor
microenvironment (TME). It was shown previously that the switch of TGF-β in breast
cancer from a tumor-suppressive role to a tumor promoting one was due to the recruit-
ment of myeloid-derived suppressor cells (MDSCs) into the TME [108]. The disruption of
Tgfbr2 signaling in cancer cells resulted in increased chemokine signals SDF-1/CXCR4 and
CXCL5/CXCR2 that enhanced MDSC infiltration into tumors, which led to the promotion
of tumor invasion and metastasis [108]. Activins have been shown to affect cell-mediated
immunity by modulating monocyte chemotaxis, monocyte migration, and cytokine pro-
duction [109–111]. Therefore, it is conceivable that activin signaling may play a similar
role in the TME as that of TGF-β. Recently Cangkrama et al. demonstrated that activin
A secreted by tumor cells can activate pro-tumorigenic cancer associated fibroblasts in
non-melanoma skin cancer [112]. Bauer et al. reported that activin A secreted by stromal
cells can induce migration and EMT in colorectal cancer cells [113]. In essence, activin
signaling can stimulate cancer growth via its direct or indirect activities in the tumor cell
compartment and involves crosstalk between tumor cells and the TME.

4. Targeting Activin Signaling Pathway in Pancreatic Cancer
4.1. Activin Signaling and the Development of the Pancreas

During mouse embryogenesis, a nascent dorsal pancreatic bud begins to develop
out of the foregut endoderm around E8.5–E9.5, followed by the development of paired
ventral pancreatic buds at E10. Activin signaling plays a direct inductive role in the early
foregut patterning and pancreatic formation in mice [114]. Studies using knockout and
transgenic mouse models have demonstrated that the activin family hormones promote
commitment to the pancreatic fate and favor the development of endocrine progenitor
cells [115–117]. Inhibition of activin signaling during embryogenesis resulted in a decreased
number of endocrine progenitor cells, hypoplastic islets, and reduced differentiated β-
cells that persisted into adulthood [114,117]. Studies using explant cultures or pancreatic
regeneration models found that activins negatively regulated exocrine cells and favored
the expansion of endocrine lineages [118–120], indicating that activins extend their actions
from pancreatic development into regulation of adult pancreatic homeostasis. Within
a regenerating adult pancreas, activins specifically inhibit the expansion of immature
pancreatic cells and promote terminal differentiation [118]. It is suggested that activins may
act similarly during early pancreatic tumorigenesis, promoting terminal differentiation of
progenitor cells, inhibiting the expansion of the epithelial compartment, and suppressing
the growth of progenitor-like tumor cells.

4.2. Dual Roles of Activin Signaling in Pancreatic Tumorigenesis

Genetic studies of human pancreatic ductal adenocarcinoma (PDAC) depict a tu-
mor suppressive role for the activin signaling pathway. Both biallelic inactivation of
ACVR1B/ALK4 and the loss of ACVR1B expression were detected in human PDAC cell
lines and patient specimens [63,64] (Table 1). Biallelic inactivation of ACVR2A were found
in MSI+ PDAC at a high frequency, albeit MSI+ PDAC are rare [66]. Biallelic inactivation of
ACVR2A was also detected in one MSI−PDAC in the same study [66]. The downstream me-
diator of the activin/TGFβ signaling axes, SMAD4, is one of the most frequently inactivated
tumor-suppressor genes via PDAC [69,121]. Multiple whole-genome analyses of resected
PDACs confirmed that activin/TGFβ is one of the core signaling pathways frequently dis-
rupted in PDAC (47–100%) [122,123]. Interrogations of the Cancer Genome Atlas (TCGA)
databases using the cBioPortal for Cancer Genomics also revealed major mutations and
deletions in the activin/TGF signaling axes (deep deletion and truncating mutations >>
amplification of unknown significance) (Table 2 and Figure 2) [119,122,123], indicating that
inactivating alterations in these genes (ACVR1B, ACVR2A, ACVR2B, SMAD2, SMAD3,
SMAD4, TGFBR1, TGFBR2) offer selection advantages in pancreatic tumor clonal evolution.
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Table 2. Genomic alterations of the activin/TGFβ signaling axes in PDAC.

Gene Gene Locations Frequency (%) Alterations

Mutation Frequency Reported in Publications

ACVR1B/ALK4 12q13.13 2–21 Mutation and deletion [63,64]
ACVR2A/ACVR2 2q22.3–q23.1 4 (86%/MSI+) Mutation and deletion [66]

SMAD4/DPC4 18q21 32–55 Mutation and deletion [69,121]
TGFBR1/ALK5 9q22.33 1 Deletion [124]
MSI−/TGFBR2 3p24.1 3–5 Deletion [121,124]
MSI+/TGFBR2 3p24.1 3 Mutation [124]

Mutation frequency available in The Cancer Genome Atlas (TCGA) via the cBioPortal [125,126]
ACVR1B/ALK4 12q13.13 2.8 Mutation > deletion > amplification

ACVR2A/ACVR2 2q22.3–q23.1 2.5 Mutation > amplification > deletion
ACVR2B/ACTRIIB 3p22.2 0.8 Deletion > amplification > mutation

SMAD4/DPC4 18q21.2 27 Mutation > deletion
SMAD2 18q21.1 4 Deletion > mutation
SMAD3 15q22.33 1.7 Mutation > amplification

TGFBR1/ALK5 9q22.33 2.7 Mutation > deletion > amplification
TGFBR2 3p24.1 5.3 Mutation > deletion > amplification

MSI, microsatellite instability.
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Consistent with the implications of the genetic evidence, we and others have shown
that conditional Acvr1b knockout in the pancreases of mice synergized with oncogenic
Kras induced pancreatic tumorigenesis [127,128], providing functional evidence that inac-
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tivation of the activin signaling pathway in the epithelial compartment promotes tumor
development in the early stages of pancreatic tumorigenesis. Zhao et al. reported that
activin A is upregulated in oncogenic Kras-induced acinar-to-ductal metaplasia (ADM) and
precancerous lesions PanINs (pancreatic intraepithelial neoplasia) in mice. Intriguingly,
treatment with sActRIIB-Fc to neutralize activin A was sufficient to accelerate the progres-
sion of oncogenic Kras-induced ADM to PanINs in mice [128], suggesting that upregulation
of activin A and the activation of activin signaling are reactive to oncogenic Kras and serve
as one of the first defense mechanisms against cell transformation to the tumorigenic state.
In the absence of oncogenic Kras, the inactivation of Acvr1b alone in the pancreatic exocrine
cells also led to elevated activin A levels in the pancreas, resulting in inflammation and
the development of ADM and PanINs [127]. It remains to be further elucidated if under
this circumstance (without an oncogene-driven initiation), the development of ADM and
PanINs was a direct result of dysregulated activin signaling in the exocrine lineage or an
indirect effect of an inflammatory TME.

While the activin/nodal signaling pathway is mostly inactive in adult tissues, overex-
pression of activins, their receptors, and the nodal co-receptor cripto-1 have been reported
in pancreatic cancer [129–132], suggesting an oncogenic role for the pathway. Systemic
plasma activin levels were found to be associated with metastasis and prognosis in human
pancreatic cancer [62]. Functional activation and overexpression of the components of the
activin/nodal signaling pathway including Nodal, Cripto-1, FoxH1, Smad2, Smad4, Gdf1,
activin, and ACVR1B were detected in primary pancreatic cancer stem cells (CSC) [133].
Since the presence of CSCs has been proposed as the major cause for chemotherapy and
radiotherapy resistance, Lonardo et al. investigated if the abrogation of the activin/nodal
signaling axis was sufficient to modulate the self-renewal and tumorigenicity of pancreatic
CSCs. They reported that treatment with the small molecular inhibitor SB431542 against
TGF type I receptors (ALK4/5/7) could mitigate the sphere formation of pancreatic CSCs
in a dose-dependent manner. Using recombinant lefty as the specific endogenous nodal
inhibitor or knockdown Nodal, ACVR1B, and Smad4 also decreased the sphere formation
capacity [133]. Therapeutic inhibition of the activin signaling pathway in pancreatic CSCs
is potentially attractive and may be advantageous over targeting other developmental
pathways (i.e., Sonic Hedgehog) because the normal pancreas and other adult tissues
completely lack activin signaling activity; therefore, they may be spared from drug-related
side effects [129]. Mancinelli et al. reported that pancreatic stellate cells (PSC) secreted high
levels of activin A, which promoted PDAC cell migration. While treating PDAC-bearing
mice with an activin A neutralizing antibody did not decrease the primary tumor burden,
it significantly reduced tumor metastasis [132], further supporting a tumor-promoting role
for activin A in late pancreatic tumorigenesis and the potential benefits of targeting activin
signaling in preventing PDAC metastasis.

These accumulative evidence supports a working model in which activin signaling
plays a dual role in pancreatic tumorigenesis as a tumor-suppressor in the early stage and a
tumor-promoter in the advanced stage. While the tumor suppressive function of the activin
signaling pathway is considered to be executed in a canonical Smad-dependent manner,
the tumor promoting role of activin signaling in pancreatic cancer may be via the non-
Smad-dependent pathways such as MAPK/JNK and PI3K/AKT [62] (Figure 1). Perhaps
because the function of the activin signaling pathway in pancreatic tumor development
and progression is complex and context-dependent, the genetic alterations in the activin
signaling pathway do not significantly correlate with survival in PDAC patients (Figure 2C).
However, high expression of activin A in the stroma of PDAC has been reported to correlate
with reduced survival for PDAC patients [132]. Therefore, it is conceivable that the stromal
component also contributes to the complexity of the differential roles of activin signaling
in early vs. late pancreatic tumorigenesis.

Overexpressing follistatin in small cell lung cancer cells has proven to decrease
multiple-organ metastasis in an NK cell-depleted SCID mouse model [134,135]. Novel
activin antagonists, NUCC-474 and NUCC-555, identified by in silico high throughput
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screening have been shown to inhibit activin A-mediated cell proliferation in ex vivo
ovary cultures [136]. Activin A is an autocrine activator of PSCs and abrogation of activin
signaling with follistatin has been suggested as a therapeutic strategy to reduce pancreatic
fibrosis [137]. Activin A expression in PDAC was found to correlate with increased cachexia
severity, and systemic blockade of activin signaling could preserve muscle and prolong
survival in mice [138]. As described above, a pan-TGF type I receptor inhibitor, SB431542,
was effective in mitigating the sphere formation of pancreatic CSCs in a dose-dependent
manner [133]. Neutralizing activin A secretion by PSCs significantly reduced tumor metas-
tasis in a PDAC mouse model [132]. Together, these data suggest that activin antagonists
may have therapeutic value in advanced pancreatic cancer (i.e., metastatic PDAC). How-
ever, given the role of activin signaling in pancreatic regeneration and homeostasis [118]
and its unequivocal tumor-suppressive function in early tumorigenesis [127,128], negative
regulation of activins may lead to unintended consequences and expansion of epithelial
cells and/or precancerous lesions in the pancreas. Therefore, the efficacy of these inhibitors
should be comprehensively evaluated with abundant caution in preclinical studies.

5. Conclusions

A multitude of genomic studies have shown that activin/TGFβ is one of the core
signaling pathways frequently disrupted in PDAC. Increasing evidence supports that,
similar to TGF-β, activin signaling plays a tumor-suppressive role in the early stage of
pancreatic tumorigenesis, but switches to be a promoter in invasive pancreatic cancer. It has
been challenging to dissect the complex networks involving multiple protein interactions
and numerous cross-talking pathways, such as the activin signaling pathway described
here, in tumorigenesis or other cellular processes. However, as emerging techniques
become available, it is hoped that we will be able to unveil the complexity of the activin
signaling pathway gradually, to differentiate its tumor-suppressive capabilities from its
tumor-promoting functions. Personalized medicine represents the future of medicine
where ligands, receptors, and mediators of activin signaling have the potential of becoming
feasible targets for future therapies.
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