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Deep Learning Signal Discrimination for Improved
Sensitivity at High Specificity for CMOS

Intraoperative Probes
Joshua Moo , Paul Marsden , Kunal Vyas , and Andrew J. Reader

Abstract—The challenge in delineating the boundary between
cancerous and healthy tissue during cancer resection surgeries
can be addressed with the use of intraoperative probes to detect
cancer cells labeled with radiotracers to facilitate excision. In
this study, deep learning algorithms for background gamma ray
signal rejection were explored for an intraoperative probe utiliz-
ing CMOS monolithic active pixel sensors optimized toward the
detection of internal conversion electrons from 99mTc. Two meth-
ods utilizing convolutional neural networks (CNNs) were explored
for beta-gamma discrimination: 1) classification of event clusters
isolated from the sensor array outputs (SAOs) from the probe
and 2) semantic segmentation of event clusters within an acqui-
sition frame of an SAO which provides spatial information on
the classification. The feasibility of the methods in this study
was explored with several radionuclides including 14C, 57Co,
and 99mTc. Overall, the classification deep network is able to
achieve an improved area under the curve (AUC) of the receiver
operating characteristic (ROC), giving 0.93 for 14C beta and
99mTc gamma clusters, compared to 0.88 for a more conven-
tional feature-based discriminator. Further optimization of the
lower left region of the ROC by using a customized AUC loss
function during training led to an improvement of 31% in sen-
sitivity at low false positive rates compared to the conventional
method. The segmentation deep network is able to achieve a mean
dice score of 0.93. Through the direct comparison of all methods,
the classification method was found to have a better performance
in terms of the AUC.

Index Terms—Cancer surgeries, CMOS, convolutional neural
network (CNN), internal conversion (IC) electrons, intraoperative
beta probes.

I. INTRODUCTION

ONE OF the main challenges faced in cancer resection
surgeries is the difficulty in delineating the boundary
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between cancerous and healthy tissue, leading to suboptimal
surgical outcomes due to the overestimation of the extent of
tumor margins in order to achieve complete tumor removal,
which inadvertently causes the excessive removal of healthy
tissue. On the other hand, in cases where tumor excision
is incomplete, subsequent resection operations and extensive
postoperative adjuvant radiotherapy are required which in turn
will reduce patient survival rates [1]. Current margin evalu-
ation methods involve the pathological analysis of biopsies
taken during surgery, where the results can take up to weeks
to be able to inform if re-excision is required [2]. Therefore,
there is a need for the real-time detection of cancerous tissue
during surgery which can be achieved through intraoperative
technology.

Optical image-guided cancer surgery which involves the
detection of photons emitted by tumor-specific fluorescence
agents was also presented as a solution for real-time tumor
margin delineation. However, the need for the development
of these tumor-specific agents has limited clinical adoption
due to: 1) the efficiency of the agents in being able to reach
and remain at the target location; 2) degradation in signal
localization due to absorption and scattering of light in tis-
sue; and 3) lack of financial incentives for the production of
these agents for diagnostic purposes [3].

The use of gamma and beta emitting radiopharmaceuticals
which accumulates within cancer cells in conjunction with
intraoperative probes presents a potential solution for tumor
localization during surgery. Initially, several gamma sensitive
intraoperative probes were designed to target γ emitting radio-
tracers due to the large range of gamma rays in tissue, which
allows the detection of tumors that are located deep under the
tissue surface. However, these attempts were found to be sub-
optimal due to the susceptibility of the gamma probes to the
highly penetrating gamma rays from distant organs due to the
nonspecific uptake of the radiotracer, degrading the tumor-to-
background signal ratio which leads to the ambiguity of tumor
location [4], [5].

Research interests have then shifted toward beta sensi-
tive intraoperative probes due to the short range of electrons
and positrons in tissue, which presents as an advantage over
gamma probes since signal is detected only when placed in
close proximity to the source. Moreover, the effects asso-
ciated with the nonspecific radiotracer uptake are dimin-
ished due to lower signal interference from distant sources,
which improves the spatial selectivity of the probe [6], [7].
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Several beta intraoperative probes have been proposed with
designs that are optimized toward the rejection of back-
ground gamma rays by subtraction or coincidence detection
through the implementation of multiple detectors within a sin-
gle probe which imposes physical limitations on the design
of the probe [6], [8], [9]. For example, Yamamoto et al. [9]
proposed a beta intraoperative probe involving a phoswich
detector composed of a plastic scintillator and a high Z scin-
tillator, bismuth germanate (BGO). The probe employs pulse
shape discrimination for positron detection and rejection of
background gamma events through coincident detection of
a positron and one of its corresponding 511-keV annihila-
tion photons in conjunction with the different decay times of
the scintillators. Therefore, the discrimination method is only
restricted to 18F-fluorodeoxyglucose (FDG) guided surgeries.
On top of that, shielding of the probe is required to reduce
the susceptibility to background gamma rays which would
inadvertently compromise the sensitivity of the probe for
positrons.

Using CMOS sensors for the detection of ionizing radi-
ation have been investigated in [10], and more specifically
beta emissions in [11]. These studies have shown the fea-
sibility of using CMOS sensors for the detection of β−
emissions from 90Sr and 90Y (pure β− emitting sources)
phantoms under realistic clinical conditions through the imple-
mentation of a clustering algorithm for event detection, which
considers a neighborhood of pixels around high intensity
seed pixels. Although the sensitive (epitaxial) layer of CMOS
sensors is generally sufficiently thin (orders of a few microm-
eters) to ensure low gamma ray interaction probabilities, there
is still a finite detection efficiency which means there will
be background gamma ray signal contamination. Therefore,
there is still a need for the active rejection of background
gamma ray of lower energies through the analysis of the
event clusters detected by the CMOS sensor. The use of con-
volutional neural networks (CNNs): 1) utilizes their ability
to learn and extract appropriate features from training exam-
ples for the specific classification of beta and gamma clusters
and 2) obviates the need for hand-crafted features which
relies on the incorrect assumption that such features are
able to capture all relevant information for the classification
task [12].

In this study, two deep learning architectures for background
gamma ray rejection are proposed for an intraoperative probe
utilizing CMOS monolithic active pixel sensors optimized
toward the detection of internal conversion (IC) electrons from
99mTc, which is more readily available and cost effective. On
top of that, 99mTc also has a longer half-life of 6 h which
allows for more flexible scheduling of surgeries. The charge
distribution over several detector pixels caused by the emis-
sions can be isolated (Fig. 1) and the rejection of gamma signal
is possible with only a single detector if discrimination
between gamma and beta clusters can be achieved. Therefore,
methods utilizing CNNs were explored for beta–gamma dis-
crimination: 1) classification of event clusters isolated from the
sensor array outputs (SAOs) and 2) semantic segmentation of
event clusters within each SAO acquisition frame.

Fig. 1. (a) Example of beta cluster from 14 C and (b) gamma cluster from
99mTc. The event clusters are cropped based on the size of their bounding
box and zero padded.

Fig. 2. Prototype CMOS intraoperative probe developed by lightpoint
medical.

II. METHODS AND MATERIALS

A. Detector

A prototype intraoperative probe (Fig. 2) developed by
Lightpoint Medical utilizes a CMOS sensor (480 × 640 pixels,
pixel size 6 μm × 6 μm, and a sensitive area of 3.84 mm ×
2.99 mm). The thickness of the sensitive layer, which is the
epitaxial layer of the CMOS sensor is approximately 4 μm
(a similar model was used in [11]) and is capable of achiev-
ing 60 frames/s. The detection efficiency of a CMOS sensor
with a similar sensitive layer thickness is reported to be 2%
for gamma rays with energies higher than 20 keV [11]. The
probe is connected to a PC via USB for image acquisition,
transmission, processing, and analysis. To account for the dark
current or electronic noise of each pixel, several blank frames
are initially acquired to obtain an average dark image which
is then subtracted from each image acquired in the presence
of a radioactive source.
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TABLE I
LIST OF EMISSIONS FOR RADIONUCLIDES USED

B. Sources and Cluster Detection

A labeled dataset, where the identity of the clusters is
known, is required for training the CNNs for beta–gamma dis-
crimination. Therefore, SAOs from pure β− (14C) and γ

(57Co) emitting radionuclides were obtained which allows the
clusters to be identified. SAOs containing only 99mTc gam-
mas were acquired by using a 2-mm PMMA film to shield
against IC electrons. The emission types and probabilities of
the radionuclides used in this study are shown in Table I.
β− clusters from 14C was used as a surrogate for 99mTc IC
electrons due to their similar emission energies.

A threshold is applied to the dark current-corrected
image which results in a binary image containing the clus-
ters. Connected components labeling (8-connectivity) is then
applied to the binary image which allows the position and
bounding box size of each event cluster within a frame to
be determined. Using this information, the clusters are iso-
lated from the original dark current-corrected image which is
then saved to form a dictionary. SAOs with 14C were used to
generate a beta cluster dictionary, whereas SAOs from 57Co
and 99mTc with PMMA were used to generate the respective
gamma cluster dictionaries. Overall, 123 107 14C beta clusters,
20 359 57Co gamma clusters, and 9887 99mTc gamma clusters
were obtained.

C. Classification (Models C1 and C2)

The individual clusters in the dictionaries were initially zero
padded to an image patch of 24 × 24 pixels in order to account
for the variable cluster size which allows for a consistent input
to the network. The clusters patches were also normalized
to values between 0 and 1. The overall model architecture
(Fig. 3) consists of three convolutional layers with kernels of
size 3 × 3, followed by a rectified linear unit (ReLU, a com-
monly used nonlinear activation function which sets negative
values to zero while retaining all positive values [13]) activa-
tion at each layer. Each convolutional layer is also followed by
a max pooling layer with 2 × 2 kernel size for feature dimen-
sion reduction. The filter maps after these feature extraction
operations are then flattened to provide a 1-D feature vector
to 4 fully connected layers with 128, 64, 32, and 2 nodes,
respectively. A softmax activation (which normalizes a vector
into a probability distribution [14]) is applied at the output
layer to provide a probabilistic score for each class and the

Fig. 3. Model architecture for classification of beta and gamma clusters.

loss function used is the categorical cross-entropy (CE)

CE = − 1

N

N∑

n=1

C∑

c=1

yn,clogpn,c (1)

which is calculated between the output prediction, p, and one-
hot encoded ground truth, y, across the number of samples, N,
and the number of classes, C. The classification architecture is
adapted from LeNet-5 [12] which was originally designed for
handwriting recognition. Given that there are only two classes
for this application, the number of layers and channels was
reduced from the original LeNet-5 architecture to the facilitate
training time. 60% of the total clusters were used for training,
20% for validation, and 20% for testing. Model C1 is trained
and tested with 14C beta and 57Co gamma clusters and model
C2 is trained and tested with 14C beta and 99mTc gamma clus-
ters. The reason for training the two different models is to
evaluate the ability of the network to discriminate between
beta and gamma clusters from pure sources as well as when
99mTc is used, which is the radiotracer of interest in this appli-
cation. Due to the difficulty in obtaining SAOs containing only
IC electrons from 99mTc, the beta clusters from 14C were used
in model C2 since the energies of these betas are comparable
to the IC electrons. A receiver operating characteristic (ROC)
curve was generated for both models where the true positive
rate (TPR) is plotted against the false positive rate (FPR).
The positive class in the ROC curves corresponds to the
beta class.

The area under the ROC curves (AUCs) is used as a mea-
surement for the performance of the classifiers, where an AUC
of 1 corresponds to a perfect classifier. The AUC of the models
were also compared to a feature-based lookup table classi-
fier developed by Lightpoint Medical which is implemented in
MATLAB (The Mathworks, Inc.). Initially, 2-D histograms for
beta [Fig. 4(a)] and gamma [Fig. 4(b)] clusters based on their
mean intensity and area (the product of which is proportional
to the total energy deposited) were generated, which are then
normalized by the total number of events to give a probabil-
ity distribution. The beta-events histogram is divided by the
gamma-events histogram to obtain a selectivity map, where
the lookup table [Fig. 4(c)] can be generated such that clus-
ters that fit into regions on the map that shows selectivity
above a threshold will be classified as betas. 14C beta and
99mTc gamma clusters were also tested on model C1 to eval-
uate the possibility of applying transfer learning during the
training process such that a model trained on pure beta and
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Fig. 4. 2-D histograms of mean intensity and area of (a) beta
and (b) gamma events. (c) Lookup table generated from both histograms.

gamma emitting sources is able to distinguish between gamma
and IC electron signals from 99mTc.

In this application, misclassifying gamma clusters as
beta clusters would falsely indicate the presence of cancerous

tissue within the region of interest. Therefore, the cost of false
positives is higher than false negatives which means a deci-
sion threshold will be selected such that the classifiers will be
operating at a low FPR or high specificity. Given that the CE
loss function does not take into account these misclassification
costs during training, there is a need for further optimization
of the classifier operating at high specificity, which corre-
sponds to the lower left region of the ROC curve. Therefore,
an alternative loss function which utilizes the equivalency of
the Wilcoxon-Mann-Whitney (WMW) statistic and the AUC
was used to train the model to directly maximize the AUC
of the lower left region of the ROC curve [15]. The WMW
statistic is approximated by the differentiable function

R
(
xi, yj

) =
{(−(

xi − yj − γ
))p

, xi − yj < γ

0, otherwise
(2)

where xi and yj are the probabilistic scores for the positive
and negative class, respectively. The hyperparameters γ and
p are set to 0.7 and 2, respectively, which corresponds to the
optimal values determined through grid search in [15]. The
loss function L1 can then be formulated as

L1 =
m∑

i=1

n∑

j=1

R
(
xi, yj

)
(3)

where m and n are the number of positive and negative sam-
ples, respectively. Positive samples with scores that are higher
than negative samples by a margin γ have no contribution to
the loss function. The loss function can then be extended to
focus on the lower left region of the ROC curve by mapping
the probabilistic scores s obtained from the final softmax layer
of the classification network function

f (s) =
{

(s − μs)
α, s > μs

0, otherwise
(4)

where μs is the mean of the probabilistic scores and the hyper-
parameter α is set to 1.1, which is again found to be optimal
through grid search. Thus, the network is then trained using
the loss function L2

L2 =
m∑

i=1

n∑

j=1

R
(
f (xi), f (yj)

)
(5)

where training is only focused on samples with scores higher
than the mean score. This concept of explicitly selecting
data that is within the region of interest on the ROC curve
for training is also demonstrated in [16]. In this case, clusters
assigned with a high probabilistic score by the network are
either easily identifiable beta clusters or difficult gamma clus-
ters. Learning to distinguish between these clusters would
contribute the most to improving the AUC at the lower left
region of the ROC.

D. Segmentation (Models S1 and S2)

Semantic segmentation was also explored as a method to
directly label the beta and gamma clusters within an acquisi-
tion frame of an SAO in one step by assigning a class label to
each pixel. The lack of ground-truth SAOs containing both
beta and gamma clusters motivated the synthesis of SAOs
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Fig. 5. Model architecture for semantic segmentation. A frame of the SAO is
fed into the network where the event clusters will be labeled and segmented.

Fig. 6. Training and validation loss as a function of the number of epochs.
Early stopping was determined through monitoring the validation loss with
a patience of 10 epochs.

using clusters from measured dictionaries. Initially, the clusters
are added to a zero image and the remaining zero values in the
resulting image are then replaced with values sampled from
a fitted normal distribution of background intensities where the
mean and variance are determined from real images acquired
by the detector. The synthesized SAOs are of size 240 × 320
(smaller than the native SAO to reduce computational costs).
Finally, the images are then normalized to values between 0
and 1 which is then used as the input to the segmentation
network.

The network architecture for segmentation is shown in
Fig. 5, consisting of three convolutional layers with 32 ker-
nels of size 3 × 3 with ReLU activation at each layer.
This is then followed by a convolutional layer consisting of
three kernels of size 3 × 3 with softmax activation. The output
consists of an image with three channels where each pixel con-
tains three probabilistic scores for the background, beta, and
gamma class. The class with the highest score is then assigned
to the pixel. The targets are 240 × 320 × 3 images where
each channel corresponds to a binary image for each class
and the loss function used is the generalized dice loss (GDL)
which is reported to have better performance over the more

(a)

(b)

Fig. 7. Comparison of ROC curves between CNN classifier and lightpoint
lookup table classifier. (a) ROC for Model C1, trained and tested with 14C
beta and 57Co gamma clusters. (b) ROC for Model C2, trained and tested
with 14C beta and 99mTc gamma clusters.

conventionally used CE loss in the presence of class imbal-
ance [17], which in this case there are more pixels in the
SAO belonging to the background class compared to either
the beta/gamma class

GDL = 1 − 2

∑C
c=1 wc

∑N
n=1 yc,n·pc,n∑C

c=1 wc
∑N

n=1 yc,n + pc,n
(6)

with

wc = 1
(∑N

n=1 yc,n

)2
(7)

where y corresponds to the ground truth or gold standard
segmentation labels and p corresponding to the predicted prob-
abilistic values, calculated across N number of pixels and C
number of classes. The contribution to the loss function from
each class is weighted by the inverse of its area wc to provide
invariance to class imbalance. Model S1 is trained and tested
with SAOs containing 14C beta and 57 Co gamma clusters and
Model S2 is trained and tested with SAOs containing 14 C beta
and 99mTc gamma clusters. A total of 500 images were synthe-
sized with 60% used for training, 20% for validation, and 20%
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(a)

(b)

Fig. 8. (a) Comparison of overall ROC between categorical CE loss and
WMW loss with model C2. (b) Comparison of lower left part of the ROC.
AUC values reported are at 2% FPR.

Fig. 9. Comparison of ROC for all classifiers tested on 14C beta and 99mTc
gamma clusters. All classifiers were trained on 14C beta clusters and the
gamma clusters depicted in the square brackets for each classifier.

for testing. To be able to provide a performance comparison
in terms of beta–gamma discrimination with the classification
methods mentioned above, an ROC curve was generated based
on the scores of the clusters. To achieve this, the beta and
gamma scores for each cluster are extracted and a softmax

Fig. 10. Training set size grid search conducted with model C2 trained
using CE loss. The mean and standard deviation values are calculated across
five repeats.

Fig. 11. Comparison of dice scores for each class between models S1 and
S2.

Fig. 12. Comparison of ROC between models C2 and S2.

activation is applied. The mean of the resulting beta scores
of each cluster are then used to generate the ROC curve. To
evaluate whether the number of patches used in this study is
sufficient to optimize the discrimination task, model C2 was
retrained at different fractions of the total number of patches
obtained experimentally and the AUC metric on the test set
was recorded.
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(a) (d)

(b) (e)

(c) (f)

Fig. 13. (a) and (b) Examples of misclassifications made by both CNN and lookup table classifiers. (c) and (d) Examples of misclassifications made
by the lookup table but not the CNN. (e) and (f) Examples of beta and gamma clusters, respectively. The gamma cluster in row 2, column 3 in (a) has
similar appearance and physical properties to the beta cluster in row 1, column 1 of (e) (highlighted in red). A similar comparison can be made between the
beta cluster in row 2, column 1 of (b) and the gamma cluster in row 1, column 4 of (f) (highlighted in yellow). An apparent example of a beta cluster in (d)
was misclassified by the lookup table but not the CNN classifier (highlighted in green).

III. RESULTS

A. Classification

The training and validation losses for models C1 and C2 are
shown in Fig. 6. The ROC curves for both models are shown
in Fig. 7 where the AUCs for model C1 and C2 are 0.988
and 0.936, respectively. Fig. 8 shows a comparison between
the CE and WMW loss functions with model C2. Overall,
model C2 trained with the WMW loss achieved the lowest
AUC [Fig. 8(a)]. However, if we consider the ROC up to
2% FPR (lower-left region of the ROC), WMW loss achieved
the best performance in terms of the AUC when compared to
either using CE or the lookup table [Fig. 8(b)]. Fig. 9 shows
the ROC curves for all classifiers tested with 14C beta and
99mTc gamma clusters. A lower AUC is observed with model
C1 compared to model C2, however, it is still comparable to
the lookup table trained with 14C beta and 99mTc gamma clus-
ters. The AUC score as a function of training set size with
model C2 is reported in Fig. 10.

B. Segmentation

The dice scores of each individual class were monitored
as the performance metric and are shown in Fig. 11. The

dice scores for the background class are close to unity for
both models. However, lower dice scores for the gamma and
beta class are found with model S2 when compared to model
S1. The ROC curve generated based on the mean beta scores
of the clusters from segmentation with model S2 is compared
with model C2 in Fig. 12. A lower AUC is observed with
model S2.

IV. DISCUSSION AND CONCLUSION

Both deep learning methods have shown promising results
for beta–gamma discrimination. Better performance in terms
of the AUC is observed with both models C1 and C2 compared
to the lookup table classifier, as the classification network
learns many features for itself, compared to the two hand-
crafted features which are the mean intensity and area of
the clusters. The lower performance observed with Model
C2 compared to C1 could be due to the presence of IC elec-
trons in the 99mTc gamma dictionary and a higher degree of
class imbalance between 14C beta and 99mTc gamma clus-
ters. The performance with model C1 when tested on 99mTc
gamma clusters shows the possibility of implementing transfer
learning during the training process such that the classification
network can be applied to discriminating the emissions from
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99mTc. This would be especially beneficial due to the difficulty
in isolating the IC electron signals from 99mTc for training the
classifier.

The need to optimize the lower left region of the ROC curve
is essential since misclassifying gamma signals as beta signals
would lead to unhelpful ambiguity of the tumor location. The
use of the WMW loss allowed the direct optimization of the
AUC as well as improvement in sensitivity at high specificity.
The model trained with WMW loss achieved approximately
an improvement of 31% in AUC compared to the model
trained with CE loss up to an FPR of 0.02, which would be
within the typical range of operation in a surgical environment.
At approximately 0.03 FPR, the model trained with CE loss
begins to outperform the WMW loss in terms of sensitivity
which is expected due to the mapping applied to the samples
in (4). Therefore, this presents a tradeoff between optimization
at high and low specificity.

Increasing the training set size shows an improvement in
performance in terms of the AUC is seen in Fig. 10. With
a training set size above 60 000, the AUC begins to plateau
which shows a point of diminishing returns has been reached
and further increase in training set size will yield a smaller
increase in performance with a longer training time. This also
shows that the total number of patches used in this study is
sufficient for the discrimination task.

Examples of misclassifications and each type of clusters are
shown in Fig. 13. These cases are primarily due to the clusters
having similar appearances and physical properties to clusters
in the other class. This could be due to the presence of noise
in the training data labels, which causes the ambiguity of the
identity of the cluster. An apparent example of a beta cluster
in Fig. 13(d) (highlighted in green) was misclassified by the
lookup table but not the CNN classifier. This demonstrates that
the features learned by the CNN for the classification were
able to outperform the hand-crafted features used to generate
the lookup table.

The dice scores with semantic segmentation for the back-
ground class demonstrates the ability of the networks to
segment the clusters from the SAOs. The dice scores for the
beta and gamma class have also shown that discrimination
between the two can be achieved in one step. However, better
performance in terms of the AUC is observed for the classifica-
tion method because more information is available, requiring
only one classification of many pixels, compared to requir-
ing classification for each and every pixel in the SAO for the
segmentation network. Overall, through the direct compari-
son of both methods, the classification network yielded better
performance in beta–gamma discrimination.

In conclusion, the deep learning-based gamma signal rejec-
tion methods in this study have shown improved performances
compared to a deterministic machine-learned method as well
as further improvement at low FPRs which is essential for
clinical situations.
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